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Abstract 

Uplift modeling is an application of causal machine learning and offers an assortment of analytical tools to 
identify likely responders to a particular treatment such as a medical prescription, a political maneuver, or 
an advertising stimulus. Although several targeted campaigns co-occur (e.g., through different marketing 
channels), recent literature has primarily examined the effectiveness of a single treatment. To address the 
practically more pertinent question of which treatment among several options to choose, we develop a 
prototype that identifies the most effective treatment for each unit of observation and further generalizes 
to both binary and continuous outcomes to support classification and regression problems. Using real-
world data from e-mail merchandising and e-couponing campaigns, we verify our prototype’s financial 
advantage compared to previous efforts toward the single treatment case. 
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Introduction 

According to current statistics, the spend on digital advertisements has exceeded 100 billion US-dollars in 
2018 (Ha 2019), which confirms the cross-sectoral interest of practitioners in further advancing advertising 
campaigns. From a process-related viewpoint, a crucial aspect of capitalizing on investments into an 
advertising campaign relates to the meticulous planning of whom to allocate a campaign incentive (e.g., 
Kane et al. 2014). Predictive analytics is typically used to recognize units of observation (hereafter referred 
to as units) that are likely performing the incentivized task (e.g., sign a commercial contract). Although the 
unit-specific information might be estimable, it lacks a causal association between the treatment and the 
expected outcome, which restricts the quality of the targeting decision. In contrast to units with a low 
probability to adopt the requested behavior, the corresponding model selects units with a high probability 
as targets for a particular activity. However, issuing an incentive to an already likely converter unnecessarily 
wastes financial resources and might even be perceived as irritating from the recipient’s perspective. While 
response models predict this likelihood by considering the units that have obtained the treatment (i.e., the 
treatment sample), attrition models regard the non-treated units (i.e., the control sample) (Radcliffe 2007). 

In contrast to these models, we argue in favor of adopting an uplift model for campaign-based decision-
making as it targets a likely responder with an estimated positive effect due to the promotion of a campaign 
incentive (e.g., Devriendt et al. 2018). To this end, uplift models require data from treatment and control 
groups. The treatment incidences need to be random or conditionally independent from further features to 
alleviate biased model predictions (Imbens and Rubin 2015). Uplift models predict individual-level 
treatment effects (ITE), also known as conditional average treatment effects (CATE) (e.g., Gutierrez and 
Gérardy 2017; Knaus et al. 2018), as they depend on a unit’s definite characteristics (e.g., a customer’s 
browsing behavior in an online marketing context or a citizen’s past political participation activities 
regarding an election campaign). For each unit, an uplift model estimates both sign and strength of a 
treatment’s persuasive impact on its desired behavior. Practitioners target units according to their relative 
ITE in decreasing order. Grounding on scalable machine learning algorithms, uplift models typically benefit 
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from high scalability which is particularly relevant in settings with substantial data amounts such as in 
customer relationship management (e.g., Gubela et al. 2019). 

Most uplift research focuses on marketing applications where the effectiveness of a single treatment (e.g., 
a specific e-mail promotion or product catalog) to forecast a binary outcome (e.g., a service subscription or 
product purchase) is examined (e.g., Devriendt et al. 2018). Therefore, researchers develop novel ITE 
estimators to increase the likelihood of gaining a dichotomous return (e.g., click-through-rates or purchase 
occurrences). The Qini coefficient (Radcliffe 2007) measures a model’s performance and translates the 
estimated treatment effects into a key performance indicator (KPI) for domain-specific audiences. The 
results facilitate an analyst’s decision-making on whom to allot the focused treatment. 

The multi-valued treatments setting comprises applications where several incentives co-exist (e.g., 
Rzepakowski and Jaroszewicz 2012). Analysts make model-dependent targeting decisions and allocate the 
particular treatment with the highest ITE relative to the other treatments to an individual unit, that is, the 
treatment with the highest likelihood to alter future behavior. In a broad sense, suppose several types of 
marketing communications (e.g., offline catalogs vs. online newsletters). More narrowly, we refer to the 
multi-valued treatments setting if only parameters of otherwise identical incentives alter. For example, 
these could be campaigns with different contents or varying values of coupon discounts. In contrast to the 
single treatment setting that studies the effectiveness of one dedicated treatment, analysts assign different 
treatments to different units in the multi-valued treatments setting.  

For the single treatment problem, most estimators consist of decision tree-based structures (e.g., Athey et 
al. 2019) which have demonstrated high performance in both real-world and simulation experiments (e.g., 
Guelman et al. 2015; Knaus et al. 2018). Recent literature further lists causal algorithms such as support 
vector machines (e.g., Zaniewicz and Jaroszewicz 2013), neural networks (e.g., Shalit et al. 2017) and meta-
methods that are not limited to a single algorithm (Gubela et al. 2017; Künzel et al. 2019). However, such 
endeavors focus predominantly on the single treatment case, whereas the case of multi-valued treatments 
has not yet been sufficiently studied. Only very few methods for multi-valued treatments uplift modeling 
exist and include decision trees (Rzepakowski and Jaroszewicz 2012; Zhao et al. 2017), k-nearest neighbors 
(Su et al. 2012) and cluster analysis (Lo and Pachamanova 2015).  

Aside from the binary outcome setting, only a single study in the field of uplift modeling has explored 
continuous outcomes in detail (Gubela et al. 2017). Predicting such an outcome empowers analysts to 
measure the magnitude of a unit’s activity, such as the value of a shopping basket at different time states or 
financial margins from customer transactions. In many real-world cases, continuous outcome settings are 
more in line with business KPIs. For instance, marketing analysts are interested in increasing returns on 
marketing investments (ROMI), and continuous outcomes such as revenue gains and marketing 
expenditures might serve as suitable approximations. At the same time, the choice which units to treat is 
more focused as a model considers more granular meta-information of each unit. To our best knowledge, 
current literature has not yet sufficiently studied continuous outcomes for multi-valued treatments. 

We develop a prototype for the multi-valued treatments setting. The prototype calculates treatment-specific 
ITE for each unit and identifies the most effective treatment based on unit-wise comparisons of treatment 
effects. It estimates binary and continuous outcomes by conducting classification and regression tasks, 
respectively. To showcase the prototype’s practical relevance, we conduct an empirical analysis with two 
real-world marketing data sets and compare the prototype’s effectiveness against recent efforts in terms of 
the single treatment case, including recognized methods such as causal forests (Athey et al. 2019). The 
employed data sets refer to different marketing applications, that is, e-mail merchandising promotions for 
men and women (Hillstrom 2008), and online shopping campaigns with varying discount values of 
otherwise identical digital coupons. The e-mail promotion data is publicly available, which facilitates the 
reproducibility of our prototype’s results. 

To emphasize the prototype’s practical utility, we translate our findings from its predictive performance 
into business KPIs, such as the spend amount. As a result, we stress that considering the single treatment 
setting is not optimal if several campaigns co-exist as it ignores a unit’s treatment affiliation. Our analyses 
indicate that allocating the most influential treatment to a particular customer is more appealing from a 
financial view. Although merchants appreciate the advantage of their campaign-related activities compared 
to no activity, they lack the insight of each treatment’s effectiveness. Such knowledge is crucial, primarily if 
treatments significantly differ in their persuasive impact and financial value.  
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