2,718 research outputs found

    Flat Cellular (UMTS) Networks

    Get PDF
    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective it was better to concentrate traffic and to share the cost of processing equipment over a large set of users while keeping the base stations relatively cheap. However, we believe the economic reasons for designing cellular systems in a hierarchical manner have disappeared: in fact, hierarchical architectures hinder future efficient deployments. In this paper, we argue for completely flat cellular wireless systems, which need just one type of specialized network element to provide radio access network (RAN) functionality, supplemented by standard IP-based network elements to form a cellular network. While the reason for building a cellular system in a hierarchical fashion has disappeared, there are other good reasons to make the system architecture flat: (1) as wireless transmission techniques evolve into hybrid ARQ systems, there is less need for a hierarchical cellular system to support spatial diversity; (2) we foresee that future cellular networks are part of the Internet, while hierarchical systems typically use interfaces between network elements that are specific to cellular standards or proprietary. At best such systems use IP as a transport medium, not as a core component; (3) a flat cellular system can be self scaling while a hierarchical system has inherent scaling issues; (4) moving all access technologies to the edge of the network enables ease of converging access technologies into a common packet core; and (5) using an IP common core makes the cellular network part of the Internet

    Performance evaluation of MPEG-4 video streaming over UMTS networks using an integrated tool environment

    Get PDF
    Universal Mobile Telecommunications System (UMTS) is a third-generation mobile communications system that supports wireless wideband multimedia applications. This paper investigates the video quality attained in streaming MPEG-4 video over UMTS networks using an integrated tool environment, which comprises an MPEG-4 encoder/decoder, a network simulator and video quality evaluation tools. The benefit of such an integrated tool environment is that it allows the evaluation of real video sources compressed using an MPEG-4 encoder. Simulation results show that UMTS Radio Link Control (RLC) outperforms the unacknowledged mode. The latter mode provides timely delivery but no error recovery. The acknowledged mode can deliver excellent perceived video quality for RLC block error rates up to 30% utilizing a playback buffer at the streaming client. Based on the analysis of the performance results, a self-adaptive RLC acknowledged mode protocol is proposed

    Intersystem soft handover for converged DVB-H and UMTS networks

    Get PDF
    Digital video broadcasting for handhelds (DVB-H) is the standard for broadcasting Internet Protocol (IP) data services to mobile portable devices. To provide interactive services for DVB-H, the Universal Mobile Telecommunications System (UMTS) can be used as a terrestrial interaction channel for the unidirectional DVB-H network. The converged DVB-H and UMTS network can be used to address the congestion problems due to the limited multimedia channel accesses of the UMTS network. In the converged network, intersystem soft handover between DVB-H and UMTS is needed for an optimum radio resource allocation, which reduces network operation cost while providing the required quality of service. This paper deals with the intersystem soft handover between DVB-H and UMTS in such a converged network. The converged network structure is presented. A novel soft handover scheme is proposed and evaluated. After considering the network operation cost, the performance tradeoff between the network quality of service and the network operation cost for the intersystem soft handover in the converged network is modeled using a stochastic tree and analyzed using a numerical simulation. The results show that the proposed algorithm is feasible and has the potential to be used for implementation in the real environment

    Network planning for third-generation mobile radio systems

    Get PDF

    EVEREST IST - 2002 - 00185 : D23 : final report

    Get PDF
    Deliverable públic del projecte europeu EVERESTThis deliverable constitutes the final report of the project IST-2002-001858 EVEREST. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.Postprint (published version
    corecore