3,777 research outputs found

    Uplift Modeling with Multiple Treatments and General Response Types

    Full text link
    Randomized experiments have been used to assist decision-making in many areas. They help people select the optimal treatment for the test population with certain statistical guarantee. However, subjects can show significant heterogeneity in response to treatments. The problem of customizing treatment assignment based on subject characteristics is known as uplift modeling, differential response analysis, or personalized treatment learning in literature. A key feature for uplift modeling is that the data is unlabeled. It is impossible to know whether the chosen treatment is optimal for an individual subject because response under alternative treatments is unobserved. This presents a challenge to both the training and the evaluation of uplift models. In this paper we describe how to obtain an unbiased estimate of the key performance metric of an uplift model, the expected response. We present a new uplift algorithm which creates a forest of randomized trees. The trees are built with a splitting criterion designed to directly optimize their uplift performance based on the proposed evaluation method. Both the evaluation method and the algorithm apply to arbitrary number of treatments and general response types. Experimental results on synthetic data and industry-provided data show that our algorithm leads to significant performance improvement over other applicable methods

    A Practically Competitive and Provably Consistent Algorithm for Uplift Modeling

    Full text link
    Randomized experiments have been critical tools of decision making for decades. However, subjects can show significant heterogeneity in response to treatments in many important applications. Therefore it is not enough to simply know which treatment is optimal for the entire population. What we need is a model that correctly customize treatment assignment base on subject characteristics. The problem of constructing such models from randomized experiments data is known as Uplift Modeling in the literature. Many algorithms have been proposed for uplift modeling and some have generated promising results on various data sets. Yet little is known about the theoretical properties of these algorithms. In this paper, we propose a new tree-based ensemble algorithm for uplift modeling. Experiments show that our algorithm can achieve competitive results on both synthetic and industry-provided data. In addition, by properly tuning the "node size" parameter, our algorithm is proved to be consistent under mild regularity conditions. This is the first consistent algorithm for uplift modeling that we are aware of.Comment: Accepted by 2017 IEEE International Conference on Data Minin

    Predictive User Modeling with Actionable Attributes

    Get PDF
    Different machine learning techniques have been proposed and used for modeling individual and group user needs, interests and preferences. In the traditional predictive modeling instances are described by observable variables, called attributes. The goal is to learn a model for predicting the target variable for unseen instances. For example, for marketing purposes a company consider profiling a new user based on her observed web browsing behavior, referral keywords or other relevant information. In many real world applications the values of some attributes are not only observable, but can be actively decided by a decision maker. Furthermore, in some of such applications the decision maker is interested not only to generate accurate predictions, but to maximize the probability of the desired outcome. For example, a direct marketing manager can choose which type of a special offer to send to a client (actionable attribute), hoping that the right choice will result in a positive response with a higher probability. We study how to learn to choose the value of an actionable attribute in order to maximize the probability of a desired outcome in predictive modeling. We emphasize that not all instances are equally sensitive to changes in actions. Accurate choice of an action is critical for those instances, which are on the borderline (e.g. users who do not have a strong opinion one way or the other). We formulate three supervised learning approaches for learning to select the value of an actionable attribute at an instance level. We also introduce a focused training procedure which puts more emphasis on the situations where varying the action is the most likely to take the effect. The proof of concept experimental validation on two real-world case studies in web analytics and e-learning domains highlights the potential of the proposed approaches

    Explicit Feature Interaction-aware Uplift Network for Online Marketing

    Full text link
    As a key component in online marketing, uplift modeling aims to accurately capture the degree to which different treatments motivate different users, such as coupons or discounts, also known as the estimation of individual treatment effect (ITE). In an actual business scenario, the options for treatment may be numerous and complex, and there may be correlations between different treatments. In addition, each marketing instance may also have rich user and contextual features. However, existing methods still fall short in both fully exploiting treatment information and mining features that are sensitive to a particular treatment. In this paper, we propose an explicit feature interaction-aware uplift network (EFIN) to address these two problems. Our EFIN includes four customized modules: 1) a feature encoding module encodes not only the user and contextual features, but also the treatment features; 2) a self-interaction module aims to accurately model the user's natural response with all but the treatment features; 3) a treatment-aware interaction module accurately models the degree to which a particular treatment motivates a user through interactions between the treatment features and other features, i.e., ITE; and 4) an intervention constraint module is used to balance the ITE distribution of users between the control and treatment groups so that the model would still achieve a accurate uplift ranking on data collected from a non-random intervention marketing scenario. We conduct extensive experiments on two public datasets and one product dataset to verify the effectiveness of our EFIN. In addition, our EFIN has been deployed in a credit card bill payment scenario of a large online financial platform with a significant improvement.Comment: Accepted by SIGKDD 2023 Applied Data Science Trac

    Multi-Valued Treatments Uplift Modeling for Continuous Outcomes

    Get PDF
    Uplift modeling is an application of causal machine learning and offers an assortment of analytical tools to identify likely responders to a particular treatment such as a medical prescription, a political maneuver, or an advertising stimulus. Although several targeted campaigns co-occur (e.g., through different marketing channels), recent literature has primarily examined the effectiveness of a single treatment. To address the practically more pertinent question of which treatment among several options to choose, we develop a prototype that identifies the most effective treatment for each unit of observation and further generalizes to both binary and continuous outcomes to support classification and regression problems. Using real-world data from e-mail merchandising and e-couponing campaigns, we verify our prototype’s financial advantage compared to previous efforts toward the single treatment case

    The Best of Two Worlds – Using Recent Advances from Uplift Modeling and Heterogeneous Treatment Effects to Optimize Targeting Policies

    Get PDF
    The design of targeting policies is fundamental to address a variety of practical problems across a broad spectrum of domains from e-commerce to politics and medicine. Recently, researchers and practitioners have begun to predict individual treatment effects to optimize targeting policies. Although different research streams, that is, uplift modeling and heterogeneous treatment effect propose numerous methods to predict individual treatment effects, current approaches suffer from various practical challenges, such as weak model performance and a lack of reliability. In this study, we propose a new, tree- based, algorithm that combines recent advances from both research streams and demonstrate how its use can improve predicting the individual treatment effect. We benchmark our method empirically against state-of-the-art strategies and show that the proposed algorithm achieves excellent results. We demonstrate that our approach performs particularly well when targeting few customers, which is of paramount interest when designing targeting policies in a marketing context

    The Best of Two Worlds – Using Recent Advances from Uplift Modeling and Heterogeneous Treatment Effects to Optimize Targeting Policies

    Get PDF
    The design of targeting policies is fundamental to address a variety of practical problems across a broad spectrum of domains from e-commerce to politics and medicine. Recently, researchers and practitioners have begun to predict individual treatment effects to optimize targeting policies. Although different research streams, that is, uplift modeling and heterogeneous treatment effect propose numerous methods to predict individual treatment effects, current approaches suffer from various practical challenges, such as weak model performance and a lack of reliability. In this study, we propose a new, tree- based, algorithm that combines recent advances from both research streams and demonstrate how its use can improve predicting the individual treatment effect. We benchmark our method empirically against state-of-the-art strategies and show that the proposed algorithm achieves excellent results. We demonstrate that our approach performs particularly well when targeting few customers, which is of paramount interest when designing targeting policies in a marketing context
    • …
    corecore