36,650 research outputs found

    Finding and Resolving Security Misusability with Misusability Cases

    Get PDF
    Although widely used for both security and usability concerns, scenarios used in security design may not necessarily inform the design of usability, and vice- versa. One way of using scenarios to bridge security and usability involves explicitly describing how design deci- sions can lead to users inadvertently exploiting vulnera- bilities to carry out their production tasks. This paper describes how misusability cases, scenarios that describe how design decisions may lead to usability problems sub- sequently leading to system misuse, address this problem. We describe the related work upon which misusability cases are based before presenting the approach, and illus- trating its application using a case study example. Finally, we describe some findings from this approach that further inform the design of usable and secure systems

    Layered identity infrastructure model for identity meta systems

    Get PDF
    There are several Identity Meta Systems emerging in the identity management field, such as CardSpace and Higgins Trust Framework. The goal of an Identity Meta System (IMetS) is to integrate existing or new Identity Management System (IMS) to provide users with seamless interoperability and a consistent user experience. IMetS is a complex system that tries to integrate the already complicated IMS services. With such a complex system, we need a way to assess IMetS in order to determine how well an IMetS integrates the various IMS services. However, as IMetS is a rela- tively new concept, there is no framework to identify the properties that an ideal IMetS should have. The contribution of this paper is to introduce the Layered Identity Infrastructure Model (LIIM) that can be used as a framework to assess IMetS. In addition, the LIIM framework can also be used to identify the missing components of an IMetS, to guide and improve the design of an existing IMetS, to serve as a design benchmark for a new IMetS, as well as to aid the understanding of a complicated IMetS

    A Semantic Framework for the Analysis of Privacy Policies

    Get PDF

    Citizen Electronic Identities using TPM 2.0

    Full text link
    Electronic Identification (eID) is becoming commonplace in several European countries. eID is typically used to authenticate to government e-services, but is also used for other services, such as public transit, e-banking, and physical security access control. Typical eID tokens take the form of physical smart cards, but successes in merging eID into phone operator SIM cards show that eID tokens integrated into a personal device can offer better usability compared to standalone tokens. At the same time, trusted hardware that enables secure storage and isolated processing of sensitive data have become commonplace both on PC platforms as well as mobile devices. Some time ago, the Trusted Computing Group (TCG) released the version 2.0 of the Trusted Platform Module (TPM) specification. We propose an eID architecture based on the new, rich authorization model introduced in the TCGs TPM 2.0. The goal of the design is to improve the overall security and usability compared to traditional smart card-based solutions. We also provide, to the best our knowledge, the first accessible description of the TPM 2.0 authorization model.Comment: This work is based on an earlier work: Citizen Electronic Identities using TPM 2.0, to appear in the Proceedings of the 4th international workshop on Trustworthy embedded devices, TrustED'14, November 3, 2014, Scottsdale, Arizona, USA, http://dx.doi.org/10.1145/2666141.266614

    Public Evidence from Secret Ballots

    Full text link
    Elections seem simple---aren't they just counting? But they have a unique, challenging combination of security and privacy requirements. The stakes are high; the context is adversarial; the electorate needs to be convinced that the results are correct; and the secrecy of the ballot must be ensured. And they have practical constraints: time is of the essence, and voting systems need to be affordable and maintainable, and usable by voters, election officials, and pollworkers. It is thus not surprising that voting is a rich research area spanning theory, applied cryptography, practical systems analysis, usable security, and statistics. Election integrity involves two key concepts: convincing evidence that outcomes are correct and privacy, which amounts to convincing assurance that there is no evidence about how any given person voted. These are obviously in tension. We examine how current systems walk this tightrope.Comment: To appear in E-Vote-Id '1
    • …
    corecore