9 research outputs found

    Fast Nonlinear Least Squares Optimization of Large-Scale Semi-Sparse Problems

    Get PDF
    Many problems in computer graphics and vision can be formulated as a nonlinear least squares optimization problem, for which numerous off-the-shelf solvers are readily available. Depending on the structure of the problem, however, existing solvers may be more or less suitable, and in some cases the solution comes at the cost of lengthy convergence times. One such case is semi-sparse optimization problems, emerging for example in localized facial performance reconstruction, where the nonlinear least squares problem can be composed of hundreds of thousands of cost functions, each one involving many of the optimization parameters. While such problems can be solved with existing solvers, the computation time can severely hinder the applicability of these methods. We introduce a novel iterative solver for nonlinear least squares optimization of large-scale semi-sparse problems. We use the nonlinear Levenberg-Marquardt method to locally linearize the problem in parallel, based on its firstorder approximation. Then, we decompose the linear problem in small blocks, using the local Schur complement, leading to a more compact linear system without loss of information. The resulting system is dense but its size is small enough to be solved using a parallel direct method in a short amount of time. The main benefit we get by using such an approach is that the overall optimization process is entirely parallel and scalable, making it suitable to be mapped onto graphics hardware (GPU). By using our minimizer, results are obtained up to one order of magnitude faster than other existing solvers, without sacrificing the generality and the accuracy of the model. We provide a detailed analysis of our approach and validate our results with the application of performance-based facial capture using a recently-proposed anatomical local face deformation model

    A Positive-definite Cut-cell Method for Strong Two-way Coupling Between Fluids and Deformable Bodies

    Get PDF
    © ACM, 2017. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Zarifi, O., & Batty, C. (2017). A Positive-definite Cut-cell Method for Strong Two-way Coupling Between Fluids and Deformable Bodies. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (p. 7:1–7:11). New York, NY, USA: ACM. https://doi.org/10.1145/3099564.3099572We present a new approach to simulation of two-way coupling between inviscid free surface fluids and deformable bodies that exhibits several notable advantages over previous techniques. By fully incorporating the dynamics of the solid into pressure projection, we simultaneously handle fluid incompressibility and solid elasticity and damping. Thanks to this strong coupling, our method does not suffer from instability, even in very taxing scenarios. Furthermore, use of a cut-cell discretization methodology allows us to accurately apply proper free-slip boundary conditions at the exact solid-fluid interface. Consequently, our method is capable of correctly simulating inviscid tangential flow, devoid of grid artefacts or artificial sticking. Lastly, we present an efficient algebraic transformation to convert the indefinite coupled pressure projection system into a positive-definite form. We demonstrate the efficacy of our proposed method by simulating several interesting scenarios, including a light bath toy colliding with a collapsing column of water, liquid being dropped onto a deformable platform, and a partially liquid-filled deformable elastic sphere bouncing.Natural Sciences and Engineering Research Council of Canad

    Interactively Cutting and Constraining Vertices in Meshes Using Augmented Matrices

    Get PDF
    We present a finite-element solution method that is well suited for interactive simulations of cutting meshes in the regime of linear elastic models. Our approach features fast updates to the solution of the stiffness system of equations to account for real-time changes in mesh connectivity and boundary conditions. Updates are accomplished by augmenting the stiffness matrix to keep it consistent with changes to the underlying model, without refactoring the matrix at each step of cutting. The initial stiffness matrix and its Cholesky factors are used to implicitly form and solve a Schur complement system using an iterative solver. As changes accumulate over many simulation timesteps, the augmented solution method slows down due to the size of the augmented matrix. However, by periodically refactoring the stiffness matrix in a concurrent background process, fresh Cholesky factors that incorporate recent model changes can replace the initial factors. This controls the size of the augmented matrices and provides a way to maintain a fast solution rate as the number of changes to a model grows. We exploit sparsity in the stiffness matrix, the right-hand-side vectors and the solution vectors to compute the solutions fast, and show that the time complexity of the update steps is bounded linearly by the size of the Cholesky factor of the initial matrix. Our complexity analysis and experimental results demonstrate that this approach scales well with problem size. Results for cutting and deformation of 3D linear elastic models are reported for meshes representing the brain, eye, and model problems with element counts up to 167,000; these show the potential of this method for real-time interactivity. An application to limbal incisions for surgical correction of astigmatism, for which linear elastic models and small deformations are sufficient, is included

    Updated sparse cholesky factors for corotational elastodynamics

    No full text

    Updated Sparse Cholesky Factors for Corotational Elastodynamics

    No full text
    We present warp-canceling corotation, a nonlinear finite element formulation for elastodynamic simulation that achieves fast performance by making only partial or delayed changes to the simulation’s linearized system matrices. Coupled with an algorithm for incremental updates to a sparse Cholesky factorization, the method realizes the stability and scalability of a sparse direct method without the need for expensive refactorization at each time step. This finite element formulation combines the widely used corotational method with stiffness warping so that changes in the per-element rotations are initially approximated by inexpensive per-node rotations. When the errors of this approximation grow too large, the per-element rotations are selectively corrected by updating parts of the matrix chosen according to locally measured errors. These changes to the system matrix are propagated to its Cholesky factor by incremental updates that are much faster than refactoring the matrix from scratch. A nested dissection ordering of the system matrix gives rise to a hierarchical factorization in which changes to the system matrix cause limited, well-structured changes to the Cholesky factor. We show examples of simulations that demonstrate that the proposed formulation produces results that are visually comparable to those produced by a standard corotational formulation. Because our method requires computing only partial updates of the Cholesky factor, it is substantially faster than full refactorization and outperforms widely used iterative methods such as preconditioned conjugate gradients. Our method supports a controlled trade-off between accuracy and speed, and unlike most iterative methods its performance does not slow for stiffer materials but rather it actually improves

    Realtime Face Tracking and Animation

    Get PDF
    Capturing and processing human geometry, appearance, and motion is at the core of computer graphics, computer vision, and human-computer interaction. The high complexity of human geometry and motion dynamics, and the high sensitivity of the human visual system to variations and subtleties in faces and bodies make the 3D acquisition and reconstruction of humans in motion a challenging task. Digital humans are often created through a combination of 3D scanning, appearance acquisition, and motion capture, leading to stunning results in recent feature films. However, these methods typically require complex acquisition systems and substantial manual post-processing. As a result, creating and animating high-quality digital avatars entails long turn-around times and substantial production costs. Recent technological advances in RGB-D devices, such as Microsoft Kinect, brought new hopes for realtime, portable, and affordable systems allowing to capture facial expressions as well as hand and body motions. RGB-D devices typically capture an image and a depth map. This permits to formulate the motion tracking problem as a 2D/3D non-rigid registration of a deformable model to the input data. We introduce a novel face tracking algorithm that combines geometry and texture registration with pre-recorded animation priors in a single optimization. This led to unprecedented face tracking quality on a low cost consumer level device. The main drawback of this approach in the context of consumer applications is the need for an offline user-specific training. Robust and efficient tracking is achieved by building an accurate 3D expression model of the user's face who is scanned in a predefined set of facial expressions. We extended this approach removing the need of a user-specific training or calibration, or any other form of manual assistance, by modeling online a 3D user-specific dynamic face model. In complement of a realtime face tracking and modeling algorithm, we developed a novel system for animation retargeting that allows learning a high-quality mapping between motion capture data and arbitrary target characters. We addressed one of the main challenges of existing example-based retargeting methods, the need for a large number of accurate training examples to define the correspondence between source and target expression spaces. We showed that this number can be significantly reduced by leveraging the information contained in unlabeled data, i.e. facial expressions in the source or target space without corresponding poses. Finally, we present a novel realtime physics-based animation technique allowing to simulate a large range of deformable materials such as fat, flesh, hair, or muscles. This approach could be used to produce more lifelike animations by enhancing the animated avatars with secondary effects. We believe that the realtime face tracking and animation pipeline presented in this thesis has the potential to inspire numerous future research in the area of computer-generated animation. Already, several ideas presented in thesis have been successfully used in industry and this work gave birth to the startup company faceshift AG
    corecore