2,761 research outputs found

    Implementing Belief-Consistent Multilevel Secure Relational Data Model: Issues and Solutions

    Get PDF
    This paper summarizes our efforts in implementing a working multi-level secure database prototype. We have chosen Belief-Consistent Multilevel Secure Relational Data Model (BCMLS) as a basis for our prototype because of its comprehensive semantics for interpreting all stored information. While semantically superior to other models, this model has not been implemented as a working system before. Our prototype, which was created on an Informix database server with a PHP web client, enables insertion, deletion and update of multi-level data while addressing the underlying model complexities through a number of original solutions

    XML document design via GN-DTD

    Get PDF
    Designing a well-structured XML document is important for the sake of readability and maintainability. More importantly, this will avoid data redundancies and update anomalies when maintaining a large quantity of XML based documents. In this paper, we propose a method to improve XML structural design by adopting graphical notations for Document Type Definitions (GN-DTD), which is used to describe the structure of an XML document at the schema level. Multiples levels of normal forms for GN-DTD are proposed on the basis of conceptual model approaches and theories of normalization. The normalization rules are applied to transform a poorly designed XML document into a well-designed based on normalized GN-DTD, which is illustrated through examples

    Compensation methods to support generic graph editing: A case study in automated verification of schema requirements for an advanced transaction model

    Get PDF
    Compensation plays an important role in advanced transaction models, cooperative work, and workflow systems. However, compensation operations are often simply written as a^−1 in transaction model literature. This notation ignores any operation parameters, results, and side effects. A schema designer intending to use an advanced transaction model is expected (required) to write correct method code. However, in the days of cut-and-paste, this is much easier said than done. In this paper, we demonstrate the feasibility of using an off-the-shelf theorem prover (also called a proof assistant) to perform automated verification of compensation requirements for an OODB schema. We report on the results of a case study in verification for a particular advanced transaction model that supports cooperative applications. The case study is based on an OODB schema that provides generic graph editing functionality for the creation, insertion, and manipulation of nodes and links

    Compensation methods to support cooperative applications: A case study in automated verification of schema requirements for an advanced transaction model

    Get PDF
    Compensation plays an important role in advanced transaction models, cooperative work and workflow systems. A schema designer is typically required to supply for each transaction another transaction to semantically undo the effects of . Little attention has been paid to the verification of the desirable properties of such operations, however. This paper demonstrates the use of a higher-order logic theorem prover for verifying that compensating transactions return a database to its original state. It is shown how an OODB schema is translated to the language of the theorem prover so that proofs can be performed on the compensating transactions

    Strong and Provably Secure Database Access Control

    Full text link
    Existing SQL access control mechanisms are extremely limited. Attackers can leak information and escalate their privileges using advanced database features such as views, triggers, and integrity constraints. This is not merely a problem of vendors lagging behind the state-of-the-art. The theoretical foundations for database security lack adequate security definitions and a realistic attacker model, both of which are needed to evaluate the security of modern databases. We address these issues and present a provably secure access control mechanism that prevents attacks that defeat popular SQL database systems.Comment: A short version of this paper has been published in the proceedings of the 1st IEEE European Symposium on Security and Privacy (EuroS&P 2016
    corecore