11,697 research outputs found

    Acoustic Space Learning for Sound Source Separation and Localization on Binaural Manifolds

    Get PDF
    In this paper we address the problems of modeling the acoustic space generated by a full-spectrum sound source and of using the learned model for the localization and separation of multiple sources that simultaneously emit sparse-spectrum sounds. We lay theoretical and methodological grounds in order to introduce the binaural manifold paradigm. We perform an in-depth study of the latent low-dimensional structure of the high-dimensional interaural spectral data, based on a corpus recorded with a human-like audiomotor robot head. A non-linear dimensionality reduction technique is used to show that these data lie on a two-dimensional (2D) smooth manifold parameterized by the motor states of the listener, or equivalently, the sound source directions. We propose a probabilistic piecewise affine mapping model (PPAM) specifically designed to deal with high-dimensional data exhibiting an intrinsic piecewise linear structure. We derive a closed-form expectation-maximization (EM) procedure for estimating the model parameters, followed by Bayes inversion for obtaining the full posterior density function of a sound source direction. We extend this solution to deal with missing data and redundancy in real world spectrograms, and hence for 2D localization of natural sound sources such as speech. We further generalize the model to the challenging case of multiple sound sources and we propose a variational EM framework. The associated algorithm, referred to as variational EM for source separation and localization (VESSL) yields a Bayesian estimation of the 2D locations and time-frequency masks of all the sources. Comparisons of the proposed approach with several existing methods reveal that the combination of acoustic-space learning with Bayesian inference enables our method to outperform state-of-the-art methods.Comment: 19 pages, 9 figures, 3 table

    Sparse CCA: Adaptive Estimation and Computational Barriers

    Get PDF
    Canonical correlation analysis is a classical technique for exploring the relationship between two sets of variables. It has important applications in analyzing high dimensional datasets originated from genomics, imaging and other fields. This paper considers adaptive minimax and computationally tractable estimation of leading sparse canonical coefficient vectors in high dimensions. First, we establish separate minimax estimation rates for canonical coefficient vectors of each set of random variables under no structural assumption on marginal covariance matrices. Second, we propose a computationally feasible estimator to attain the optimal rates adaptively under an additional sample size condition. Finally, we show that a sample size condition of this kind is needed for any randomized polynomial-time estimator to be consistent, assuming hardness of certain instances of the Planted Clique detection problem. The result is faithful to the Gaussian models used in the paper. As a byproduct, we obtain the first computational lower bounds for sparse PCA under the Gaussian single spiked covariance model

    Sketching for Large-Scale Learning of Mixture Models

    Get PDF
    Learning parameters from voluminous data can be prohibitive in terms of memory and computational requirements. We propose a "compressive learning" framework where we estimate model parameters from a sketch of the training data. This sketch is a collection of generalized moments of the underlying probability distribution of the data. It can be computed in a single pass on the training set, and is easily computable on streams or distributed datasets. The proposed framework shares similarities with compressive sensing, which aims at drastically reducing the dimension of high-dimensional signals while preserving the ability to reconstruct them. To perform the estimation task, we derive an iterative algorithm analogous to sparse reconstruction algorithms in the context of linear inverse problems. We exemplify our framework with the compressive estimation of a Gaussian Mixture Model (GMM), providing heuristics on the choice of the sketching procedure and theoretical guarantees of reconstruction. We experimentally show on synthetic data that the proposed algorithm yields results comparable to the classical Expectation-Maximization (EM) technique while requiring significantly less memory and fewer computations when the number of database elements is large. We further demonstrate the potential of the approach on real large-scale data (over 10 8 training samples) for the task of model-based speaker verification. Finally, we draw some connections between the proposed framework and approximate Hilbert space embedding of probability distributions using random features. We show that the proposed sketching operator can be seen as an innovative method to design translation-invariant kernels adapted to the analysis of GMMs. We also use this theoretical framework to derive information preservation guarantees, in the spirit of infinite-dimensional compressive sensing

    Binary Linear Classification and Feature Selection via Generalized Approximate Message Passing

    Full text link
    For the problem of binary linear classification and feature selection, we propose algorithmic approaches to classifier design based on the generalized approximate message passing (GAMP) algorithm, recently proposed in the context of compressive sensing. We are particularly motivated by problems where the number of features greatly exceeds the number of training examples, but where only a few features suffice for accurate classification. We show that sum-product GAMP can be used to (approximately) minimize the classification error rate and max-sum GAMP can be used to minimize a wide variety of regularized loss functions. Furthermore, we describe an expectation-maximization (EM)-based scheme to learn the associated model parameters online, as an alternative to cross-validation, and we show that GAMP's state-evolution framework can be used to accurately predict the misclassification rate. Finally, we present a detailed numerical study to confirm the accuracy, speed, and flexibility afforded by our GAMP-based approaches to binary linear classification and feature selection
    • …
    corecore