339 research outputs found

    Semantic analysis of field sports video using a petri-net of audio-visual concepts

    Get PDF
    The most common approach to automatic summarisation and highlight detection in sports video is to train an automatic classifier to detect semantic highlights based on occurrences of low-level features such as action replays, excited commentators or changes in a scoreboard. We propose an alternative approach based on the detection of perception concepts (PCs) and the construction of Petri-Nets which can be used for both semantic description and event detection within sports videos. Low-level algorithms for the detection of perception concepts using visual, aural and motion characteristics are proposed, and a series of Petri-Nets composed of perception concepts is formally defined to describe video content. We call this a Perception Concept Network-Petri Net (PCN-PN) model. Using PCN-PNs, personalized high-level semantic descriptions of video highlights can be facilitated and queries on high-level semantics can be achieved. A particular strength of this framework is that we can easily build semantic detectors based on PCN-PNs to search within sports videos and locate interesting events. Experimental results based on recorded sports video data across three types of sports games (soccer, basketball and rugby), and each from multiple broadcasters, are used to illustrate the potential of this framework

    Goal event detection in soccer videos via collaborative multimodal analysis

    Get PDF
    Detecting semantic events in sports video is crucial for video indexing and retrieval. Most existing works have exclusively relied on video content features, namely, directly available and extractable data from the visual and/or aural channels. Sole reliance on such data however, can be problematic due to the high-level semantic nature of video and the difficulty to properly align detected events with their exact time of occurrences. This paper proposes a framework for soccer goal event detection through collaborative analysis of multimodal features. Unlike previous approaches, the visual and aural contents are not directly scrutinized. Instead, an external textual source (i.e., minute-by-minute reports from sports websites) is used to initially localize the event search space. This step is vital as the event search space can significantly be reduced. This also makes further visual and aural analysis more efficient since excessive and unnecessary non-eventful segments are discarded, culminating in the accurate identification of the actual goal event segment. Experiments conducted on thirteen soccer matches are very promising with high accuracy rates being reported

    Soccer event detection via collaborative multimodal feature analysis and candidate ranking

    Get PDF
    This paper presents a framework for soccer event detection through collaborative analysis of the textual, visual and aural modalities. The basic notion is to decompose a match video into smaller segments until ultimately the desired eventful segment is identified. Simple features are considered namely the minute-by-minute reports from sports websites (i.e. text), the semantic shot classes of far and closeup-views (i.e. visual), and the low-level features of pitch and log-energy (i.e. audio). The framework demonstrates that despite considering simple features, and by averting the use of labeled training examples, event detection can be achieved at very high accuracy. Experiments conducted on ~30-hours of soccer video show very promising results for the detection of goals, penalties, yellow cards and red cards

    Audio-visual football video analysis, from structure detection to attention analysis

    Get PDF
    Sport video is an important video genre. Content-based sports video analysis attracts great interest from both industry and academic fields. A sports video is characterised by repetitive temporal structures, relatively plain contents, and strong spatio-temporal variations, such as quick camera switches and swift local motions. It is necessary to develop specific techniques for content-based sports video analysis to utilise these characteristics. For an efficient and effective sports video analysis system, there are three fundamental questions: (1) what are key stories for sports videos; (2) what incurs viewer’s interest; and (3) how to identify game highlights. This thesis is developed around these questions. We approached these questions from two different perspectives and in turn three research contributions are presented, namely, replay detection, attack temporal structure decomposition, and attention-based highlight identification. Replay segments convey the most important contents in sports videos. It is an efficient approach to collect game highlights by detecting replay segments. However, replay is an artefact of editing, which improves with advances in video editing tools. The composition of replay is complex, which includes logo transitions, slow motions, viewpoint switches and normal speed video clips. Since logo transition clips are pervasive in game collections of FIFA World Cup 2002, FIFA World Cup 2006 and UEFA Championship 2006, we take logo transition detection as an effective replacement of replay detection. A two-pass system was developed, including a five-layer adaboost classifier and a logo template matching throughout an entire video. The five-layer adaboost utilises shot duration, average game pitch ratio, average motion, sequential colour histogram and shot frequency between two neighbouring logo transitions, to filter out logo transition candidates. Subsequently, a logo template is constructed and employed to find all transition logo sequences. The precision and recall of this system in replay detection is 100% in a five-game evaluation collection. An attack structure is a team competition for a score. Hence, this structure is a conceptually fundamental unit of a football video as well as other sports videos. We review the literature of content-based temporal structures, such as play-break structure, and develop a three-step system for automatic attack structure decomposition. Four content-based shot classes, namely, play, focus, replay and break were identified by low level visual features. A four-state hidden Markov model was trained to simulate transition processes among these shot classes. Since attack structures are the longest repetitive temporal unit in a sports video, a suffix tree is proposed to find the longest repetitive substring in the label sequence of shot class transitions. These occurrences of this substring are regarded as a kernel of an attack hidden Markov process. Therefore, the decomposition of attack structure becomes a boundary likelihood comparison between two Markov chains. Highlights are what attract notice. Attention is a psychological measurement of “notice ”. A brief survey of attention psychological background, attention estimation from vision and auditory, and multiple modality attention fusion is presented. We propose two attention models for sports video analysis, namely, the role-based attention model and the multiresolution autoregressive framework. The role-based attention model is based on the perception structure during watching video. This model removes reflection bias among modality salient signals and combines these signals by reflectors. The multiresolution autoregressive framework (MAR) treats salient signals as a group of smooth random processes, which follow a similar trend but are filled with noise. This framework tries to estimate a noise-less signal from these coarse noisy observations by a multiple resolution analysis. Related algorithms are developed, such as event segmentation on a MAR tree and real time event detection. The experiment shows that these attention-based approach can find goal events at a high precision. Moreover, results of MAR-based highlight detection on the final game of FIFA 2002 and 2006 are highly similar to professionally labelled highlights by BBC and FIFA

    Recognition of Dynamic Video Contents With Global Probabilistic Models of Visual Motion

    Full text link

    Soccer Video Event Detection Via Collaborative Textual, Aural And Visual Analysis

    Get PDF
    Soccer event detection deals with identifying interesting segments in soccer video via audio/visual content analysis. This task enables automatic high-level index creation, which circumvents large-scale manual annotation and facilitates semantic-based retrieval. This thesis proposes two frameworks for event detection through collaborative analysis of textual, aural and visual features. The frameworks share a common initial component where both utilize an external textual resource, which is the minute-by-minute (MBM) reports from sports broadcasters, to accurately localize sections of video containing the desired events

    Content-based video indexing for sports applications using integrated multi-modal approach

    Full text link
    This thesis presents a research work based on an integrated multi-modal approach for sports video indexing and retrieval. By combining specific features extractable from multiple (audio-visual) modalities, generic structure and specific events can be detected and classified. During browsing and retrieval, users will benefit from the integration of high-level semantic and some descriptive mid-level features such as whistle and close-up view of player(s). The main objective is to contribute to the three major components of sports video indexing systems. The first component is a set of powerful techniques to extract audio-visual features and semantic contents automatically. The main purposes are to reduce manual annotations and to summarize the lengthy contents into a compact, meaningful and more enjoyable presentation. The second component is an expressive and flexible indexing technique that supports gradual index construction. Indexing scheme is essential to determine the methods by which users can access a video database. The third and last component is a query language that can generate dynamic video summaries for smart browsing and support user-oriented retrievals

    Audiovisual framework for automatic soccer highlights generation

    Get PDF
    Extracting low-level and mid-level descriptors from a soccer match to generate a summary of soccer highlights.Automatic generation of sports highlights from recorded audiovisual content has been object of great interest in recent years. The problem is indeed especially important in the production of second and third division highlights videos where the quantity of raw material is significant and does not contain manual annotations. In this thesis, a new approach for automatic generation of soccer highlights is proposed. The approach is based on the segmentation of the video sequence into shots that will be further ana- lyzed to determine its relevance and interest. For every video shot a set of low and mid level audio-visual descriptors are computed and combined in order to obtain different relevance measures based on empirical knowledge rules. The final summary is generated by selecting those shots with highest interest according to the specifications of the user and the results of relevance measures. The main novelties of this work have been the temporal combination of two shot boundary detectors; the selection of keyframes using motion and color features; the generation of new soccer audio mid-level descriptors; the robust detection of soccer players; the employment of a novel object detection technique to spot goal-posts and finally, the creation of a flexible and user-friendly highlight gen- eration framework. The thesis is mainly devoted to the description of the global visual segmentation module, the selection of audiovisual descriptors and the general scheme for evaluating the measures of relevance. Several results have been produced using real soccer video sequences that prove the validity of the proposed framework
    corecore