807 research outputs found

    Online Mutual Foreground Segmentation for Multispectral Stereo Videos

    Full text link
    The segmentation of video sequences into foreground and background regions is a low-level process commonly used in video content analysis and smart surveillance applications. Using a multispectral camera setup can improve this process by providing more diverse data to help identify objects despite adverse imaging conditions. The registration of several data sources is however not trivial if the appearance of objects produced by each sensor differs substantially. This problem is further complicated when parallax effects cannot be ignored when using close-range stereo pairs. In this work, we present a new method to simultaneously tackle multispectral segmentation and stereo registration. Using an iterative procedure, we estimate the labeling result for one problem using the provisional result of the other. Our approach is based on the alternating minimization of two energy functions that are linked through the use of dynamic priors. We rely on the integration of shape and appearance cues to find proper multispectral correspondences, and to properly segment objects in low contrast regions. We also formulate our model as a frame processing pipeline using higher order terms to improve the temporal coherence of our results. Our method is evaluated under different configurations on multiple multispectral datasets, and our implementation is available online.Comment: Preprint accepted for publication in IJCV (December 2018

    A brief survey of visual saliency detection

    Get PDF

    Learning Features by Watching Objects Move

    Full text link
    This paper presents a novel yet intuitive approach to unsupervised feature learning. Inspired by the human visual system, we explore whether low-level motion-based grouping cues can be used to learn an effective visual representation. Specifically, we use unsupervised motion-based segmentation on videos to obtain segments, which we use as 'pseudo ground truth' to train a convolutional network to segment objects from a single frame. Given the extensive evidence that motion plays a key role in the development of the human visual system, we hope that this straightforward approach to unsupervised learning will be more effective than cleverly designed 'pretext' tasks studied in the literature. Indeed, our extensive experiments show that this is the case. When used for transfer learning on object detection, our representation significantly outperforms previous unsupervised approaches across multiple settings, especially when training data for the target task is scarce.Comment: CVPR 201

    On the Use of Efficient Projection Kernels for Motion-Based Visual Saliency Estimation

    Get PDF
    In this paper, we investigate the potential of a family of efficient filters—the Gray-Code Kernels (GCKs)—for addressing visual saliency estimation with a focus on motion information. Our implementation relies on the use of 3D kernels applied to overlapping blocks of frames and is able to gather meaningful spatio-temporal information with a very light computation. We introduce an attention module that reasons the use of pooling strategies, combined in an unsupervised way to derive a saliency map highlighting the presence of motion in the scene. A coarse segmentation map can also be obtained. In the experimental analysis, we evaluate our method on publicly available datasets and show that it is able to effectively and efficiently identify the portion of the image where the motion is occurring, providing tolerance to a variety of scene conditions and complexities
    • …
    corecore