5,056 research outputs found

    Direct Ensemble Estimation of Density Functionals

    Full text link
    Estimating density functionals of analog sources is an important problem in statistical signal processing and information theory. Traditionally, estimating these quantities requires either making parametric assumptions about the underlying distributions or using non-parametric density estimation followed by integration. In this paper we introduce a direct nonparametric approach which bypasses the need for density estimation by using the error rates of k-NN classifiers asdata-driven basis functions that can be combined to estimate a range of density functionals. However, this method is subject to a non-trivial bias that dramatically slows the rate of convergence in higher dimensions. To overcome this limitation, we develop an ensemble method for estimating the value of the basis function which, under some minor constraints on the smoothness of the underlying distributions, achieves the parametric rate of convergence regardless of data dimension.Comment: 5 page

    Nonparametrically consistent depth-based classifiers

    Full text link
    We introduce a class of depth-based classification procedures that are of a nearest-neighbor nature. Depth, after symmetrization, indeed provides the center-outward ordering that is necessary and sufficient to define nearest neighbors. Like all their depth-based competitors, the resulting classifiers are affine-invariant, hence in particular are insensitive to unit changes. Unlike the former, however, the latter achieve Bayes consistency under virtually any absolutely continuous distributions - a concept we call nonparametric consistency, to stress the difference with the stronger universal consistency of the standard kkNN classifiers. We investigate the finite-sample performances of the proposed classifiers through simulations and show that they outperform affine-invariant nearest-neighbor classifiers obtained through an obvious standardization construction. We illustrate the practical value of our classifiers on two real data examples. Finally, we shortly discuss the possible uses of our depth-based neighbors in other inference problems.Comment: Published at http://dx.doi.org/10.3150/13-BEJ561 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Unexpected properties of bandwidth choice when smoothing discrete data for constructing a functional data classifier

    Get PDF
    The data functions that are studied in the course of functional data analysis are assembled from discrete data, and the level of smoothing that is used is generally that which is appropriate for accurate approximation of the conceptually smooth functions that were not actually observed. Existing literature shows that this approach is effective, and even optimal, when using functional data methods for prediction or hypothesis testing. However, in the present paper we show that this approach is not effective in classification problems. There a useful rule of thumb is that undersmoothing is often desirable, but there are several surprising qualifications to that approach. First, the effect of smoothing the training data can be more significant than that of smoothing the new data set to be classified; second, undersmoothing is not always the right approach, and in fact in some cases using a relatively large bandwidth can be more effective; and third, these perverse results are the consequence of very unusual properties of error rates, expressed as functions of smoothing parameters. For example, the orders of magnitude of optimal smoothing parameter choices depend on the signs and sizes of terms in an expansion of error rate, and those signs and sizes can vary dramatically from one setting to another, even for the same classifier.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1158 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On accuracy of PDF divergence estimators and their applicability to representative data sampling

    Get PDF
    Generalisation error estimation is an important issue in machine learning. Cross-validation traditionally used for this purpose requires building multiple models and repeating the whole procedure many times in order to produce reliable error estimates. It is however possible to accurately estimate the error using only a single model, if the training and test data are chosen appropriately. This paper investigates the possibility of using various probability density function divergence measures for the purpose of representative data sampling. As it turned out, the first difficulty one needs to deal with is estimation of the divergence itself. In contrast to other publications on this subject, the experimental results provided in this study show that in many cases it is not possible unless samples consisting of thousands of instances are used. Exhaustive experiments on the divergence guided representative data sampling have been performed using 26 publicly available benchmark datasets and 70 PDF divergence estimators, and their results have been analysed and discussed
    • ā€¦
    corecore