8,321 research outputs found

    Adaptive Coordination Offsets for Signalized Arterial Intersections using Deep Reinforcement Learning

    Full text link
    One of the most critical components of an urban transportation system is the coordination of intersections in arterial networks. With the advent of data-driven approaches for traffic control systems, deep reinforcement learning (RL) has gained significant traction in traffic control research. Proposed deep RL solutions to traffic control are designed to directly modify either phase order or timings; such approaches can lead to unfair situations -- bypassing low volume links for several cycles -- in the name of optimizing traffic flow. To address the issues and feasibility of the present approach, we propose a deep RL framework that dynamically adjusts the offsets based on traffic states and preserves the planned phase timings and order derived from model-based methods. This framework allows us to improve arterial coordination while preserving the notion of fairness for competing streams of traffic in an intersection. Using a validated and calibrated traffic model, we trained the policy of a deep RL agent that aims to reduce travel delays in the network. We evaluated the resulting policy by comparing its performance against the phase offsets obtained by a state-of-the-practice baseline, SYNCHRO. The resulting policy dynamically readjusts phase offsets in response to changes in traffic demand. Simulation results show that the proposed deep RL agent outperformed SYNCHRO on average, effectively reducing delay time by 13.21% in the AM Scenario, 2.42% in the noon scenario, and 6.2% in the PM scenario. Finally, we also show the robustness of our agent to extreme traffic conditions, such as demand surges and localized traffic incidents

    A Review of Traffic Signal Control.

    Get PDF
    The aim of this paper is to provide a starting point for the future research within the SERC sponsored project "Gating and Traffic Control: The Application of State Space Control Theory". It will provide an introduction to State Space Control Theory, State Space applications in transportation in general, an in-depth review of congestion control (specifically traffic signal control in congested situations), a review of theoretical works, a review of existing systems and will conclude with recommendations for the research to be undertaken within this project

    CoLight: Learning Network-level Cooperation for Traffic Signal Control

    Full text link
    Cooperation among the traffic signals enables vehicles to move through intersections more quickly. Conventional transportation approaches implement cooperation by pre-calculating the offsets between two intersections. Such pre-calculated offsets are not suitable for dynamic traffic environments. To enable cooperation of traffic signals, in this paper, we propose a model, CoLight, which uses graph attentional networks to facilitate communication. Specifically, for a target intersection in a network, CoLight can not only incorporate the temporal and spatial influences of neighboring intersections to the target intersection, but also build up index-free modeling of neighboring intersections. To the best of our knowledge, we are the first to use graph attentional networks in the setting of reinforcement learning for traffic signal control and to conduct experiments on the large-scale road network with hundreds of traffic signals. In experiments, we demonstrate that by learning the communication, the proposed model can achieve superior performance against the state-of-the-art methods.Comment: 10 pages. Proceedings of the 28th ACM International on Conference on Information and Knowledge Management. ACM, 201
    corecore