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Abstract

A dominating set of a graph G is a vertex subset that any vertex
of G either belongs to or is adjacent to. A total dominating set is a
dominating set whose induced subgraph does not contain isolated vertices.
The minimal size of a total dominating set, the total domination number,
is denoted by γt. The maximal size of an inclusionwise minimal total
dominating set, the upper total domination number, is denoted by Γt.
A paired dominating set is a dominating set whose induced subgraph
has a perfect matching. The minimal size of a paired dominating set,
the paired domination number, is denoted by γp. The maximal size of an
inclusionwise minimal paired dominating set, the upper paired domination
number, is denoted by Γp.

In this paper we prove several results on the ratio of these four pa-
rameters: For each r ≥ 2 we prove the sharp bound γp/γt ≤ 2 − 2/r
for K1,r-free graphs. As a consequence, we obtain the sharp bound
γp/γt ≤ 2 − 2/(∆ + 1), where ∆ is the maximum degree. We also
show for each r ≥ 2 that {C5, Tr}-free graphs fulfill the sharp bound
γp/γt ≤ 2−2/r, where Tr is obtained from K1,r by subdividing each edge
exactly once. We show that all of these bounds also hold for the ratio
Γp/Γt. Further, we prove that a graph hereditarily has an induced paired
dominating set iff γp ≤ Γt holds for any induced subgraph. We also give a
finite forbidden subgraph characterization for this condition. We exactly
determine the maximal value of the ratio γp/Γt taken over the induced
subgraphs of a graph. As a consequence, we prove for each r ≥ 3 the sharp
bound γp/Γt ≤ 2− 2/r for graphs that do not contain the corona of K1,r

as subgraph. In particular, we obtain the sharp bound γp/Γt ≤ 2− 2/∆.
keywords: total domination, upper total domination, paired domi-

nation, upper paired domination, generalized claw-free graphs.
MSC: 05C69

1 Introduction

In this paper we consider finite, simple and undirected graphs. Since this paper
deals with graph invariants, we are allowed to treat isomorphic graphs as iden-
tical. All considered graphs are assumed to be free of isolated vertices. This
assumption is necessary and can be made without loss of generality, since total
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dominating sets and paired dominating sets do not exist in graphs that have
isolated vertices.

Let G be a graph. If a graph H is an induced subgraph of G, then we write
H ⊑ G. If H 6⊑ G, then G is said to be H-free. If H is a set of graphs, then G
is said to be H-free if G is H-free for every H ∈ H. The corona of G, denoted
by Cr(G), is the graph obtained from G by attaching a pendant vertex to each
vertex of G. The complete bipartite graph K1,3 is called the claw. In general,
graphs of the form K1,r are sometimes called generalized claws. The path on
three vertices we denote by P3. Note that P3

∼= K1,2. For each r ≥ 3, the graph
Tr is obtained from K1,r by subdividing each edge exactly once. The claw, T3

and the corona of the claw are displayed in Figure 1.

Figure 1: K1,3, T3 and Cr(K1,3).

A dominating set X of G is a vertex subset such that any vertex of V (G)\X
has a neighbor in X . There is a lot of literature dealing with the concept of dom-
inating sets and its many variants. An introduction into the field of domination
in graphs is the book by Haynes, Hedetniemi and Slater [1]. A total dominating

set is a dominating set X whose induced subgraph, denoted by G[X ], does not
have isolated vertices. Since our considered graphs do not have isolated vertices,
any graph has a total dominating set. The minimal size of a total dominating
set, the total domination number, is denoted by γt. An inclusionwise minimal
total dominating set is said to be minimal. The maximal size of a minimal total
dominating set, the upper total domination number, is denoted by Γt. Total
domination was introduced by Cockayne, Dawes and Hedetniemi [2] in 1980
and is well studied now. A survey on total domination, including many recent
results, is the paper by Henning [3]. A paired dominating set is a dominating set
whose induced subgraph has a perfect matching. Again, since our considered
graphs do not have isolated vertices, any graph has a paired dominating set.
The minimal size of a paired dominating set, the paired domination number, is
denoted by γp. An inclusionwise minimal paired dominating set is said to be
minimal. The maximal size of a minimal paired dominating set, the upper paired
domination number, is denoted by Γp. Paired domination was introduced by
Haynes and Slater [4] in 1998 and has received much attention in the literature.
There are a lot of papers dealing with this topic, some of which are stated be-
low. An induced paired dominating set is a paired dominating set that induces a
1-regular subgraph. So to say, it is an induced matching whose matched vertices
dominate the graph. Not every graph has an induced paired dominating set,
e.g. the graphs in Figure 2. In fact, it is an NP-complete problem to decide if a
given graph has such a set, as is shown by Telle [5]. Induced paired dominating
sets are also studied by Haynes, Lawson and Studer [6] and Zelinka [7].

Especially for claw-free graphs, a lot of research has been done on total
domination [8, 9, 10, 11] and paired domination [12, 13, 14]. Besides having
bounds on the parameters themselves, it is also interesting to know how the
parameters behave compared to each other. Usually, the absolute difference of
two parameters is not bounded. In fact, γp − γt, Γp − Γt and γp − Γt can grow
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arbitrarily large, as can be easily seen considering the graphs Cr(K1,r). In this
case, it is more promising to study the ratios of the parameters, i.e. γp/γt,
Γp/Γt and γp/Γt.

In [4], the following bound was given:

Theorem 1 (Haynes and Slater [4]). Let G be a graph. Then

γp(G) ≤ 2γt(G)− 2.

Hence,
γp
γt

≤ 2 (1)

holds in general. Since γp(Tr)/γt(Tr) = 2 − 2/(r + 1) for each r ≥ 1, (1)
is asymptotically sharp. The same holds for the ratio Γp/Γt, as is shown by
Dorbec, Henning and McCoy [16].

However, if certain subgraphs are forbidden, (1) can be improved. For ex-
ample, Brigham and Dutton [15] show that for claw-free graphs it holds that
γp/γt ≤ 4/3. One of the aims of this paper is to generalize this bound to gen-
eralized claw-free graphs. Further, we establish similar bounds for the ratio
γp/Γt.

2 The main results

In this section we present our main results. The proofs are given in section 3.
We improve (1) by proving the following two theorems. The first one is a

bound in terms of the smallest generalized claw that is not contained in the
considered graph:

Theorem 2. Let G be a K1,r-free graph for some r ≥ 3. Then

γp(G)

γt(G)
≤ 2−

2

r
(2)

and this bound is sharp for each r ≥ 3. Further,

Γp(G)

Γt(G)
≤ 2−

2

r
. (3)

As a consequence, we obtain

Corollary 1. If G is a graph with maximum degree ∆,

γp(G)

γt(G)
≤ 2−

2

∆ + 1
(4)

and this bound is sharp for each ∆. Further,

Γp(G)

Γt(G)
≤ 2−

2

∆ + 1
. (5)

Note that (3) and (5) are possibly not sharp.
The second theorem is a strengthening of Theorem 2, but is only applicable

to C5-free graphs:
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Theorem 3. Let G be a {C5, Tr}-free graph for some r ≥ 3. Then

γp(G)

γt(G)
≤ 2−

2

r
(6)

and
Γp(G)

Γt(G)
≤ 2−

2

r
. (7)

Both bounds are sharp for each r ≥ 3.

The next Theorem deals with the interplay of the ratio γp ≤ Γt and the
existence of induced paired dominating sets: If a graph G has an induced
paired dominating set P , then P is also a minimal total dominating set. Hence,
|P | ≤ Γt(G). In particular, γp(G)/Γt(G) ≤ 1. Theorem 4 gives the opposite
direction: If γp(H)/Γt(H) ≤ 1 holds for any induced subgraph of G, then G
also has an induced paired dominating set. Furthermore, it gives the forbidden
subgraph characterization for this condition. According to our knowledge, this
characterization has not been discovered yet.

Theorem 4. Let G be a graph. The following statements are equivalent:

1. Any induced subgraph H of G has an induced paired dominating set.

2. maxH⊑G γp(H)/Γt(H) = 1.

3. G is {C5, Cr(K3), Cr(P3)}-free.

The forbidden subgraphs of Theorem 4 are displayed in Figure 2.

Figure 2: C5, Cr(K3) and Cr(P3).

Theorem 5 deals with the ratio γp/Γt. It completely determines the max-
imal value of the ratio γp/Γt taken over the induced subgraphs of a graph.
Furthermore, it provides a complete list of the possible values and gives a finite
forbidden subgraph characterization for each value.

Theorem 5. Let G be a graph and let

λ = max{2,min{r : G is Cr(K1,r)-free}}. (8)

Then

max
H⊑G

γp(H)

Γt(H)
=

{

2− 2

λ
, if G is {C5, Cr(K3)}-free

max
{

4

3
, 2− 2

λ

}

, otherwise
. (9)

The possible values of maxH⊑G γp(H)/Γt(H) provided by Theorem 5 are
displayed in Table 1.

As a direct consequence of Theorem 5, we obtain the following bound:
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Property of a graph G maxH⊑G γp(H)/Γt(H)

{C5, Cr(K3), Cr(P3)}-free 1

Cr(K1,3)-free, not {C5, Cr(K3), Cr(P3)}-free 4/3

Cr(K1,4)-free, but Cr(K1,3) ⊑ G 3/2

Cr(K1,5)-free, but Cr(K1,4) ⊑ G 8/5

Cr(K1,6)-free, but Cr(K1,5) ⊑ G 5/3

Cr(K1,7)-free, but Cr(K1,6) ⊑ G 12/7

...
...

Cr(K1,r)-free, but Cr(K1,r−1) ⊑ G 2− 2/r

Table 1: The values of maxH⊑G γp(H)/Γt(H) provided by Theorem 5. The
table is read as follows: If G is a {C5, Cr(K3), Cr(P3)}-free graph, the ratio
equals 1. Otherwise, if G is Cr(K1,r)-free, but not Cr(K1,r+1)-free, the ratio
equals 2− 2/r.

Corollary 2. Let G be a Cr(K1,r)-free graph for some r ≥ 3. Then

γp(G)

Γt(G)
≤ 2−

2

r
. (10)

This bound is sharp for each r ≥ 3.

In particular, we obtain

Corollary 3. Let G be a connected graph with maximum degree ∆ ≥ 2 that is

not isomorphic to C5. Then

γp(G)

Γt(G)
≤ 2−

2

∆
. (11)

This bound is sharp for each ∆ ≥ 2.

3 The proofs

3.1 Auxiliary results

The results of this paper are based on the following theorems.
In [17], the author gave the following characterization of graphs that hered-

itarily have an induced paired dominating set:

Theorem 6 (S. [17]). Let G be a graph. Any induced subgraph H of G has an

induced paired dominating set iff G does not contain C5, Cr(K3) or Cr(P3) as
induced subgraph.

Furthermore, he gave a sufficient condition for a graph to have a total dom-
inating set that induces a generalized claw-free graph:
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Theorem 7 (S. [17]). Let G be a graph. If G is Cr(K1,r)-free for some r ≥ 3,
then G has a total dominating set T such that G[T ] is K1,r-free.

Let G be a graph and let M be a matching of G. If M has maximal size
among the matchings ofG, it is said to bemaximum. An augmenting path ofG is
a path that starts and ends on unmatched vertices and alternates between edges
of M and E(G)\M . A classical theorem by Berge [18] states a characterization
of maximum matchings in terms of augmenting paths:

Theorem 8 (Berge [18]). Let G be a graph. A matching M of G is maximum

iff there is no augmenting path with respect to M .

In [19], Plummer and Saito prove the following bound on the matching num-

ber ν of a graph, defined as the maximal size of a matching:

Theorem 9 (Plummer and Saito [19]). If G is a k-connected K1,r-free graph,

then

ν(G) ≥ min

{

k

r + k − 1
|V (G)|,

⌊

1

2
|V (G)|

⌋}

. (12)

We need a special case of Theorem 9:

Corollary 4. If G is a K1,r-free graph for some r ≥ 3, then

ν(G)

|V (G)|
≥

1

r
. (13)

Proof. Let G be a K1,r-free graph for some r ≥ 3. We can assume that G is
connected. Theorem 9 gives

ν(G) ≥ min

{

1

r
|V (G)|,

⌊

1

2
|V (G)|

⌋}

.

Since r ≥ 3 and |V (G)| ≥ 2 (by the general assumption that G does not have
isolated vertices),

1

r
|V (G)| ≤

⌊

1

2
|V (G)|

⌋

.

Thus

ν(G) ≥
1

r
|V (G)|,

and this completes the proof.

We obtain the following observation:

Lemma 1. Let G be a graph with a total dominating set T such that G[T ] is
K1,r-free for some r ≥ 3. Then there is a paired dominating set P with

|P |

|T |
≤ 2−

2

r
. (14)

Proof. Let G be a graph that has a total dominating set T such that G[T ] is a
K1,r-free graph. We can assume that T is minimal. Let M be a matching of
size ν(G[T ]) of G[T ]. Since G[T ] is K1,r-free, Corollary 4 gives

|M |

|T |
≥

1

r
. (15)
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Let U ⊆ T be the set of unmatched vertices and let u ∈ U be arbitrary. Then
G[T \{u}] does not have isolated vertices, since otherwise u would necessarily be
matched to one of these isolated vertices. Since T is a minimal total dominating
set of G, there is a vertex u′ ∈ V \ T whose only neighbor in T is u. Otherwise
T \ {u} would be a total dominating set of G, too. We call u′ a private neighbor

of u. Let P be the set obtained from T by adding exactly one private neighbor u′

for each u ∈ U . In G[P ], each u ∈ U can then be matched to its former private
neighbor u′. Hence, G[P ] has a perfect matching and is therefore a paired
dominating set of G. We observe that M leaves exactly |T | − 2|M | vertices of
T unmatched. That is, |U | = |T | − 2|M |. Thus, |P | = |T |+ |U | = 2|T | − 2|M |.
Together with (15) we obtain

|P |

|T |
=

2|T | − 2|M |

|T |
= 2−

2|M |

|T |
≤ 2−

2

r
.

This completes the proof.

3.2 Theorem 2, Corollary 1 and Theorem 3

We need another auxilliary result first:

Lemma 2. Let G be a graph and let r ≥ 3 such that any minimal total domi-

nating set of G induces a K1,r-free graph. Then

Γp(G)

Γt(G)
≤ 2−

2

r
.

Proof. Let G be a graph and let r ≥ 3 such that any minimal total dominating
set of G induces a K1,r-free graph. Let P be a minimal paired dominating set
of G and let M be a perfect matching of G[P ]. Since any paired dominating set
is a total dominating set, too, there is a minimal total dominating set T ⊆ P .
Let M ′ = M ∩ E(G[T ]) be the restriction of M to G[T ] and let U ⊆ T be the
vertices of T that are not matched by M ′.

Assume for contradiction that M ′ is not a maximum matching of G[T ]. By
Theorem 8, there is an augmenting path in G[T ] with respect to M ′. Hence,
there is a bigger matching of G[T ], say M ′′, such that the set of unmatched
vertices of M ′′, denoted by U ′, is a subset of U . Let P ′ be the set obtained
from T by adding the matching partner in M of each u ∈ U ′. Clearly P ′ is
a proper subset of P . P ′ is a dominating set, since T ⊆ P ′. Furthermore,
G[P ′] has a perfect matching and is therefore a paired dominating set. This is
a contradicition to the minimality of P .

Hence, M ′ is a maximum matching of G[T ]. As any minimal total domi-
nating set of G induces a K1,r-free graph, G[T ] is also K1,r-free. By Corollary
4, |M ′| ≥ |T |/r. As clearly |P | = |T | + |U | and |U | = |T | − 2|M ′|, an easy
calculation shows |P | ≤ (2 − 2/r)|T |. As P was arbitrary, this completes the
proof.

Theorem 2 is a simple consequence of Lemma 1 and Lemma 2:

Proof of Theorem 2. Let G be a K1,r-free graph for some r ≥ 3.
By Lemma 2, (3) holds.
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We still have to prove (2). For every total dominating set T , G[T ] is also
K1,r-free. Hence, if T is a total dominating set of size γt(G), Lemma 1 provides
a paired dominating set P of size at most (2− 2/r)γt(G). Thus,

γp(G)

γt(G)
≤

|P |

γt(G)
≤ 2−

2

r
.

To see that (2) is sharp for each r, we observe that Tr−1 is K1,r-free,
γp(Tr−1) = 2(r − 1) and γt(Tr−1) = r. An easy computation leads to

γp(Tr−1)

γt(Tr−1)
= 2−

2

r
. (16)

Proof of Corollary 1. Since the proof of (4) is straightforward from Theorem 2,
we proceed to the sharpness of (4). The case ∆ = 1 is clear. For ∆ ≥ 2, note
that T∆ attains the bound. Finally, (16) completes the proof.

For the proof of Theorem 3, we need the following Lemma:

Lemma 3. Let G be a {C5, Tr}-free graph for some r ≥ 3. Then the subgraph

induced by any minimal total dominating set of G is K1,r-free.

Proof. Let G be a {C5, Tr}-free graph for some r ≥ 3 and let T be a minimal
total dominating set of G. Assume for contradiction that G[T ] is not K1,r-free.
That is, there is a subset S ⊆ T with G[S] ∼= K1,r. Let x be the dominating
vertex of theK1,r and let s1, s2, . . . , sr be the pendant vertices of the K1,r. Since
T is a minimal total dominating set, each vertex si ∈ S \ {x} has a neighbor
vi /∈ S such that N(vi)∩ S = {si}. If there are some 1 ≤ i < j ≤ r such that vi
is adjacent to vj , then G[x, si, vi, sj , vj ] ∼= C5, a contradiction to the choice of
G. Hence, {vi : 1 ≤ i ≤ r} is a stable set. Thus, G[S ∪ {vi : 1 ≤ i ≤ r}] ∼= Tr, a
contradiction to the choice of G.

We are now in the position to prove Theorem 3:

Proof of Theorem 3. Let G be a {C5, Tr}-free graph for some r ≥ 3.
By Lemma 2, (7) holds.
We still have to prove (6). Lemma 3 shows that for every minimal total

dominating set T , G[T ] is K1,r-free. The rest of the proof is analog to the proof
of Theorem 2.

Sharpness is attained by Cr(K1,r−1): We observe that γp(Cr(K1,r−1)) =
Γp(Cr(K1,r−1)) = 2r − 2 while γt(Cr(K1,r−1)) = Γt(Cr(K1,r−1)) = r. This
completes the proof.

3.3 Theorem 4

We need the following observation.

Lemma 4. For any graph G,

γp(Cr(G))

Γt(Cr(G))
= 2− 2

ν(G)

|V (G)|
. (17)
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In particular, for any r,

γp(Cr(K1,r))

Γt(Cr(K1,r))
= 2−

2

r + 1
. (18)

Proof. Let G be a graph. It is observed in [1], in the section dealing with paired
dominating sets, that γp(Cr(G)) = 2|V (G)| − 2ν(G). Γt(Cr(G)) = |V (G)| is a
straightforward consequence of the definition of corona graphs. These two facts
lead to (17). The validity of (18) follows from ν(K1,r) = 1, |V (K1,r)| = r + 1
and (17).

Further, we observe that

γp(C5)

Γt(C5)
=

γp(Cr(K3))

Γt(Cr(K3))
=

γp(Cr(P3))

Γt(Cr(P3))
=

4

3
. (19)

Proof of Theorem 4. By Theorem 6, the conditions 1 and 3 are equivalent.
Let G be a graph. To see that condition 1 implies condition 2, assume that

any induced subgraph H of G has an induced paired dominating set. Hence,
H has a paired dominating set which is a minimal total dominating set. Thus
γp(H) ≤ Γt(H).

By (19), any graph that contains C5, Cr(K3) or Cr(P3) as induced subgraph
does not meet condition 2. Hence, condition 2 implies condition 3 and this
completes the proof.

3.4 Theorem 5, Corollary 2 and Corollary 3

Combining Lemma 1, Theorem 4 and Theorem 7, we obtain Theorem 5:

Proof of Theorem 5. Let G be a graph and let λ be defined as in (8).
First we assume that λ = 2, i.e. G is Cr(P3)-free.
Further assume that G is {C5, Cr(K3)}-free. By Theorem 4, γp(H) ≤ Γt(H)

holds for any induced subgraph H of G. Hence, (9) holds in this case.
We now assume that G is not {C5, Cr(K3)}-free. By (19),

max
H⊑G

γp(H)

Γt(H)
≥

4

3
. (20)

Since λ = 2, G is Cr(K1,2)-free by definition of λ. Now let H be any induced
subgraph of G. In particular, H is Cr(K1,3)-free. Hence by Theorem 7, H has
a minimal total dominating set T such that G[T ] is K1,3-free. By Lemma 1, H
has a paired dominating set P with |P |/|T | ≤ 4/3. Hence,

γp(H)

Γt(H)
≤

|P |

|T |
≤

4

3
. (21)

Combining (20) and (21) leads to

max
H⊑G

γp(H)

Γt(H)
=

4

3
,

which is the desired equality (9) for the case λ = 2.
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We now assume that λ ≥ 3. Then, G is not Cr(K1,2)-free and so (19) gives
maxH⊑G γp(H)/Γt(H) ≥ 4/3. To complete the proof, we have to show that

max
H⊑G

γp(H)

Γt(H)
= 2−

2

λ
. (22)

By definition of λ, G is Cr(K1,λ)-free. Let H be any induced subgraph of G.
Then H is also Cr(K1,λ)-free. By Theorem 7, H has a minimal total dominating
set T such that G[T ] is K1,λ-free. By Lemma 1, H has a paired dominating set
P with |P |/|T | ≤ 2− 2/λ. Therefore, γp(H)/Γt(H) ≤ 2− 2/λ and thus

max
H⊑G

γp(H)

Γt(H)
≤ 2−

2

λ
. (23)

On the other hand, G contains Cr(K1,λ−1) as induced subgraph. Lemma 4
gives γp(Cr(K1,λ−1))/Γt(Cr(K1,λ−1)) = 2− 2

λ
. Hence,

max
H⊑G

γp(H)

Γt(H)
≥ 2−

2

λ
. (24)

Now, (23) and (24) give (22). This completes the proof.

Proof of Corollary 2. Theorem 5 gives (10). Sharpness is obtained by Cr(K1,r−1),
as Lemma 4 shows.

Proof of Corollary 3. Let G be a connected graph of maximum degree ∆ ≥ 2
that is not isomorphic to C5. If ∆ = 2, G is a path of length at least 2 or a cycle
that is not C5 and hence (11) holds by Theorem 4. Sharpness is obtained by
P3, since γp(P3) = Γt(P3) = 2. If ∆ ≥ 3, G is Cr(K1,∆)-free. Corollary 2 then
provides (11). Sharpness is obtained by Cr(K1,∆−1), as Lemma 4 shows.
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