56,072 research outputs found

    Thermal imaging for pests detecting-a review

    Get PDF
    Thermal remote sensing technology (thermography) is a non-destructive technique used to determine thermal properties of any objects of interest. The principle of thermal remote sensing is the invisible radiation patterns of objects converted into visible images and these images are called thermal images. These images can be acquired using portable, handheld or thermal sensors that are coupled with optical systems mounted on an airplane or satellite. This technology has grown into an important technology that is applied directly or indirectly in many applications such as civil engineering and industrial maintenance, etc. The potential use of thermal remote sensing in agriculture includes nursery and greenhouse monitoring, irrigation scheduling, plant disease detection, estimating fruit yield, evaluating the maturity of fruits and bruise detection in fruits and vegetables. However, in recent years, the usage of thermal imaging is gaining popularity in pest detection due to the reductions in the cost of the equipment and simple operating procedure. The purpose of this paper is two parts, the first part discusses about thermal remote sensing system while the second part epitomize various studies conducted on the potential application of thermal imaging system in pest detection

    COST Action TU1208 civil engineering applications of Ground Penetrating Radar: first-year activities and results

    Get PDF
    This work aims at presenting the first-year activities and results of COST (European COoperation in Science and Technology) Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar”. This Action was launched in April 2013 and will last four years. The principal aim of COST Action TU1208 is to exchange and increase scientific-technical knowledge and experience of GPR techniques in civil engineering, whilst simultaneously promoting throughout Europe the effective use of this safe and non-destructive technique in the monitoring of infrastructures and structures. Moreover, the Action is oriented to the following specific objectives and expected deliverables: (i) coordinating European scientists to highlight problems, merits and limits of current GPR systems; (ii) developing innovative protocols and guidelines, which will be published in a handbook and constitute a basis for European standards, for an effective GPR application in civil- engineering tasks; safety, economic and financial criteria will be integrated within the protocols; (iii) integrating competences for the improvement and merging of electromagnetic scattering techniques and of data- processing techniques; this will lead to a novel freeware tool for the localization of buried objects, shape-reconstruction and estimation of geophysical parameters useful for civil engineering needs; (iv) networking for the design, realization and optimization of innovative GPR equipment; (v) comparing GPR with different NDT techniques, such as ultrasonic, radiographic, liquid-penetrant, magnetic-particle, acoustic-emission and eddy-current testing; (vi) comparing GPR technology and methodology used in civil engineering with those used in other fields; (vii) promotion of a more widespread, advanced and efficient use of GPR in civil engineering; and (viii) organization of a high-level modular training program for GPR European users. Four Working Groups (WGs) carry out the research activities. The first WG focuses on the design of innovative GPR equipment, on the building of prototypes and on the testing and optimisation of new systems. The second WG focuses on the GPR surveying of pavement, bridges, tunnels and buildings, as well as on the sensing of underground utilities and voids. The third WG deals with the development of electromagnetic forward and inverse scattering methods, for the characterization of GPR scenarios, as well as with data- processing algorithms for the elaboration of the data collected during GPR surveys. The fourth WG works on the use of GPR in fields different from the civil engineering, as well as on the integration of GPR with other non-destructive testing techniques. Each WG includes several Projects. COST Action TU1208 is active through a range of networking tools: meetings, workshops, conferences, training schools, short-term scientific missions, dissemination activities. During the first year of activities, a First General Meeting was organized in Rome, in July 2013, a second meeting took place in Nantes, in February 2014, and the Second General Meeting is being held jointly with the 2014 EGU General Assembly. A training school on "Microwave Imaging and Diagnostics: Theory, Techniques, and Applications", held in March 2014, was co-organised with the European School of Antennas. Four Short-Term Scientific Missions were funded, allowing young researchers to spend a period of time in an institution abroad, in order to carry out a research project contributing to the scientific objectives of the Action. The Action’s activities were disseminated in international conferences [1]-[4], as well as in further workshops and meetings. Two volumes were published [5]-[6], and several scientific papers on peer-reviewed journals. A Springer book presenting the state of the art on civil engineering applications of Ground Penetrating Radar is being prepared and is going to be published in summer 2014. A COST Action is a wide bottom-up interdisciplinary science and technology network, open to researchers from universities, public and private research institutions, as well as to NGOs, industry and SMEs. At present, About 100 Institutions from 24 COST Member Countries (Austria, Belgium, Croatia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Italy, Latvia, Malta, Macedonia, The Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Switzerland, Turkey, United Kingdom) have already joined the Action, together with an Institution from Armenia (Near Neighbour Country, NNC). Beyond European borders, six Institutions from U.S.A., one from Rwanda and one from Australia have joined the Action. Further applications from two NNCs (Egypt and Ukraine) and International Partner Countries (Hong Kong and Japan) are under examination. COST Action TU1208 is still open to the participation of new parties and it is possible to include, in the scientific work plan, new perspectives and activities. Scientists and scientific institutions willing to join COST Action TU1208 are encouraged to contact the Chair of the Action and to follow the procedure described at http://www.cost.eu/participate/join_action. For more information on COST Action TU1208, please visit www.GPRadar.eu. —————————– Acknowledgement The Authors thanks COST for funding COST Action TU1208

    Image processing for displacement measurements

    Get PDF
    Since the invention of photography humans have been using images to capture, store and analyse the act that they are interested in. With the developments in this field, assisted by better computers, it is possible to use image processing technology as an accurate method of analysis and measurement. Image processing's principal qualities are flexibility, adaptability and the ability to easily and quickly process a large amount of information. Successful examples of applications can be seen in several areas of human life, such as biomedical, industry, surveillance, military and mapping. This is so true that there are several Nobel prizes related to imaging. The accurate measurement of deformations, displacements, strain fields and surface defects are challenging in many material tests in Civil Engineering because traditionally these measurements require complex and expensive equipment, plus time consuming calibration. Image processing can be an inexpensive and effective tool for load displacement measurements. Using an adequate image acquisition system and taking advantage of the computation power of modern computers it is possible to accurately measure very small displacements with high precision. On the market there are already several commercial software packages. However they are commercialized at high cost. In this work block-matching algorithms will be used in order to compare the results from image processing with the data obtained with physical transducers during laboratory load tests. In order to test the proposed solutions several load tests were carried out in partnership with researchers from the Civil Engineering Department at Universidade Nova de Lisboa (UNL)

    TU1208 open database of radargrams. the dataset of the IFSTTAR geophysical test site

    Get PDF
    This paper aims to present a wide dataset of ground penetrating radar (GPR) profiles recorded on a full-size geophysical test site, in Nantes (France). The geophysical test site was conceived to reproduce objects and obstacles commonly met in the urban subsurface, in a completely controlled environment; since the design phase, the site was especially adapted to the context of radar-based techniques. After a detailed description of the test site and its building process, the GPR profiles included in the dataset are presented and commented on. Overall, 67 profiles were recorded along eleven parallel lines crossing the test site in the transverse direction; three pulsed radar systems were used to perform the measurements, manufactured by different producers and equipped with various antennas having central frequencies from 200 MHz to 900 MHz. An archive containing all profiles (raw data) is enclosed to this paper as supplementary material. This dataset is the core part of the Open Database of Radargrams initiative of COST (European Cooperation in Science and Technology) Action TU1208 “Civil engineering applications of Ground Penetrating Radar”. The idea beyond such initiative is to share with the scientific community a selection of interesting and reliable GPR responses, to enable an effective benchmark for direct and inverse electromagnetic approaches, imaging methods and signal processing algorithms. We hope that the dataset presented in this paper will be enriched by the contributions of further users in the future, who will visit the test site and acquire new data with their GPR systems. Moreover, we hope that the dataset will be made alive by researchers who will perform advanced analyses of the profiles, measure the electromagnetic characteristics of the host materials, contribute with synthetic radargrams obtained by modeling the site with electromagnetic simulators, and more in general share results achieved by applying their techniques on the available profiles

    Toward automated earned value tracking using 3D imaging tools

    Get PDF

    SciTech News Volume 71, No. 2 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division 9 Aerospace Section of the Engineering Division 12 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 14 Reviews Sci-Tech Book News Reviews 16 Advertisements IEEE

    Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm

    Get PDF
    Offshore Wind has become the most profitable renewable energy source due to the remarkable development it has experienced in Europe over the last decade. In this paper, a review of Structural Health Monitoring Systems (SHMS) for offshore wind turbines (OWT) has been carried out considering the topic as a Statistical Pattern Recognition problem. Therefore, each one of the stages of this paradigm has been reviewed focusing on OWT application. These stages are: Operational Evaluation; Data Acquisition, Normalization and Cleansing; Feature Extraction and Information Condensation; and Statistical Model Development. It is expected that optimizing each stage, SHMS can contribute to the development of efficient Condition-Based Maintenance Strategies. Optimizing this strategy will help reduce labor costs of OWTs׳ inspection, avoid unnecessary maintenance, identify design weaknesses before failure, improve the availability of power production while preventing wind turbines׳ overloading, therefore, maximizing the investments׳ return. In the forthcoming years, a growing interest in SHM technologies for OWT is expected, enhancing the potential of offshore wind farm deployments further offshore. Increasing efficiency in operational management will contribute towards achieving UK׳s 2020 and 2050 targets, through ultimately reducing the Levelised Cost of Energy (LCOE)

    SciTech News Volume 70, No. 4 (2016)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 4 SLA Annual Meeting 2016 Report (S. Kirk Cabeen Travel Stipend Award recipient) 6 Reflections on SLA Annual Meeting (Diane K. Foster International Student Travel Award recipient) 8 SLA Annual Meeting Report (Bonnie Hilditch International Librarian Award recipient)10 Chemistry Division 12 Engineering Division 15 Reflections from the 2016 SLA Conference (SPIE Digital Library Student Travel Stipend recipient)15 Fundamentals of Knowledge Management and Knowledge Services (IEEE Continuing Education Stipend recipient) 17 Makerspaces in Libraries: The Big Table, the Art Studio or Something Else? (by Jeremy Cusker) 19 Aerospace Section of the Engineering Division 21 Reviews Sci-Tech Book News Reviews 22 Advertisements IEEE 17 WeBuyBooks.net 2
    corecore