7,092 research outputs found

    Total domination versus paired domination

    Get PDF
    A dominating set of a graph G is a vertex subset that any vertex of G either belongs to or is adjacent to. A total dominating set is a dominating set whose induced subgraph does not contain isolated vertices. The minimal size of a total dominating set, the total domination number, is denoted by gamma_t . The maximal size of an inclusionwise minimal total dominating set, the upper total domination number, is denoted by Gamma_t . A paired dominating set is a dominating set whose induced subgraph has a perfect matching. The minimal size of a paired dominating set, the paired domination number, is denoted by gamma_p . The maximal size of an inclusionwise minimal paired dominating set, the upper paired domination number, is denoted by Gamma_p . In this paper we prove several results on the ratio of these four parameters: For each r ge 2 we prove the sharp bound gamma_p/gamma_t le 2 - 2/r for K_{1,r} -free graphs. As a consequence, we obtain the sharp bound gamma_p/gamma_t le 2 - 2/(Delta+1) , where Delta is the maximum degree. We also show for each r ge 2 that {C_5,T_r} -free graphs fulfill the sharp bound gamma_p/gamma_t le 2 - 2/r , where T_r is obtained from K_{1,r} by subdividing each edge exactly once. We show that all of these bounds also hold for the ratio Gamma_p / Gamma_t . Further, we prove that a graph hereditarily has an induced paired dominating set iff gamma_p le Gamma_t holds for any induced subgraph. We also give a finite forbidden subgraph characterization for this condition. We exactly determine the maximal value of the ratio gamma_p / Gamma_t taken over the induced subgraphs of a graph. As a consequence, we prove for each r ge 3 the sharp bound gamma_p/Gamma_t le 2 - 2/r for graphs that do not contain the corona of K_{1,r} as subgraph. In particular, we obtain the sharp bound gamma_p/Gamma_t le 2 - 2/Delta

    Total domination versus paired domination

    Get PDF
    A dominating set of a graph G is a vertex subset that any vertex of G either belongs to or is adjacent to. A total dominating set is a dominating set whose induced subgraph does not contain isolated vertices. The minimal size of a total dominating set, the total domination number, is denoted by gamma_t . The maximal size of an inclusionwise minimal total dominating set, the upper total domination number, is denoted by Gamma_t . A paired dominating set is a dominating set whose induced subgraph has a perfect matching. The minimal size of a paired dominating set, the paired domination number, is denoted by gamma_p . The maximal size of an inclusionwise minimal paired dominating set, the upper paired domination number, is denoted by Gamma_p . In this paper we prove several results on the ratio of these four parameters: For each r ge 2 we prove the sharp bound gamma_p/gamma_t le 2 - 2/r for K_{1,r} -free graphs. As a consequence, we obtain the sharp bound gamma_p/gamma_t le 2 - 2/(Delta+1) , where Delta is the maximum degree. We also show for each r ge 2 that {C_5,T_r} -free graphs fulfill the sharp bound gamma_p/gamma_t le 2 - 2/r , where T_r is obtained from K_{1,r} by subdividing each edge exactly once. We show that all of these bounds also hold for the ratio Gamma_p / Gamma_t . Further, we prove that a graph hereditarily has an induced paired dominating set iff gamma_p le Gamma_t holds for any induced subgraph. We also give a finite forbidden subgraph characterization for this condition. We exactly determine the maximal value of the ratio gamma_p / Gamma_t taken over the induced subgraphs of a graph. As a consequence, we prove for each r ge 3 the sharp bound gamma_p/Gamma_t le 2 - 2/r for graphs that do not contain the corona of K_{1,r} as subgraph. In particular, we obtain the sharp bound gamma_p/Gamma_t le 2 - 2/Delta

    Paired neighborhood in graphs.

    Get PDF
    Let G=(V,E) be a finite simple graph with no isolated vertices. For any vertex v in G let N(v) denote the set of all vertices adjacent to v in G and set N[v]=N(v)∪{v}. For a vertex set A of G, the subgraph induced by A is denoted by ⟨A⟩. A set S⊆V is said to be a neighborhood set of G if G=⋃v∈S⟨N[v]⟩ and a neighborhood set S is said to be a paired-neighborhood set if ⟨S⟩ contains at least one perfect matching. The paired-neighborhood number is the smallest cardinality of a paired-neighborhood set of G and is denoted by ηPair(G). In this paper, the authors investigate some lower and upper bounds for ηPair(G). For some special classes of graphs the exact values for ηPair(G) are found. Some results on the relationships between ηPair(G) and other graph parameters, such as the maximum degree of G, the maximum number of independent edges of G and the total domination number of G, are also presented
    corecore