research

Unrestricted State Complexity of Binary Operations on Regular and Ideal Languages

Abstract

We study the state complexity of binary operations on regular languages over different alphabets. It is known that if LmL'_m and LnL_n are languages of state complexities mm and nn, respectively, and restricted to the same alphabet, the state complexity of any binary boolean operation on LmL'_m and LnL_n is mnmn, and that of product (concatenation) is m2n2n1m 2^n - 2^{n-1}. In contrast to this, we show that if LmL'_m and LnL_n are over different alphabets, the state complexity of union and symmetric difference is (m+1)(n+1)(m+1)(n+1), that of difference is mn+mmn+m, that of intersection is mnmn, and that of product is m2n+2n1m2^n+2^{n-1}. We also study unrestricted complexity of binary operations in the classes of regular right, left, and two-sided ideals, and derive tight upper bounds. The bounds for product of the unrestricted cases (with the bounds for the restricted cases in parentheses) are as follows: right ideals m+2n2+2n1m+2^{n-2}+2^{n-1} (m+2n2m+2^{n-2}); left ideals mn+m+nmn+m+n (m+n1m+n-1); two-sided ideals m+2nm+2n (m+n1m+n-1). The state complexities of boolean operations on all three types of ideals are the same as those of arbitrary regular languages, whereas that is not the case if the alphabets of the arguments are the same. Finally, we update the known results about most complex regular, right-ideal, left-ideal, and two-sided-ideal languages to include the unrestricted cases.Comment: 30 pages, 15 figures. This paper is a revised and expanded version of the DCFS 2016 conference paper, also posted previously as arXiv:1602.01387v3. The expanded version has appeared in J. Autom. Lang. Comb. 22 (1-3), 29-59, 2017, the issue of selected papers from DCFS 2016. This version corrects the proof of distinguishability of states in the difference operation on p. 12 in arXiv:1609.04439v

    Similar works