217 research outputs found

    M-health review: joining up healthcare in a wireless world

    Get PDF
    In recent years, there has been a huge increase in the use of information and communication technologies (ICT) to deliver health and social care. This trend is bound to continue as providers (whether public or private) strive to deliver better care to more people under conditions of severe budgetary constraint

    Privacy-Preserving Mutual Authentication in RFID with Designated Readers

    Get PDF
    We study privacy-preserving mutual authentication in radio-frequency identification systems with designated readers (PP-MADR in short). In PP-MADR, each tag has its designated-reader group instead of all readers, and only tags and their designated readers can authenticate each other. Other readers and adversaries cannot trace tags or know their designated readers. The most challenging task of constructing such a PP-MADR protocol is the verification of reader designation without compromising tag privacy. We found that traditional solutions are impractical due to linear storage growth on tags, linear computation growth on tags, or requiring new key generations for designated readers. In this paper, we show how to construct such an efficient PP-MADR protocol. In our protocol, each tag stores constant-size secret state and performs constant-time computation for mutual authentication. When a tag is created, the server does not generate new private keys for designated readers. Our protocol captures the strong privacy property, where tags cannot be traced and designated readers cannot be distinguished, even if tags are corrupted by adversaries

    Game-Based Cryptanalysis of a Lightweight CRC-Based Authentication Protocol for EPC Tags

    Get PDF
    The term Internet of Things (IoT) expresses a huge network of smart and connected objects which can interact with other devices without our interposition. Radio frequency identification (RFID) is a great technology and an interesting candidate to provide communications for IoT networks, but numerous security and privacy issues need to be considered. In this paper, we analyze the security and the privacy of a new RFID authentication protocol proposed by Shi et al. in 2014. We prove that although Shi et al. have tried to present a secure and untraceable authentication protocol, their protocol still suffers from several security and privacy weaknesses which make it vulnerable to various security and privacy attacks. We present our privacy analysis based on a well-known formal privacy model which is presented by Ouafi and Phan in 2008. Moreover, to stop such attacks on the protocol and increase the performance of Shi et al.’s scheme, we present some modifications and propound an improved version of the protocol. Finally, the security and the privacy of the proposed protocol were analyzed against various attacks

    Distributed Wireless Algorithms for RFID Systems: Grouping Proofs and Cardinality Estimation

    Get PDF
    The breadth and depth of the use of Radio Frequency Identification (RFID) are becoming more substantial. RFID is a technology useful for identifying unique items through radio waves. We design algorithms on RFID-based systems for the Grouping Proof and Cardinality Estimation problems. A grouping-proof protocol is evidence that a reader simultaneously scanned the RFID tags in a group. In many practical scenarios, grouping-proofs greatly expand the potential of RFID-based systems such as supply chain applications, simultaneous scanning of multiple forms of IDs in banks or airports, and government paperwork. The design of RFID grouping-proofs that provide optimal security, privacy, and efficiency is largely an open area, with challenging problems including robust privacy mechanisms, addressing completeness and incompleteness (missing tags), and allowing dynamic groups definitions. In this work we present three variations of grouping-proof protocols that implement our mechanisms to overcome these challenges. Cardinality estimation is for the reader to determine the number of tags in its communication range. Speed and accuracy are important goals. Many practical applications need an accurate and anonymous estimation of the number of tagged objects. Examples include intelligent transportation and stadium management. We provide an optimal estimation algorithm template for cardinality estimation that works for a {0,1,e} channel, which extends to most estimators and ,possibly, a high resolution {0,1,...,k-1,e} channel

    Semantic discovery and reuse of business process patterns

    Get PDF
    Patterns currently play an important role in modern information systems (IS) development and their use has mainly been restricted to the design and implementation phases of the development lifecycle. Given the increasing significance of business modelling in IS development, patterns have the potential of providing a viable solution for promoting reusability of recurrent generalized models in the very early stages of development. As a statement of research-in-progress this paper focuses on business process patterns and proposes an initial methodological framework for the discovery and reuse of business process patterns within the IS development lifecycle. The framework borrows ideas from the domain engineering literature and proposes the use of semantics to drive both the discovery of patterns as well as their reuse

    Game-Based Privacy Analysis of RFID Security Schemes for Confident Authentication in IoT

    Get PDF
    Recently, Radio Frequency Identification (RFID) and Near Field Communication systems are found in various user-friendly services that all of us deal with in our daily lives. As these systems are ubiquitously deployed in different authentication and identification applications, inferring information about our behavior will be possible by monitoring our use of them. In order to provide privacy and security requirements of RFID users in novel authentication applications, lots of security schemes have been proposed which have tried to provide secure and untraceable communication for end-users. In this paper, we investigate the privacy of three RFID security schemes which have been proposed recently. For privacy analysis, we use the well-known RFID formal privacy model proposed by Ouafi and Phan. We show that all the studied protocols have some privacy drawbacks, making them vulnerable to various traceability attacks. Moreover, in order to overcome all the reported weaknesses and prevent the presented attacks, we apply some modifications in the structures of the studied protocols and propose an improved version of each one. Our analyses show that the modified protocols are more efficient than their previous versions and new modifications can omit all the existing weaknesses on the analyzed protocols. Finally, we compare the modified protocols with some new-found RFID authentication protocols in the terms of security and privacy

    Security Attacks and Enhancements to Chaotic Map-Based RFID Authentication Protocols

    Get PDF
    Radio frequency identification (RFID) technology has been increasingly integrated into numerous applications for authentication of objects or individuals. However, because of its limited computation power, RFID technology may cause several security and privacy issues such as tracking the owner of the tag, cloning of the tags and etc. Recently, two chaotic map-based authentication protocols have been proposed for low-cost RFID tags in order to eliminate these issues. In this paper, we give the security analysis of these protocols and uncover their weaknesses. We prove that these protocols are vulnerable to tag tracing, tag impersonation and desynchronization attacks. The attack complexity of an adversary is polynomial and the success probability of these attacks are substantial. Moreover, we also propose an improved RFID authentication protocol that employs Chebyshev chaotic maps and complies with the EPC global Class 1 Generation 2 standard. Finally, we show that our protocol is resistant against those security issues
    • …
    corecore