311 research outputs found

    Flexible Fingers Based on Shape Memory Alloy Actuated Modules

    Get PDF
    To meet the needs of present-day robotics, a family of gripping flexible fingers has been designed. Each of them consists of a number of independent and flexible modules that can be assembled in dierent configurations. Each module consists of a body with a flexible central rod and three longitudinally positioned shape memory alloy (SMA) wires. When heated by the Joule eect, one to two SMA wires shorten, allowing the module to bend. The return to undeformed conditions is achieved in calm air and is guaranteed by the elastic bias force exerted by the central rod. This article presents the basic concept of the module and a simple mathematical model for the design of the device. Experimental tests were carried out on three prototypes with bodies made of dierent materials. The results of these tests confirm the need to reduce the antagonistic action of the inactive SMA wires and led to the realization of a fourth prototype equipped with an additional SMA wire-driven locking/unlocking device for these wires. The preliminary results of this last prototype are encouraging

    Simultaneous use of shape memory alloys and permanent magnets in multistable smart structures for morphing aircraft applications

    Get PDF
    This Thesis considers the simultaneous use of shape memory alloys and permanent magnets for achieving multistable smart structures aiming towards morphing applications. Motivation for this approach lies in the poor energetic efficiency of shape memory alloys, which can void system-level benefits provided by morphing technologies. Multistability can therefore be adopted to prevent continuous operation of shape memory alloy actuators. Objectives of the study involve the combination of shape memory alloys and permanent magnets in new geometrical arrangements to achieve multistable behavior; the development of a numerical modeling procedure that is able to simulate the multi-physics nature of the studied systems; and the proposal of a geometric arrangement for morphing applications that is based on a repeating pattern of unit cells which incorporate the combined use of shape memory alloy wires and permanent magnets for multistability. The proposed modeling strategy considers a geometrically nonlinear beam finite element; a thermo-mechanical constitutive behavior for shapememoryalloys;theinteractionofcuboidalpermanentmagnetswitharbitraryorienta- tions; and node-to-element contact. Experiments are performed with three distinct systems, including a proof-of-concept beam, a three cell morphing beam metastructure, and a morphing airfoil prototype with six unit cells. Results show that the combination of shape memory alloys and permanent magnets indeed allows for multistable behavior. Furthermore, the dis- tributedactuationcapabilitiesofthe morphingmetastructureallowforsmoothandlocalized geometrical shape changes.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoTese (Doutorado)Esta Tese considera o uso simultâneo de ligas com memória de forma e ímãs permanentes para a obtenção de estruturas inteligentes multiestáveis, com vistas a sua aplicação em aeronaves de geometria variável. A motivação para tal abordagem reside na baixa eficiência energética associada às ligas com memória de forma, a qual pode eliminar benefícios oriundos de tecnologias relacionadas a geometria variável. Multiestabilidade pode, desta forma, ser adotada para prevenir operação contínua de atuadores baseados em ligas com memória de forma. Objetivos do estudo envolvem a combinação de ligas com memória de forma e ímãs permanentes em novos arranjos geométricos para a obtenção de comportamento multiestável; o desenvolvimento de um procedimento de modelagem numérica que pode simular a natureza multifísica dos sistemas estudados; e a proposição de um arranjo geométrico para aplicações que envolvem geometria variável, o qual é baseado num padrão repetitivo de células unitárias que incorporam o uso combinado de ligas com memória de forma e ímãs permanentes para mul- tiestabilidade. A estratégia de modelagem proposta considera um elemento finito de viga com não-linearidades geométricas; um modelo constitutivo termomecânico para ligas com memória de forma; a interação entre ímãs permanentes cúbicos com orientação arbitrária; e contato entre elemento-e-nó no contexto de elementos finitos. Experimentos são realizados com três sistemas distintos, incluindo uma viga para prova de conceito, uma metaestrutura do tipo viga com geometria variável composta por três células unitárias, e um protótipo de aerofólio com geometria variável composto por seis células unitárias. Resultados mostram que a combinação de ligas com memória de forma e ímãs permanentes permite a obtenção de comportamento multiestável. Além disso, a característica de atuação distribuída das metaestruturas com geometria variável permite alterações de forma suaves e localizadas

    Operational space control of a lightweight robotic arm actuated by shape memory alloy wires: a comparative study.

    Get PDF
    This article presents the design and control of a two-link lightweight robotic arm using shape memory alloy wires as actuators. Both a single-wire actuated system and an antagonistic configuration system are tested in open and closed loops. The mathematical model of the shape memory alloy wire, as well as the kinematics and dynamics of the robotic arm, are presented. The operational space control of the robotic arm is performed using a joint space control in the inner loop and closed-loop inverse kinematics in the outer loop. In order to choose the best joint space control approach, a comparative study of four different control approaches (proportional derivative, sliding mode, adaptive, and adaptive sliding mode control) is carried out for the proposed model. From this comparative analysis, the adaptive controller was chosen to perform operational space control. This control helps us to perform accurate positioning of the end-effector of shape memory alloy wire–based robotic arm. The complete operational space control was successfully tested through simulation studies performing position reference tracking in the end-effector space. Through simulation studies, the proposed control solution is successfully verified to control the hysteretic robotic arm

    Experimental testing of a modular flexible actuator based on sma wires

    Get PDF
    A flexible finger made up of three actuator modules based on shape memory wires (SMA) is experimentally studied in this research. A module is composed by few simple components: a plastic body and SMA wires. The body is a thin cylinder with a lower and upper base and two intermediate disks. Three equidistant SMA wires are longitudinally placed and allow the module to bend in any direction when one or more wires are actuated. The motion of the module is performed with the heating and cooling of the wire and the central rod exerts bias force, necessary to the stretching of the wire to the original length. Two test benches were built to perform both positioning tests and force tests. To evaluate the actuator workspace different tests were performed, with different power supply, heating and cooling time, actuation sequence. Force tests were performed with different distance between the undeformed finger and the obstacle. The results achieved with this first prototype are encouraging since the finger shows stable and correct operation. The planar projection of the workspace is a circle of about 30-40 mm of radius and exerted force is similar to mathematical model results (about 1 N at 5 mm). These results are encouraging, even though, probably due to manufacturing imperfections and frictions, the movement is not very regular along the various directions

    DESIGN, DEVELOPMENT, AND EVALUATION OF A MRI-GUIDED NEUROSURGICAL INTRACRANIAL ROBOT

    Get PDF
    Brain tumors are among the most feared complications of cancer. Their treatment is challenging because of the lack of good imaging modality and the inability to remove the complete tumor. To overcome this limitation, we propose to develop a Magnetic Resonance Imaging (MRI)-compatible neurosurgical robot. The robot can be operated under continuous MRI, and the Magnetic Resonance (MR) images can be used to supplement physicians' visual capabilities, resulting in precise tumor removal. We have developed two prototypes of the Minimally Invasive Neurosurgical Intracranial Robot (MINIR) using MRI compatible materials and shape memory alloy (SMA) actuators. The major difference between the two robots is that one uses SMA wire actuators and the other uses SMA spring actuators combined with the tendon-sheath mechanism. Due to space limitation inside the robot body and the strong magnetic field in the MRI scanner, most sensors cannot be used inside the robot body. Hence, one possible approach is to rely on image feedback to control the motion of the robot. In this research, as a preliminary approach, we have relied on image feedback from a camera to control the motion of the robot. Since the image tracking algorithm may fail in some situations, we also developed a temperature feedback control scheme which served as a backup controller for the robot. Experimental results demonstrated that both image feedback and temperature feedback can be used reliably to control the joint motion of the robots. A series of MRI compatibility tests were performed to evaluate the MRI compatibility of the robots and to assess the degradation in image quality. The experimental results demonstrated that the robots are MRI compatible and created no significant image distortion in the MR images during actuation. The accomplishments presented in this dissertation represent a significant development of using SMA actuators to actuate MRI-compatible robots. It is anticipated that, in the future, continuous MR imaging would be used reliably to control the motion of the robot. It is aspired that the robot design and the control methods of SMA actuators developed in this research can be utilized in practical applications

    Optimum Mechanical Design of Binary Actuators Based on Shape Memory Alloys

    Get PDF
    This chapter describes the optimum mechanical design of shape memory based actuators. The authors show how to exploit the Shape Memory Alloy (SMA) to design silent, compact and light binary actuators. Two simple mechanical models are considered to describe the SMA behaviour and design equations are provided for two classes of actuators. First SMA actuators are analyzed and designed on the basis of the backup element needed to recover the stroke. Second SMA actuators are improved by adding a compensator system to enhance the output mechanical response, especially in terms of available stroke. Useful design procedures are provided to help the engineer in the synthesis of SMA actuators. Starting from the design specifications, a step by step procedure is built to define the mechanical dimension of the SMA active elements, of the backup system and of the compensator

    Design and Experimental Characterization of a Niti-Based, High-Frequency, Centripetal Peristaltic Actuator

    Get PDF
    Development and experimental testing of a peristaltic device actuated by a single shape-memory NiTi wire are described. The actuator is designed to radially shrink a compliant silicone pipe, and must work on a sustained basis at an actuation frequency that is higher than those typical of NiTi actuators. Four rigid, aluminum-made circular sectors are sitting along the pipe circumference and provide the required NiTi wire housing. The aluminum assembly acts as geometrical amplifier of the wire contraction and as heat sink required to dissipate the thermal energy of the wire during the cooling phase. We present and discuss the full experimental investigation of the actuator performance, measured in terms of its ability to reduce the pipe diameter, at a sustained frequency of 1.5 Hz. Moreover, we investigate how the diameter contraction is affected by various design parameters as well as actuation frequencies up to 4 Hz. We manage to make the NiTi wire work at 3% in strain, cyclically providing the designed pipe wall displacement. The actuator performance is found to decay approximately linearly with actuation frequencies up to 4 Hz. Also, the interface between the wire and the aluminum parts is found to be essential in defining the functional performance of the actuator

    Folded Lightweight Actuator Positioning System (FLAPS)

    Get PDF
    Precision actuation of mechanical structures on small spacecraft is challenging. Current solutions include single-use actuators, which rely on pyrotechnics and springs, and multiple-use actuators, which typically consume more size, weight, and power than available on CubeSats. The Folded Lightweight Actuated Positioning System (FLAPS) demonstrates the use of a simple rotary shape memory alloy (SMA) actuator in a bending architecture, along with a feedback control loop for repeatable and precise deployment. The FLAPS mechanism consists of a pair of SMA strips mounted to a hinge assembly, with one side attached to the CubeSat bus and the other to the deployable element. A custom actuator shape was manufactured using oven annealing. SMA actuation is achieved using joule heating. Feedback control is provided by a closed-loop PID control scheme, feedback sensor, and controller board. The FLAPS actuator is currently being developed for CubeSat solar panel positioning and drag control. Other potential FLAPS applications include aperture repositioning, deployable radiators, and steerable antennas. The FLAPS team will validate the actuator system in a microgravity environment on a parabolic fight in late 2019
    corecore