From References: 0 From Reviews: 0

MR2202548 (2007c:05142) 05C69

Soner, N. D. [Soner, Nandappa D.] (6-MYSO); Chaluvaraju, B. (6-BANG); Yogeesha, K. M.

Paired neighborhood in graphs. (English summary)

Far East J. Appl. Math. 22 (2006), no. 2, 215-224.

Let G = (V, E) be a finite simple graph with no isolated vertices. For any vertex v in G let N(v) denote the set of all vertices adjacent to v in G and set $N[v] = N(v) \cup \{v\}$. For a vertex set A of G, the subgraph induced by A is denoted by $\langle A \rangle$. A set $S \subseteq V$ is said to be a neighborhood set of G if $G = \bigcup_{v \in S} \langle N[v] \rangle$ and a neighborhood set S is said to be a paired-neighborhood set if $\langle S \rangle$ contains at least one perfect matching. The paired-neighborhood number is the smallest cardinality of a paired-neighborhood set of G and is denoted by $\eta_{\text{Pair}}(G)$. In this paper, the authors investigate some lower and upper bounds for $\eta_{\text{Pair}}(G)$. For some special classes of graphs the exact values for $\eta_{\text{Pair}}(G)$ are found. Some results on the relationships between $\eta_{\text{Pair}}(G)$ and other graph parameters, such as the maximum degree of G, the maximum number of independent edges of G and the total domination number of G, are also presented. Bing Wei

© Copyright American Mathematical Society 2007, 2016