927 research outputs found

    Unrestricted State Complexity of Binary Operations on Regular and Ideal Languages

    Get PDF
    We study the state complexity of binary operations on regular languages over different alphabets. It is known that if Lm′L'_m and LnL_n are languages of state complexities mm and nn, respectively, and restricted to the same alphabet, the state complexity of any binary boolean operation on Lm′L'_m and LnL_n is mnmn, and that of product (concatenation) is m2n−2n−1m 2^n - 2^{n-1}. In contrast to this, we show that if Lm′L'_m and LnL_n are over different alphabets, the state complexity of union and symmetric difference is (m+1)(n+1)(m+1)(n+1), that of difference is mn+mmn+m, that of intersection is mnmn, and that of product is m2n+2n−1m2^n+2^{n-1}. We also study unrestricted complexity of binary operations in the classes of regular right, left, and two-sided ideals, and derive tight upper bounds. The bounds for product of the unrestricted cases (with the bounds for the restricted cases in parentheses) are as follows: right ideals m+2n−2+2n−1m+2^{n-2}+2^{n-1} (m+2n−2m+2^{n-2}); left ideals mn+m+nmn+m+n (m+n−1m+n-1); two-sided ideals m+2nm+2n (m+n−1m+n-1). The state complexities of boolean operations on all three types of ideals are the same as those of arbitrary regular languages, whereas that is not the case if the alphabets of the arguments are the same. Finally, we update the known results about most complex regular, right-ideal, left-ideal, and two-sided-ideal languages to include the unrestricted cases.Comment: 30 pages, 15 figures. This paper is a revised and expanded version of the DCFS 2016 conference paper, also posted previously as arXiv:1602.01387v3. The expanded version has appeared in J. Autom. Lang. Comb. 22 (1-3), 29-59, 2017, the issue of selected papers from DCFS 2016. This version corrects the proof of distinguishability of states in the difference operation on p. 12 in arXiv:1609.04439v

    Quotient Complexities of Atoms in Regular Ideal Languages

    Get PDF
    A (left) quotient of a language LL by a word ww is the language w−1L={x∣wx∈L}w^{-1}L=\{x\mid wx\in L\}. The quotient complexity of a regular language LL is the number of quotients of LL; it is equal to the state complexity of LL, which is the number of states in a minimal deterministic finite automaton accepting LL. An atom of LL is an equivalence class of the relation in which two words are equivalent if for each quotient, they either are both in the quotient or both not in it; hence it is a non-empty intersection of complemented and uncomplemented quotients of LL. A right (respectively, left and two-sided) ideal is a language LL over an alphabet Σ\Sigma that satisfies L=LΣ∗L=L\Sigma^* (respectively, L=Σ∗LL=\Sigma^*L and L=Σ∗LΣ∗L=\Sigma^*L\Sigma^*). We compute the maximal number of atoms and the maximal quotient complexities of atoms of right, left and two-sided regular ideals.Comment: 17 pages, 4 figures, two table

    Syntactic Complexity of Finite/Cofinite, Definite, and Reverse Definite Languages

    Full text link
    We study the syntactic complexity of finite/cofinite, definite and reverse definite languages. The syntactic complexity of a class of languages is defined as the maximal size of syntactic semigroups of languages from the class, taken as a function of the state complexity n of the languages. We prove that (n-1)! is a tight upper bound for finite/cofinite languages and that it can be reached only if the alphabet size is greater than or equal to (n-1)!-(n-2)!. We prove that the bound is also (n-1)! for reverse definite languages, but the minimal alphabet size is (n-1)!-2(n-2)!. We show that \lfloor e\cdot (n-1)!\rfloor is a lower bound on the syntactic complexity of definite languages, and conjecture that this is also an upper bound, and that the alphabet size required to meet this bound is \floor{e \cdot (n-1)!} - \floor{e \cdot (n-2)!}. We prove the conjecture for n\le 4.Comment: 10 pages. An error concerning the size of the alphabet has been corrected in Theorem

    Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages

    Get PDF
    A language LL over an alphabet Σ\Sigma is suffix-convex if, for any words x,y,z∈Σ∗x,y,z\in\Sigma^*, whenever zz and xyzxyz are in LL, then so is yzyz. Suffix-convex languages include three special cases: left-ideal, suffix-closed, and suffix-free languages. We examine complexity properties of these three special classes of suffix-convex regular languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal on these languages, as well as the size of their syntactic semigroups, and the quotient complexity of their atoms.Comment: 20 pages, 11 figures, 1 table. arXiv admin note: text overlap with arXiv:1605.0669

    Quotient Complexities of Atoms in Regular Ideal Languages

    Full text link

    Most Complex Regular Ideal Languages

    Get PDF
    A right ideal (left ideal, two-sided ideal) is a non-empty language LL over an alphabet Σ\Sigma such that L=LΣ∗L=L\Sigma^* (L=Σ∗LL=\Sigma^*L, L=Σ∗LΣ∗L=\Sigma^*L\Sigma^*). Let k=3k=3 for right ideals, 4 for left ideals and 5 for two-sided ideals. We show that there exist sequences (Ln∣n≥kL_n \mid n \ge k ) of right, left, and two-sided regular ideals, where LnL_n has quotient complexity (state complexity) nn, such that LnL_n is most complex in its class under the following measures of complexity: the size of the syntactic semigroup, the quotient complexities of the left quotients of LnL_n, the number of atoms (intersections of complemented and uncomplemented left quotients), the quotient complexities of the atoms, and the quotient complexities of reversal, star, product (concatenation), and all binary boolean operations. In that sense, these ideals are "most complex" languages in their classes, or "universal witnesses" to the complexity of the various operations.Natural Sciences and Engineering Research Council of Canada [OGP0000871

    Green's Relations in Finite Transformation Semigroups

    Get PDF
    We consider the complexity of Green's relations when the semigroup is given by transformations on a finite set. Green's relations can be defined by reachability in the (right/left/two-sided) Cayley graph. The equivalence classes then correspond to the strongly connected components. It is not difficult to show that, in the worst case, the number of equivalence classes is in the same order of magnitude as the number of elements. Another important parameter is the maximal length of a chain of components. Our main contribution is an exponential lower bound for this parameter. There is a simple construction for an arbitrary set of generators. However, the proof for constant alphabet is rather involved. Our results also apply to automata and their syntactic semigroups.Comment: Full version of a paper submitted to CSR 2017 on 2016-12-1
    • …
    corecore