4 research outputs found

    Unsupervised Short-term Covariate Shift Minimization for Self-paced BCI

    Get PDF

    Competing at the Cybathlon championship for people with disabilities: Long-term motor imagery brain-computer interface training of a cybathlete who has tetraplegia

    Get PDF
    BACKGROUND: The brain–computer interface (BCI) race at the Cybathlon championship, for people with disabilities, challenges teams (BCI researchers, developers and pilots with spinal cord injury) to control an avatar on a virtual racetrack without movement. Here we describe the training regime and results of the Ulster University BCI Team pilot who has tetraplegia and was trained to use an electroencephalography (EEG)-based BCI intermittently over 10 years, to compete in three Cybathlon events. METHODS: A multi-class, multiple binary classifier framework was used to decode three kinesthetically imagined movements (motor imagery of left arm, right arm, and feet), and relaxed state. Three game paradigms were used for training i.e., NeuroSensi, Triad, and Cybathlon Race: BrainDriver. An evaluation of the pilot’s performance is presented for two Cybathlon competition training periods—spanning 20 sessions over 5 weeks prior to the 2019 competition, and 25 sessions over 5 weeks in the run up to the 2020 competition. RESULTS: Having participated in BCI training in 2009 and competed in Cybathlon 2016, the experienced pilot achieved high two-class accuracy on all class pairs when training began in 2019 (decoding accuracy > 90%, resulting in efficient NeuroSensi and Triad game control). The BrainDriver performance (i.e., Cybathlon race completion time) improved significantly during the training period, leading up to the competition day, ranging from 274–156 s (255 ± 24 s to 191 ± 14 s mean ± std), over 17 days (10 sessions) in 2019, and from 230–168 s (214 ± 14 s to 181 ± 4 s), over 18 days (13 sessions) in 2020. However, on both competition occasions, towards the race date, the performance deteriorated significantly. CONCLUSIONS: The training regime and framework applied were highly effective in achieving competitive race completion times. The BCI framework did not cope with significant deviation in electroencephalography (EEG) observed in the sessions occurring shortly before and during the race day. Changes in cognitive state as a result of stress, arousal level, and fatigue, associated with the competition challenge and performance pressure, were likely contributing factors to the non-stationary effects that resulted in the BCI and pilot achieving suboptimal performance on race day. Trial registration not registered SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12984-022-01073-9

    A machine learning approach to taking EEG-based brain-computer interfaces out of the lab

    Get PDF
    Despite being a subject of study for almost three decades, non-invasive brain- computer interfaces (BCIs) are still trapped in the laboratory. In order to move into more common use, it is necessary to have systems that can be reliably used over time with a minimum of retraining. My research focuses on machine learning methods to minimize necessary retraining, as well as a data science approach to validate processing pipelines more robustly. Via a probabilistic transfer learning method that scales well to large amounts of data in high dimensions it is possible to reduce the amount of calibration data needed for optimal performance. However, a good model still requires reliable features that are resistant to recording artifacts. To this end we have also investigated a novel feature of the electroencephalogram which is predictive of multiple types of brain-related activity. As cognitive neuroscience literature suggests, shifts in the peak frequency of a neural oscillation – hereafter referred to as frequency modulation – can be predictive of activity in standard BCI tasks, which we validate for the first time in multiple paradigms. Finally, in order to test the robustness of our techniques, we have built a codebase for reliable comparison of pipelines across over fifteen open access EEG datasets
    corecore