627 research outputs found

    Characterization and Modeling of High Power Microwave Effects in CMOS Microelectronics

    Get PDF
    The intentional use of high power microwave (HPM) signals to disrupt microelectronic systems is a substantial threat to vital infrastructure. Conventional methods to assess HPM threats involve empirical testing of electronic equipment, which provides no insight into fundamental mechanisms of HPM induced upset. The work presented in this dissertation is part of a broad effort to develop more effective means for HPM threat assessment. Comprehensive experimental evaluation of CMOS digital electronics was performed to provide critical information of the elementary mechanisms that govern the dynamics of HPM effects. Results show that electrostatic discharge (ESD) protection devices play a significant role in the behavior of circuits irradiated by HPM pulses. The PN junctions of the ESD protection devices distort HPM waveforms producing DC voltages at the input of the core logic elements, which produces output bit errors and abnormal circuit power dissipation. The dynamic capacitance of these devices combines with linear parasitic elements to create resonant structures that produce nonlinear circuit dynamics such as spurious oscillations. The insight into the fundamental mechanisms this research has revealed will contribute substantially to the broader effort aimed at identifying and mitigating susceptibilities in critical systems. Also presented in this work is a modeling technique based on scalable analytical circuit models that accounts for the non-quasi-static behavior of the ESD protection PN junctions. The results of circuit simulations employing these device models are in excellent agreement with experimental measurements, and are capable of predicting the threshold of effect for HPM driven non-linear circuit dynamics. For the first time, a deterministic method of evaluating HPM effects based on physical, scalable device parameters has been demonstrated. The modeling presented in this dissertation can be easily integrated into design cycles and will greatly aid the development of electronic systems with improved HPM immunity

    Avionics system design for high energy fields: A guide for the designer and airworthiness specialist

    Get PDF
    Because of the significant differences in transient susceptibility, the use of digital electronics in flight critical systems, and the reduced shielding effects of composite materials, there is a definite need to define pracitices which will minimize electromagnetic susceptibility, to investigate the operational environment, and to develop appropriate testing methods for flight critical systems. The design practices which will lead to reduced electromagnetic susceptibility of avionics systems in high energy fields is described. The levels of emission that can be anticipated from generic digital devices. It is assumed that as data processing equipment becomes an ever larger part of the avionics package, the construction methods of the data processing industry will increasingly carry over into aircraft. In Appendix 1 tentative revisions to RTCA DO-160B, Environmental Conditions and Test Procedures for Airborne Equipment, are presented. These revisions are intended to safeguard flight critical systems from the effects of high energy electromagnetic fields. A very extensive and useful bibliography on both electromagnetic compatibility and avionics issues is included

    Index to 1986 NASA Tech Briefs, volume 11, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1986 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Publications of the Jet Propulsion Laboratory, 1985

    Get PDF
    This bibliography describes and indexes by primary author the externally distributed technical reporting, released during calender year 1985, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: JPL publications in which the information is complete for a specific accomplisment; Articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report; and article published in the open literature

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Index to 1985 NASA Tech Briefs, volume 10, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1985 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Chaotic Oscillations in CMOS Integrated Circuits

    Get PDF
    Chaos is a purely mathematical term, describing a signal that is aperiodic and sensitive to initial conditions, but deterministic. Yet, engineers usually see it as an undesirable effect to be avoided in electronics. The first part of the dissertation deals with chaotic oscillation in complementary metal-oxide-semiconductor integrated circuits (CMOS ICs) as an effect behavior due to high power microwave or directed electromagnetic energy source. When the circuit is exposed to external electromagnetic sources, it has long been conjectured that spurious oscillation is generated in the circuits. In the first part of this work, we experimentally and numerically demonstrate that these spurious oscillations, or out-of-band oscillations are in fact chaotic oscillations. In the second part of the thesis, we exploit a CMOS chaotic oscillator in building a cryptographic source, a random number generator. We first demonstrate the presence of chaotic oscillation in standard CMOS circuits. At radio frequencies, ordinary digital circuits can show unexpected nonlinear responses. We evaluate a CMOS inverter coupled with electrostatic discharging (ESD) protection circuits, designed with 0.5 μm CMOS technology, for their chaotic oscillations. As the circuit is driven by a direct radio frequency injection, it exhibits a chaotic dynamics, when the input frequency is higher than the typical maximum operating frequency of the CMOS inverter. We observe an aperiodic signal, a broadband spectrum, and various bifurcations in the experimental results. We analytically discuss the nonlinear physical effects in the given circuit : ESD diode rectification, DC bias shift due to a non-quasi static regime operation of the ESD PN-junction diode, and a nonlinear resonant feedback current path. In order to predict these chaotic dynamics, we use a transistor-based model, and compare the model's performance with the experimental results. In order to verify the presence of chaotic oscillations mathematically, we build on an ordinary differential equation model with the circuit-related nonlinearities. We then calculate the largest Lyapunov exponents to verify the chaotic dynamics. The importance of this work lies in investigating chaotic dynamics of standard CMOS ICs that has long been conjectured. In doing so, we experimentally and numerically give evidences for the presence of chaotic oscillations. We then report on a random number generator design, in which randomness derives from a Boolean chaotic oscillator, designed and fabricated as an integrated circuit. The underlying physics of the chaotic dynamics in the Boolean chaotic oscillator is given by the Boolean delay equation. According to numerical analysis of the Boolean delay equation, a single node network generates chaotic oscillations when two delay inputs are incommensurate numbers and the transition time is fast. To test this hypothesis physically, a discrete Boolean chaotic oscillator is implemented. Using a CMOS 0.5 μm process, we design and fabricate a CMOS Boolean chaotic oscillator which consists of a core chaotic oscillator and a source follower buffer. Chaotic dynamics are verified using time and frequency domain analysis, and the largest Lyapunov exponents are calculated. The measured bit sequences do make a suitable randomness source, as determined via National Institute of Standards and Technology (NIST) standard statistical tests version 2.1

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 130, July 1974

    Get PDF
    This special bibliography lists 291 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1974

    Single Event Transients in Linear Integrated Circuits

    Get PDF
    On November 5, 2001, a processor reset occurred on board the Microwave Anisotropy Probe (MAP), a NASA mission to measure the anisotropy of the microwave radiation left over from the Big Bang. The reset caused the spacecraft to enter a safehold mode from which it took several days to recover. Were that to happen regularly, the entire mission would be compromised, so it was important to find the cause of the reset and, if possible, to mitigate it. NASA assembled a team of engineers that included experts in radiation effects to tackle the problem. The first clue was the observation that the processor reset occurred during a solar event characterized by large increases in the proton and heavy ion fluxes emitted by the sun. To the radiation effects engineers on the team, this strongly suggested that particle radiation might be the culprit, particularly when it was discovered that the reset circuit contained three voltage comparators (LM139). Previous testing revealed that large voltage transients, or glitches appeared at the output of the LM139 when it was exposed to a beam of heavy ions [NI96]. The function of the reset circuit was to monitor the supply voltage and to issue a reset command to the processor should the voltage fall below a reference of 2.5 V [PO02]. Eventually, the team of engineers concluded that ionizing particle radiation from the solar event produced a negative voltage transient on the output of one of the LM139s sufficiently large to reset the processor on MAP. Fortunately, as of the end of 2004, only two such resets have occurred. The reset on MAP was not the first malfunction on a spacecraft attributed to a transient. That occurred shortly after the launch of NASA s TOPEX/Poseidon satellite in 1992. It was suspected, and later confirmed, that an anomaly in the Earth Sensor was caused by a transient in an operational amplifier (OP-15) [KO93]. Over the next few years, problems on TDRS, CASSINI, [PR02] SOHO [HA99,HA01] and TERRA were also attributed to transients. In some cases, such events produced resets by falsely triggering circuits designed to protect against over- voltage or over-current. On at least three occasions, transients caused satellites to switch into "safe mode" in which most of the systems on board the satellites were powered down for an extended period. By the time the satellites were reconfigured and returned to full operational state, much scientific data had been lost. Fortunately, no permanent damage occurred in any of the systems and they were all successfully re-activated
    corecore