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In this paper, we investigate the potential of a family of efficient filters—the Gray-Code

Kernels (GCKs)—for addressing visual saliency estimation with a focus on motion

information. Our implementation relies on the use of 3D kernels applied to overlapping

blocks of frames and is able to gather meaningful spatio-temporal information with a very

light computation. We introduce an attention module that reasons the use of pooling

strategies, combined in an unsupervised way to derive a saliency map highlighting the

presence of motion in the scene. A coarse segmentation map can also be obtained. In

the experimental analysis, we evaluate our method on publicly available datasets and

show that it is able to effectively and efficiently identify the portion of the image where the

motion is occurring, providing tolerance to a variety of scene conditions and complexities.

Keywords: Gray-Code Kernels, motion saliency estimation, motion detection, video filtering, image projection

1. INTRODUCTION

Biological perception systems are very skilled in processing efficiently and effectively a huge amount
of visual information, bringing attention to attractive regions or objects that may be potentially
relevant for higher-level understanding tasks. The same ability in artificial systems is related to the
notion of visual saliency estimation (Cong et al., 2018), often the first step of more complex analysis
pipelines. For this reason, it is convenient to address the task very efficiently to avoid an excessive
burden in the computation. Motion, in particular, is known to be one of the most attractive visual
features for human attention (Itti et al., 1998).

In this work, we explicitly focus on bottom-up motion-based visual saliency and we explore
the use of Gray-Code Kernels (GCKs) (Ben-Artzi et al., 2007) as a tool for efficiently obtaining a
projection of a video content on top of which a new unsupervised motion-based attention module
is devised, to coarsely, but very efficiently, detect the moving objects in the scene.

We target scenarios where motion-based saliency estimation triggers attention toward regions
of the image where the presence of relevant information can be detected. We are not necessarily
interested in a very precise segmentation of the entire object, while it is necessary to gather very
quickly hints on where and how the relevant motion is occurring. Application domains including
robotics and video-surveillance are just two examples where this ability may be highly beneficial.
Similarly to change detectionmethods (see for instance Bouwmans, 2011), we are mainly interested
in an efficient way of detecting the presence of motion in the scene, but as with optical flow,
we foresee a representation that can sustain different levels of analysis, from the detection to
higher-level understanding (Weinzaepfel et al., 2013; Fortun et al., 2015). Also, a desired property
for the method is the tolerance to different viewing and scene conditions.
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Inspired by these motivations, we explored the use of GCKs,
a family of filters that include the Walsh-Hadamard kernels and
that can be used as a highly efficient filtering scheme for images
and videos. Their efficiency is discussed in Ben-Artzi et al. (2007),
where it is shown that, under appropriate conditions, successive
convolutions of an image with a set of such filters only require
two operations per pixel for each filtering, regardless of filter or
image size.

In this work, we thoroughly discuss a pipeline for motion-
based saliency detection based on GCKs—an early version
of which has been presented in Nicora and Noceti (2022)—
where the main goal is to reach a good compromise between
effectiveness and efficiency. The pipeline is structured in two
modules: we first apply the bank of GCKs to overlapping clips
of video, obtaining a bank of projections compactly represented
by means of pooling operations. We then introduce an attention
module to estimate in an unsupervised way a saliency map that
reflects the presence of motion in the scene and from which a
coarse segmentation map can be derived.

In the experimental analysis, we compare our method
with alternative solutions of comparable complexity and we
perform an evaluation on benchmark datasets with different
characteristics and complexity. To clarify, we did not include
state-of-art deep learning approaches, very precise but also
computationally demanding, instead, we considered basic
motion detection and segmentation methods. In addition, we
discuss a simple use of our motion-based attention map in
combination with RGB information in case a more precise
segmentation is required. With respect to Nicora and Noceti
(2022), in this work, we provide a more comprehensive
experimental analysis of the method, including an assessment of
synthetic data to gather insights about the interpretation of the
obtained projections, and thoroughly discuss the pros and cons
of the methods, identifying scenarios where its use may be highly
beneficial but also discussing its main limitations.

The remainder of this document is organized as follows. In
Section 2, we review works related to ours, while in Section 3
we introduce the basics of GCKs and our 3D implementation.
Section 4 provides an assessment of synthetic data, while in
Section 5 we describe our motion saliency estimation method
and how we exploit saliency to derive a coarse motion-based
image segmentation. In Section 6, we experimentally evaluate our
method on a publicly available dataset, while Section 7 concludes.

2. RELATED WORKS

Video object segmentation (VOS), motion detection, and

saliency. The task of motion-based saliency estimation is tightly
intertwined with motion detection and may take different
shapes. As a consequence the existing literature is huge, and a
comprehensive review is out of the scope of this work. Instead,
we provide here an account of the main families of approaches.

Classical approaches to motion-based saliency
estimation/detection can be categorized in feature-based
and learning-based methods. The majority of feature-based
methods (see e.g., Ren et al., 2012; Fang et al., 2014; Xi et al.,

2016; Chen et al., 2017) rely on the extraction of appearance
and motion features, later fused to obtain the final saliency
map. Here, motion information is crucial, in particular, to
refine temporal consistency (Guo et al., 2017). In learning-based
methods, optical flow is often considered a meaningful starting
point (Wang et al., 2015), but it can be time consuming. For
this reason, some methods try to avoid optical flow computation
and directly embed multiple frames into the network (see e.g.,
Wang et al., 2017). Recently, deep learning architectures have
been proposed for salient object detection in video (Le and
Sugimoto, 2017; Yang et al., 2021), sometimes in combination
with attention mechanisms (Jian et al., 2021) or employing
multiple sources of information (Zhao et al., 2021).

When the focus is on the segmentation of the moving
objects—the foreground— with respect to the background,
the problem is often referred to as VOS (or salient
object segmentation).

Classical approaches shape the problem as a change detection
(or foreground segmentation), in which the main idea is to
segment moving objects by comparing the current scene with
a model of the background, that may include indeed dynamic
elements (Bouwmans, 2011; Stagliano et al., 2015). These type of
methods may be computationally feasible at the price of limited
generalization capabilities, as their use is usually constrained
to settings where there is no camera motion and the lighting
conditions are kept under control.

Motion detection and segmentation methods based on optical
flow provide a higher degree of flexibility to scene conditions
and acquisition settings (Fortun et al., 2015; Noceti et al., 2015;
Vignolo et al., 2017; Rea et al., 2019), but, on the other hand, they
typically are either very efficient but inaccurate or very effective
to the price of high computational demand, especially when
involving global optimization steps (Werlberger et al., 2010) or
if based on deep architectures (Weinzaepfel et al., 2013).

Often, VOS methods aim at obtaining a mask of the
entire salient object, even when only part of it is actually
moving. In such circumstances, motion cues might not be
enough. To overcome this problem, supervised and unsupervised
solutions have been proposed to combine motion-based
cues with complementary (usually appearance-based) sources
of information that may help to provide a more precise
segmentation of the salient object (Ochs et al., 2013; Papazoglou
and Ferrari, 2013; Perazzi et al., 2016a, 2017; Xiao and Jae Lee,
2016; Zhuo et al., 2019), also including approaches based on deep
architectures (as Jain et al., 2017; Voigtlaender and Leibe, 2017).

Our work belongs to the family of unsupervised VOS
methods, but unlike the approaches we mentioned, we propose
A motion-based attention module targeting a coarse space-time
localization of the moving object, or part of it to be more precise,
rather than an accurate segmentation that also includes non-
moving parts. Indeed, we will show that our attention map
can be used in combination with appearance information as an
alternative to the classical optical flow.
Efficient filtering and the GCKs. Enhanced image resolution,
large quantity of data, and, possibly, the need for real-time
performance generated the necessity of increasing the efficiency
and thus the sustainability of the image filtering process. To this
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end, in literature, different possible solutions can be identified.
A popular choice relies on filtering in the frequency domain
using Fast Fourier Transform (Fialka and Cadik, 2006). An
alternative is to resort to the use of meta representations
efficiently computable (as boxlets Simard et al., 1999 or integral
images Viola and Jones, 2004) or to filter engineering, to design
families of filters to speed up the entire process of cascade filtering
(Gotsman, 1994).

The GCKs belong to this latter family, as they are a large set
of filters that can be used in combination with a very efficient
filtering scheme on general d-dimensional signals. More in detail,
they are efficiently computable, inclusive—as they consist of an
extremely large set of kernels—and informative—as they are also
able to carry meaningful information about the signal.

In literature, GCKs have been mainly used in their 2D
formulation as an efficient projection scheme for image matching
based on hashing techniques (Korman and Avidan, 2015) to
speed up existing approaches (as PatchMatch Barnes et al., 2010).
In Moshe and Hel-Or (2009), the same approach is extended
to videos, using 2D GCKs for video block motion estimation
by computing the distance between projections over blocks of
frames instead of using single images.

To the best of our knowledge, there is only one available
example of the application of 3D GCKs (Moshe et al., 2012),
where they are used to create 3D space-time patches followed
by dimensionality reduction for the identification of foreground
objects. With respect to this approach, particularly focused
on video surveillance scenarios, we are more interested in
the inclusive task of motion-based saliency detection under
general conditions.

3. THE GRAY-CODE KERNELS

The Gray-Code Kernels provide an elegant and efficient
projection framework for filtering images and videos. If applied
in the appropriate order, successive convolutions with a bank of
GCKs only requires two operations per pixel regardless of image
or kernel sizes.

In the following, we briefly review the main theory behind
GCKs and introduce our implementation of a 3D video filtering
based on them.

3.1. One-Dimensional GCKs
In this section, we will define GCKs and the efficient projection
scheme in their simplest form, that is when both signal and
kernels are a one-dimensional vector. For a more detailed
discussion, we refer the interested readers to Ben-Artzi et al.
(2007).

A family of GCKs is built according to a recursive definition,
starting from a vector s of length t, also called the seed, and a
parameter k ≥ 0. It is easy to show that these two parameters
determine the final length of each one-dimensional kernel
(composed of n = 2kt elements) and the total number of kernels
in the family (2kD, with D = 1 in the one-dimensional setting).
Starting from the seed, a family of GCKs can be recursively

defined as follows:

V(0)
s = {[s]}

V(k)
s = {[v(k−1)

s αk × v(k−1)
s ]}

(1)

with v
(k−1)
s ∈ V

(k−1)
s and αk ∈ {+1,−1}. The notation [. . . ]

refers to the concatenation between vectors.
This recursive definition can be represented as a binary tree of

k levels, starting with a root equal to [s] and where the branches
are labeled with the values of α used to create the kernels (see
Figure 1A). The final family will be composed of the kernels on
the leaves nodes.

The efficiency of filtering with a family of GCKs is related
to the ordering in which these filters are applied. An optimal
ordering, also called Gray-Code Sequence (GCS), is defined with
respect to the kernel’s α-index, a code composed by the labels
of the edges of the path going from the root of the tree to the
leaf corresponding to such kernel. Two kernels are α-related if
the hamming distance between their α-indices is one. A GCS is
and sequence of kernels such that two consecutive kernels are
always α-related.

To show the efficiency of filtering with sequences of α-related
kernels, we may start defining as v+ and v−, respectively, the sum

and difference of two kernels v1, v2 ∈ V
(k)
s . It can be easily derived

that, for construction, v1 and v2 share a common prefix of length
1 > 0, and the following relation holds:

[01v+] = [v−01] (2)

where 01 is a vector of 1 zeros. If we expand v1, v2 ∈ V
(k)
s to an

infinite sequence such that v1(i) = v2(i) = 0 for i < 0 and for
i ≥ 2kt, Eq.2 can be more specifically re-written as

v+(i− 1) = v−(i). (3)

It is now possible to introduce the core principle behind the
efficient filtering scheme with GCKs. Indeed, exploiting the
equality in Equation (3), we may derive that

v1(i) = v2(i)+ v2(i− 1)+ v1(i− 1)

v2(i) = v1(i)− v1(i− 1)− v2(i− 1)
(4)

Let f1 and f2 be the results of convolving a signal X respectively
with the kernels v1 and v2. Then, by linearity of convolution we
have the following:

f1(i) = f2(i)+ f2(i− 1)+ f1(i− 1)

f2(i) = f1(i)− f1(i− 1)− f2(i− 1)
(5)

From the above formulas, it can be derived that, given the result
of convolving the signal X with one of the two kernels, only two
operations per pixel are needed to obtain the result of convolving
the signal with the other kernel.

It is worth noticing that the efficiency strictly depends on the
relationship between pairs of consecutive filter kernels, meaning
that the actual order of the kernels within the sequence is not
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FIGURE 1 | (A) Example of a binary tree with k = 2 generating one-dimensional Gray-Code Kernels (GCKs) of size 4. (B) Example of ordering (on 2D GCKs) that

forms a Gray Code Sequence, hence enabling the efficient application of successive convolutions.

relevant as long as the α-relation is maintained. For this reason,
multiple orderings can be considered, valid GCSs and different
strategies may be exploited depending on the task. One of the
most common is to rely on sequency-based ordering: the term
sequency is used to refer to the number of sign changes along
each dimension of the kernel, in Figure 1B, we report a practical
example of one of the most used sequency-based ordering,
the “snake.”

3.2. Our 3D Implementation
As discussed in Ben-Artzi et al. (2007), the efficient properties
of filtering with GCKs can be generalized to higher dimensions.
As we are mainly interested in filtering video data, a natural
choice is to employ 3D filter kernels to capture spatio-temporal
information from an image sequence.

A family of 3D GCKs can be built by combining triplets of 1D
GCKs. Considering the notation we used in Section 3.1, if v1, v2,
and v3 are three 1D kernels belonging to the same family, a 3D
GCK V can be computed as V = v1 × v2 × v3 where

′×′ denotes
the outer product between vectors. In this way, we may derive
a bank of filters V = {Vh}M−1

h=0
, where M = 2kD is the total

number of filters with D = 3, of size n× n× n (where n = 2kt is
the length of the 1D filter, t being the length of the seed s).

It is worth noting that even if one-dimensional kernels used
to generate 3D GCKs are already ordered to form a 1D GCS, the
resulting kernels are not necessarily in the right order, and further
processing is needed to obtain a 3DGCS. In our implementation,
we derive the GCS by reasoning on coherent temporal sequency.
Given a kernel V let nV be the number of changes between values
of a kernel along the time component, i.e., the number of changes
from 1 to −1 and vice versa. To give some examples, nV = 0 for
kernels in Figure 2A, while nV = 3 for the rightmost kernel in
Figure 2B. To obtain a GCS, when possible, we prefer to have
kernels with the same nV covering consecutive positions in the
sequence. In other words, we minimize the number of jumps
between pairs of kernels Vi and Vj such that nVi 6= nVj .

Our choice is motivated by computational considerations,
as the extension from 2D to 3D GCKs brings non-trivial

issues on the space computational complexity. For the efficient
computation scheme, the previous 1 projections need to be
stored in memory and available, with 1 = 2(k−1)t corresponding
to the length of the prefix that two α-related kernels have in
common. Since we will need to access the projection values at
most 1 pixels away from the location we are computing, in
time this would require storing the previous 1 whole filtered
images, unnecessarily burdening the memory requirement of
the method.

According to the original work, we build a binary tree starting
from an initial seed s = [1] (notice this corresponds to derive a
family of Walsh-Hadamard kernels Pratt et al., 1969) and we set
the number of levels of the tree to k = 2. The final GCS will be
thus composed of 64 filters of size 4 x 4 x 4 of±1 values.

Within the family of the considered GCKs, we can distinguish
three main subgroups of filters, depending on their structure and
themain properties that they are predominantly able to highlight:
spatial (VS), temporal (VT), and spatio-temporal (VST). The sets
are non-overlapping, thus V = VS ∪ VT ∪ VST . Examples from
each subset can be found in Figure 2.

4. AN ASSESSMENT ON SYNTHETIC DATA

In this section, we provide an experimental investigation on
synthetic data to discuss the properties of filtering with GCKs.
The method starts from the assumption that the bank of filters
may give us variability in the projection values depending on
different factors, such as the type and quantity of information
found in the image region and the structure of the specific
kernel in use. GCKs used in this assessment are of size n ×

n × n and n = 4. As a testbed, we created ad-hoc sequences
with a white dot (that we will also call “target”) moving on
a black uniform background following rectilinear paths in 8
different directions. The target moves with a constant velocity
(of magnitude n

2 , n, 2n, or 4n) in each sequence, and it may
be of size (diameter) equal to n, 2n, or 4n. We end up with
a total of 96 sequences. The explicit connection between the
sequence properties and the size of the kernels allows us to
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FIGURE 2 | Examples of (A) spatial, (B) temporal, and (C) spatio-temporal 3D kernels.

reason about the ability of the filters to highlight specific
movement features.

In the following, we discuss the filter’s behavior with respect to
specific research questions.
[Q1] What is the benefit of 3D vs. 2D filtering? With respect
to filtering with 2D kernels, the use of 3D kernels provides
additional cues about temporal variations. The difference this
extension can make, can be appreciated in Figure 3, where we
computed the projection of four distinct yet connected kernels:
the first one is an edge-like 2D kernel, applied to a single
frame by means of a classical 2D convolution; the second is
a 3D kernel that captures changes only on the time axis; the
third one is the 2D kernel propagated in time, so that the
resulting 3D kernel is applied simultaneously to n frames by
means of a 3D convolution; the last projection (Figure 3D) is
obtained by applying a 3D kernel that captures changes both
in space and in time. The number of changes is indicated by
the number of sign changes in the values of the kernel along
the different axis. As one can see from the resulting projections,
while the 2D kernel can only capture variations purely related
to appearance, 3D kernels also incorporate the effect of the
movement, providing a sort of blurred 2D projection of the target
features in the different time instants. The temporal projection
in particular (second one) provides a visual impression of the
displacement of the target in the time window considered by
the filter. We claim that, under appropriate conditions, this

intermediate output can be used to derive a coarse estimate of
the target velocity.

This simple experiment highlights how the 3D GCKs can
efficiently and effectively enhance the presence of spatio-
temporal variations in the signal and can thus be employed as
a projection scheme for motion-based analysis.
[Q2] How can GCKs globally describe the dynamic event? We
now consider both the local responses of single kernels and more
global responses obtained by pooling the projection results at a
pixel level. The popular max and average poolings are employed.
More specifically, the pooling can be applied to the whole bank of
filters or by grouping kernels according to the type of information
they are predominantly able to capture.

Given a set of kernels W—that can be equal to V, VS, VT , or
VST (see Section 3.2)—and a video clip C more formal definitions
of, respectively, max and average pooling are the following

MPW(C)(i, j) = max
w∈W

8w(C)(i, j) (6)

APW(C)(i, j) =
1

MW

∑

w∈W

8w(C)(i, j) (7)

where 8w is the projection of the input clip with the kernel
w ∈ W, while MW represents the number of kernels in
the considered set. We focus in particular on kernels with a
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FIGURE 3 | Filtering with 2D vs. 3D kernels. The target is moving in the direction north-west. The range of values goes from 0 (purple) to 1 (yellow). (A) 2D filtering (on

a single frame). (B) 3D temporal filtering. (C) 3D spatial filtering. (D) 3D spatio-temporal filtering.

time component and, to simplify the notation, in the following
we call MPVST=ST-MAX, MPVT=T-MAX, APVST=ST-AVG, and
APVT=T-AVG. A visual intuition of the effect of pooling is
given in Figure 4: we may appreciate that ST-MAX (Figure 4A)
and T-AVG (Figure 4D) maps are able to give us more general
information about what happened in a limited amount of time.
From ST-MAX, we derive a visual impression of where the
motion occurred in the time span covered by the filtering.
Since filtering acts on blocks of frames contiguous in time,
rather than single images, the final projections provide a 2D
impression of the movement evolution, with peaks in the regions
where a significant amount of motion is occurring in the
reference time instants. By maximizing the contributions we
can gather a representation that, in spirit, is similar to the
motion history (Ahad et al., 2012). With T-AVG instead, we
focus on information purely related to motion, and we gather
cues about how the motion evolves in time. Averaging the
values, contributions in regions covered by the motion in past
instants tend to smoothly decrease, while the values tend to
increase in locations where the motion is mainly evolving in
the current time instant (in fact, the position of the target in
the reference frame overlaps with the yellow area of the average
pooling while past positions are covered by the blue/purple
“shadow.”
[Q3] Can GCKs help to discriminate events with different
properties? We used dimensionality reduction to test the
representative power of the pooling representations with respect
to the direction of motion, velocity, and dimension of the
target. We used the pooling maps obtained at each time
instant and unrolled them to obtain the corresponding vectorial
representations. Flattened representations are then collected in

a set to which we apply principal component analysis, to derive
a 2D representation that we can visualize. In Figure 5, we report
the obtained representations for ST-MAX, ST-AVG, T-MAX, and
T-AVG as we change the direction of the movement (Figure 5A),
size of the target (Figure 5B), and its velocity (Figure 5C). For
readability of the figure, we only consider a pair of possible values
for each case (North-West vs. South direction in Figure 5A, size
of the target set to 4 or 16 pixels in Figure 5B, and velocity equal
to 4 or 16 pixels in Figure 5C). Each point in the pictures refers
to a pooling map obtained at a certain time instant.

For the direction of motion, GCKs are indeed able to
highlight the main differences. In particular, in the case of
T-MAX and T-AVG, it can be observed in Figure 5A how
the GCKs nicely highlight the presence of one (crosses) or
two (circles) main directions. Since spatial distribution of
the representations is directly proportional to the target’s
dimension, with the exception of ST-AVG, every pooling
is able to distinguish between different sequences, as it
can be appreciated in Figure 5B. By varying the velocity,
one can notice in Figure 5C that GCKs provide different
patterns showing a temporal coherence that is learned
autonomously, highlighting significant differences among
different velocities.

In all the experiments, ST-AVG shows a poor descriptive
power, as in all plots the orange dots and crosses are always
located in a compact area.
Take-home messages Following this explorative analysis, we
convey that the introduction of a third dimension in the structure
of GCKs could be beneficial from several viewpoints. It could
give us the opportunity to directly focus our attention on motion
occurring in a scene without solely relying on the object’s
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FIGURE 4 | Example of pooling: (A) Spatio-temporal Max Pool (ST-MAX=MPVST ). (B) Spatio-temporal Avg Pool (ST-AVG=APVST ). (C) Temporal Max Pool

(T-MAX=MPVT ). (D) Temporal Avg Pool (T-AVG=APVT ).

FIGURE 5 | Test on pooling’s representation power in the case of (A) movement in different directions. (B) Different target dimensions. (C) Different velocities. When

fixed we refer to Direction NW, Velocity of magnitude 4 and Target dimension of magnitude 4.

appearance. In a particular way, ST-MAX and T-AVG could
be used as motion-based features, being able to highlight in a
single filtering step where and how motion occurred in a scene,
describing different aspects of it in a consistent but distinct way.

5. PROPOSED METHOD

In this section, we present our unsupervised motion saliency
segmentation pipeline based on the computation of an efficient
video projection. The overall pipeline (Figure 6A) is divided into
two main modules: the first one, the Projection Module, coarsely
identifies the region of the video containing salient motion and
it is in charge of filtering and pooling the information; the
Attention Module, instead, guides the segmentation refinement
by combining temporal and spatio-temporal cues coming from
the previous module in order to estimate a saliency map and a
segmentation of the moving object.

Leveraging the empirical observations we made in Section 4,
we focused our analysis on temporal and spatio-temporal features
and designed a motion-based attention module with pooling
operations able to exploit oscillations in the filter responses.

5.1. Projection Module
Given an input video, we split the sequence in overlapping clips
C of sizeW ×H × n, whereW andH are, respectively, the width

and height of the video frames, while n = 2kt is the side of the
3D GCKs. We define a projection 8 that maps the original frame
clip in a new space obtained by filtering it with the bank of GCKs.
Thus 8 :R

W×H×n → R
W×H×M is mathematically defined as

8(C) = {C ⊛ F
h}M−1

h=0
(8)

where ⊛ denotes the convolution operator (notice that we need
to perform a first full convolution and then continue with the
remaining M-1 efficient convolutions). The GCKs projection is
summarized in Figure 6B: each processed clip of frames is filtered
with the M kernels of the family F , each projection provides
a three-dimensional result from which we select and normalize
between 0 and 1 the central slice (at position n

2 ), ending with

M two-dimensional representations for each clip Ĉ = 8(C).
In particular, the three-dimensional result of each convolution
step finds in its central slice the maximization of the information
about the whole block, i.e., how that filter responded in a span of n
frames in time. At this point, we define two representations that,
respectively, report the maximum (ST-MAX) and the average
(T-AVG) values of, respectively, spatio-temporal and temporal
filters, using Equations (6) and (7):

MPVST (C)(i, j) = max
w∈VST

8w(C)(i, j) (9)
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FIGURE 6 | Visual description of our entire pipeline for unsupervised motion saliency segmentation. (A) A visual representation of the processing flow of our method.

(B) Inside the Projection module: our procedure takes in input a clip of n video frames, computes the GCKs projections, and composes the representation.

APVT (C)(i, j) =
1

MVT

∑

w∈VT

8w(C)(i, j) (10)

5.2. Attention Module
Identification and segmentation of the salient part of the
video are then left to the second module of the pipeline,
the Attention Module, which combines temporal and spatio-
temporal knowledge coming from the pre-computed poolings
to perform multiple rounds of thresholds and segmentation
refinements. First, Otsu’s adaptive thresholdmethod (Otsu, 1979)
is applied to each ST-MAX to obtain a first, coarse segmentation.
This initial result is refined by discarding connected components
with an area smaller than 25, approximately a 5×5 pixel patch,
and by applying a sequence of morphological operations of
opening and closing, in order to discard detections caused
by noise. The obtained map derived from max pooling (see
Figure 7E) provides a comprehensive view of the movement that
goes beyond the instantaneous variation and still it includes a
significant amount of false positives. The second step of our
segmentation aims at attenuating this effect.

As observed before, average pooling over temporal projections
is able to convey information about the evolution of the
movement in the scene in a limited amount of time frames.
Roughly speaking, locations corresponding to past and present
phases of the motion may be identified by detecting the local

minima and maxima of T-AVG using a pair of threshold
values σ1 and σ2. We then exploit this knowledge to refine the
segmentation map, as follows (i) “present” blobs are exploited to
consolidate the masks obtained from ST-MAX and (ii) positions
belonging to the “past” are discarded from the refined map. An
additional step of refinement is implemented by discarding blobs
with no local extrema in the T-AVG pooling. The ultimate binary
segmentation map B (see Figure 7) can finally be composed as

B = BST−MAX − B
past
T−AVG + B

present
T−AVG. (11)

where BST−MAX is the map obtained by thresholding ST-MAX,

B
present
T−AVG and B

past
T−AVG are binary maps encoding, respectively,

present and past blobs of T-AVG.

6. EXPERIMENTAL ANALYSIS

In this section, we provide an experimental evaluation of our
method on publicly available datasets. As already observed,
motion saliency detection can be casted into different problem
formulations, and, to the best of our knowledge, no single
experimental protocol or benchmark dataset have been proposed
for its specific and independent evaluation. For these reasons,
we critically discuss the behavior of our method approaching the
evaluation from two different perspectives.
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FIGURE 7 | Example of pooling and segmentation maps obtained by our method: (A) Reference frame, (B) ST-MAX, (C) T-AVG, (D) ground truth, (E) adaptive

segmentation over ST-MAX (GCKs-A), (F) refined final map using information about “present” and “past” (GCKs-R).

Datasets On the one side, we started with a simple classical
controlled dataset, the Weizmann dataset (Gorelick et al., 2007).
It is a classic action recognition dataset that includes sequences
recorded with a fixed camera and where, in each sequence,
the background is static and mostly homogeneous, with only
one salient moving subject. In this setting, we can therefore
compare the ability of our method in providing segmentations
in a controlled scenario where change detection can
be performed.

On the other hand, we put to the test our method of VOS
in challenging scenarios characterized by a higher variability
in terms of acquisitions setting and scenes complexity. We
considered two VOS benchmarks: SegTrackv2 (Li et al., 2013),
which consists of 14 low-resolution videos, and DAVIS-2016
(Perazzi et al., 2016b), including 50 high-resolution sequences.
Both of them include videos acquired in very challenging
conditions including motion blur, complex deformations,
occlusions slow and fast motion. In particular, in the DAVIS-
2016, the number of videos for each scenario is unbalanced, with
a strong presence of acquisitions where the camera is moving
(in particular, there are no videos where the camera is fixed
for the entire time) or where more than one moving object is
present in the scene and annotated in the ground truth (in 37
videos out of 50 multiple objects are present). Overall, the DAVIS
dataset is substantially more complex than SegTrackv2, and we
decided to focus on specific subsets of its videos in order to
investigate the ability of our model to cope with different classes
of complex scenarios.
Evaluation metrics The ground truth is provided as a binary
map for each frame, where important moving structures are
highlighted. As common in VOS, we evaluate the segmentation
quality by computing pixel-level measures—a natural choice to
compare our method with other approaches—although this may
be not in favor of our method. It is worth reminding that our
goal is to quickly identify a coarse region where the motion is
occurring, rather than precisely estimate the segmentation of the
moving object at pixel-level precision (which is the main goal of
VOS approaches). Indeed, one of the core contributions of our
analysis is a discussion about the potentials and limitations of our
approach depending on the scenario under analysis.

For each video, we evaluate our results in terms of mean
Intersection over Union (mIoU)—both at a pixel level and
considering the bounding boxes around each segmented region
(see Figure 8, bottom)—Precision, Recall, and F2-measure.

6.1. Assessment on Fixed Camera
Sequences
We start with an ablation study to show the influence of the
refinement step on the quality of the obtained segmentation. For
this purpose, we used the Weizmann dataset that despite being
characterized by simple scenarios (uncluttered background and
no camera motion) presents one of the main issues of motion-
based saliency detection as it includes actions in which only part
of the body is moving.

In the table, in Figure 8-top, we report video-wise mIoU,

Precision, Recall, and F-measure derived on the segmentation

maps obtained with the two steps included in the attention

module, i.e., using first BST−MAX from the adaptive segmentation,
and then B from the refinement step (see Eq. 11). We call the two

methods, respectively, as GCKs-A and GCKs-R.
A first observation is that our method behaves nicely on

actions involving the motion of the entire body (second group

in the table), while on actions where only a part of the body
is moving (first group in the table) it provides less accurate

results, as it only detects the moving part (which is precisely
its aim) instead of the whole body (see examples in Figure 8-

bottom). In all cases, the refinement step brings improvement

on the precision of the segmentation to the price of a lower
recall, as the erosion in the refinement tends to also discard true
positives. However, the F-measure—harmonic mean of precision
and recall, and a complementary measure to mIoU although
based on the same quantities—shows that in most cases the gain
in terms of precision is higher or comparable to the loss on
the recall side, leading to improvements on the measure. It is
worth noting that the negative impact of the true positives we
lose with the refinement is particularly evident in actions where
the movement is only referring to arms or legs, as the small
granularity of such changes is not captured by the refinement step
of our method. With bend instead, where the whole upper body
is moving, the performance improves with the refinement, as the
scale of the moving part is more appropriately captured by the
attention mechanism.

In the last column of the table, we report the mIoU value
obtained by comparing the bounding boxes instead of the pixel-
level segmentation. In both steps, the mIoU of the bounding
boxes increases with respect to the corresponding value obtained
from the segmentation; also, the improvement at the refinement
step is consistently present.
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FIGURE 8 | Above: evaluation of the two segmentation step on the Weizmann Dataset. Below: samples frames with the detection (red: our detection; green: ground

truth). (A) Bend, (B) wave, (C) jumping jack, and (D) jumping jack.

6.2. Analysis on More Complex Scenarios
We now evaluate our method on more complex scenarios using
the SegTrackv2 and DAVIS-2016 VOS benchmark datasets. We
compare our approach with classical alternative strategies for
motion detection showing an overall complexity comparable
to the one of our approach. We consider in particular
the following choices based on optical flow computation or
background subtraction:

• Gunnar-Farneback algorithm (GF) Farnebäck (2003), a dense
optical flow technique that computes intensity changes of
all pixels1.

• SIFT flow algorithm (SIFT), an optical flow techniques
that exploits sift features to track changes between
consecutive frames2.

• Background Subtraction (BS), a foreground segmentation
method based on Gaussian Mixture Models (Lee, 2005)3.

All the methods are followed by the thresholding strategy we use
in our approach, for a fair comparison.

The results are summarized in Table 1. To enable a discussion
about the influence of the complexity of the scenario—due in
particular to the acquisition setting—on our results, we group
them according to three acquisition types, i.e., using fixed,
handheld, and dynamic camera. Overall, our approach has
the average best performance across the different scenarios,
with higher stability reflected by the lowest SD. In comparison

1We used the Python implementation available in openCV.
2We used the MATLAB implementation included in Zhuo et al. (2019).
3We employed the Python function available in openCV that implements

(Zivkovic, 2004; Zivkovic and Van Der Heijden, 2006).

to the other approaches, our method is less influenced by
camera movements and achieves the best motion localization
performances (indicated by the bounding box) with hand-held
and dynamic cameras. Noticeably, it reaches slightly higher
performances than the other approaches when the camera is
tracking the moving object, a particularly challenging condition
since the relative position of the subject within the scene appears
to be almost the same in consecutive frames. On the negative
side, with still cameras, the accuracy of our segmentation is not
optimal, as already observed on theWeizmann dataset.

In Figure 9, we report a few samples from the dataset,
together with our segmentation maps in the third column, to
provide a qualitative evaluation of our results. As apparent, the
segmentations we obtained are very much in line with the ground
truth, also on sequences acquired with still cameras (as birdfall,
frog, or hummingbird).

More in detail, the strengths of our method are represented
by a reliable detection in case of complex deformations (e.g.,
bmx) and appearance changes (as bird of paradise), especially if
we consider that we do not rely on previous detections or prior
information to determine the new segmentation masks, as done
for instance by Zhuo et al. (2019). Another crucial challenge
handled well by our pipeline is related to camouflaged motion
(as for birdfall), in which purely appearance-based segmentation
methods are likely to fail because there is no major distinction,
from the appearance viewpoint, between the falling bird and the
trees in the background. The same observation can be extended
to changes in the illumination (parachute).

In the case of moving cameras, our results strongly depend
on the mutual relationship between object and camera motion.
In particular, we can distinguish two scenarios, depending on
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TABLE 1 | Evaluation of our motion-based pipeline on SegTrackv2 with respect to basic motion detection approaches, “GCKs-R” refers to the result of the complete

pipeline described in Section 5.

Segmentation IoU Bounding Box IoU

GF SIFT BS GCKs-R GF SIFT BS GCKs-R

Fixed camera birdfall 0.469 0.403 0.459 0.231 0.319 0.503 0.288 0.307

worm 0.036 0.195 0.165 0.147 0.073 0.166 0.064 0.104

hummingbird 0.419 0.437 0.643 0.361 0.759 0.756 0.870 0.656

frog 0.361 0.506 0.53 0.248 0.469 0.578 0.549 0.482

Mean IoU 0.321 0.385 0.449 0.247 0.405 0.500 0.442 0.387

Handheld camera bird of paradise 0.293 0.406 0.193 0.283 0.494 0.560 0.551 0.633

bmx 0.327 0.286 0.271 0.385 0.33 0.514 0.219 0.721

penguin 0.119 0.278 0.069 0.202 0.557 0.568 0.588 0.567

parachute 0.023 0.33 0.059 0.278 0.038 0.374 0.046 0.313

Mean IoU 0.190 0.325 0.148 0.287 0.354 0.504 0.351 0.559

Dynamic camera cheetah 0.029 0.069 0.151 0.350 0.097 0.17 0.098 0.428

drift 0.011 0.005 0.136 0.416 0.16 0.16 0.183 0.345

monkey 0.035 0.01 0.07 0.065 0.087 0.086 0.087 0.087

monkeydog 0.048 0.069 0.068 0.116 0.165 0.188 0.142 0.204

soldier 0.023 0.022 0.083 0.222 0.111 0.116 0.103 0.196

girl 0.045 0.066 0.064 0.193 0.158 0.231 0.162 0.204

Mean IoU 0.031 0.040 0.095 0.227 0.129 0.158 0.129 0.244

Overall 0.159 0.220 0.211 0.250 0.272 0.355 0.282 0.375

± 0.172 ±0.179 ±0.194 ±0.104 ±0.221 ±0.212 ±0.254 ±0.210

GF: Gunnar-Farneback, SIFT: SIFT flow, BS: Background Subtraction

whether the camera and object move with a coherent velocity
or not. Related to the latter case, in sequences like drift and
cheetah, the motion of the target object deviates from the camera
motion, and our method nicely detects such changes. Examples
of the first type are instead the sequences girl and monkey: in
both of them the difference in the relative positions of the object
in successive frames is extremely small, hence no substantial
movement is detected. On them, our method provides uneven
results, coherently with the behavior of the other approaches.
Relying solely on motion information, slow motion (as in frog)
might represent a drawback in our method, since the actual
movement in blocks of successive frames is very limited. This
problem is compensated by the fact that GCKs are particularly
able to identify the contours of the moving object. Thanks to this
ability, we can still achieve a good detection in terms of motion
localization at the bounding box level.

Concerning the use of the DAVIS-2016 dataset, we mention
that in Perazzi et al. (2016b), different attributes have been
assigned to each sequence. Among them, in our investigation, we
are particularly interested in videos belonging to the following
sets: camera shake (CS), similar to the hand-held camera of the
SegTrackv2 dataset, dynamic background (DB), motion blur and
fast motion (MBFM), background clutter (BC), and occlusions
(OC). There is no distinct attribute that indicates the absence
of camera motion. However, by visually inspecting the dataset,
we manually assigned to the fixed camera (FC) group only 7
out of 50 videos (of which 3 of them can be considered only

partially fixed, since they present an abrupt change in camera
motion at some point in the sequence). We report in Table 2 a
comparison of the results obtained with ourmethod and the basic
motion detection approaches we also considered in Table 1. In
Figure 10 are included some examples (including segmentations
of uneven quality) for each considered subset together with
a visual comparison between segmentations obtained by our
method at a different moment of the pipeline.

A first major observation is that, within these scenarios, our
refinement step based on present and past blobs (GCKs-R) is
not particularly beneficial (see Table 2 and fourth column in
Figure 10). We hypothesize that there are two possible culprits in
this situation. The first one is a considerable difference between
kernel dimension andmotion amplitude (both at appearance and
temporal level) so that the size of the kernel might be too small
to detect salient motion in its entirety (with some preliminary
experiments, we empirically observed indeed that the results
improve if we subsample the video frames). The other reason can
be found in a camera motion overwhelming one of the moving
targets. For instance, in the camel sequence (Figure 10), the
camera moves around the animal while it only moves the paws.
For this two-fold reason, refinement based on T-AVG pooling
(GCKs-R) could result into limiting. Nevertheless, both GCKs-A
and GCKs-R provide results higher that other approaches. This
is further evidence than our method shows a higher tolerance to
scene variability and challenges with respect to basic approaches
of comparable complexity.
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FIGURE 9 | Sample results on SegTrackv2 dataset for sequences acquired with a fixed camera (from top birdfall, worn, hummingbird, and frog), hand-held camera

(bird of paradise, bmx, penguin, and parachute), and dynamic cameras (cheetah, drift, monkey, monkeydog, soldier, and girl). (A) Reference frame, (B) ground truth,

(C) our results (motion), (D) our results (motion+objectness), and (E) Zhuo et al. (2019).
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6.3. Using Appearance for Improving VOS
We now discuss a simple use of our motion-based attention map
in combination with RGB information in situations where amore
precise segmentation is required and motion is not sufficiently
informative. For this purpose, we adapted the first part of the
unsupervised VOS method proposed in Zhuo et al. (2019),
where two appearances (objectness) and motion maps— derived,
respectively, by Mask R-CNN (He et al., 2017) and the use of
optical flow—are fused to obtain an improved segmentation. We
replaced the use of the more classical, but also expensive, optical
flow with our motion saliency map derived from the GCKs
projection. In this sense, we are indeed evaluating the capability
of our projections of being a viable, more efficient, alternative
to the optical flow as a low-level, basic, motion representation.
In this new solution, the final segmentation is achieved by
computing the pixel-wise intersection of the two binary masks
(our motion-based map + the Mask R-CNN one).

We compare the obtained results on SegTrackv2 with the
performance reported in the original work (Zhuo et al., 2019)
(UOVOS) (where a second step to enforce the coherency of
the segmentation across time was included), and the state-of-
art VOS method FusionSeg (Jain et al., 2017), a two-stream
fully convolution neural network that fuses RGB appearance
information and, again, optical flow motion information in
a unified framework. The evaluation of the SegTrack dataset
is reported in Table 3. For almost all sequences, the use
of appearance leads to improvements in the segmentation
quality, from a mIoU of 0.250 to 0.551. On some occasions
(hummingbird), this does not happen, or the final accuracy
does not get near other methods’ results like for the other
videos (frog, bird of paradise, penguin). The reason is 2-
fold: sometimes the objectness masks retrieved for those
sequences are not particularly accurate, we suppose Mask R-
CNN failed at yielding an appropriate segmentation due to
slow motion and motion blur in the first two sequences, and
the fact that, originally, the sequence penguins was treated as
a multiple object segmentation, one for each penguin in the
first row (five in total, while the penguin in the sequence is
way more). The other reason for unimproved segmentation
accuracy might be due to the choice of obtaining the fused
mask by intersecting the motion-based and Mask R-CNN
segmentations. A weighted fusion might in fact improve the
final result.

As expected, the segmentation quality in our method is below
the level provided by the other two approaches: both of them start
indeed from a motion map derived from the optical flow, more
precise but also less efficient. Interestingly, wemay notice how the
methods seem to perform at best in different groups of videos:
FusionSeg on fixed camera sequences, UOVOS on hand-held
camera sequences, UOVOS and our method on dynamic camera
sequences. As a consequence, we may observe that our solution
may be beneficial in particular in the latter situation, where with
a very simple approach we can achieve results comparable to the
ones of more advanced methodologies. Often times, lower results
for our method (especially in the hand-held camera setting) are
due to the fact that either our motion-based segmentation or
rgb-based objectness masks are not consistent throughout the
entire sequence (this happens in particular in the case of bird

TABLE 2 | Evaluation of our motion-based pipeline on a selection of sequences

from the DAVIS-2016 dataset, in comparison with classical motion

detection approaches.

GF SIFT BS GCKs-A GCKs-R

FC 0.200 0.111 0.276 0.353 0.278

CS 0.171 0.120 0.175 0.131 0.118

DB 0.141 0.139 0.186 0.237 0.202

MBFM 0.181 0.109 0.195 0.212 0.175

BC 0.068 0.082 0.085 0.175 0.150

OC 0.140 0.110 0.112 0.164 0.134

Mean IoU 0.150 0.112 0.172 0.212 0.176

Since the sequences in DAVIS-2016 have been associated with multiple attributes, the
subsets might have videos in common. GF: Gunnar-Farneback, SIFT: SIFT flow, BS:
Background Subtraction

of paradise, and penguin) and this may be partially counteracted
including a time reasoning as on UOVOS.

Considering the scope of our work and the ambition to
design a method that pursues computational efficiency, we may
conclude our method is able to reach a trade-off between the
quality of the segmentation and computational efficiency. An
analysis of the latter is provided in the next section.

6.4. Computational Analysis
We start with a computational analysis of the GCKs filtering
scheme with respect to classical 3D convolution. Here, we
report the time consumption (expressed in seconds per frame)
of alternative strategies for obtaining the same 64 projections
with kernels of size 4 x 4 x 4 on the SegTrack dataset. All the
tested solutions have been implemented in Python on a laptop
with Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz and 32GB
RAM. With respect to full 3D convolution (11.45 s/frame) or
FFT-based convolution (0.7 s/frame), our method is substantially
more efficient: we employ the Scipy implementation of the 3D fft-
based convolution on the first kernel of the family followed by 63
efficient projections and we obtain the 64 results with an average
execution time of 0.061 s/frame4.

In terms of the number of operations, in order to obtain M

projections with a kernel of size n × n × n, using a full 3D
convolution will require M ∗ n3 multiplications per pixel while
using GCKs efficient filtering scheme we are able to obtain the
same result at the cost of 2(M− 1) operations per pixel.

If we consider the full pipeline, our machines our
implementation we must add to this estimate the cost of
computing the two pooling maps that we employ in our final
solution (it can be considered constant for each pixel) and the
cost of combining the binary maps derived from the pooling
maps to obtain the final segmentation map (a sequence of and/or
operations, again the cost can be considered as a constant if we
reason at the pixel level).

Concerning the comparison with alternative approaches, it
does not make sense to consider complex deep architectures,
as the level of complexity of the approaches (and so the

4It needs to be mentioned that our pipeline is, at the moment, implemented in

Python, therefore execution times could be further improved moving to a more

efficient programming language.
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FIGURE 10 | Sample results on DAVIS-2016 dataset. From top to bottom: bus (OC), car-turn (FC), drift-chicane (FC), kite-walk (FC), soccerball (FC),
motocross-bumps (MBFM), kite-surf (MBFM), motocross-jump (MBFM), mallard-fly (DB), goat (BC), dance-twirl (BC), camel (CS), motorbike (MBFM). (A) Reference

frame, (B) ground truth, (C) GCKs-A, and (D) GCKs-R.
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TABLE 3 | Comparison with alternative approaches that also combine motion information with appearance information.

FusionSeg UOVOS GCKs-R GCKs-R + Mask-RCNN

Fixed camera birdfall 0.380 0.139 0.231 0.305

worm 0.506 0.379 0.147 0.454

hummingbird 0.652 0.645 0.643 0.400

frog 0.570 0.637 0.248 0.275

Mean IoU 0.527 0.450 0.247 0.359 (+0.112))

Handheld camera bird of paradise 0.699 0.797 0.193 0.335

bmx 0.591 0.624 0.271 0.509

penguin 0.713 0.509 0.069 0.241

parachute 0.516 0.884 0.059 0.861

Mean IoU 0.630 0.704 0.148 0.487 (+0.339)

Dynamic camera cheetah 0.596 0.565 0.350 0.648

drift 0.876 0.843 0.416 0.816

monkey 0.805 0.874 0.065 0.744

monkeydog 0.328 0.514 0.116 0.491

soldier 0.698 0.832 0.222 0.760

girl 0.667 0.766 0.193 0.878

Mean IoU 0.662 0.732 0.227 0.723 (+0.496)

Overall 0.614 0.643 0.250 0.551

RGB refinement has been computed using objectness masks coming from Mask R-CNN starting from our results in Table 1. Best results are highlighted in bold, and the second best
are underlined.

results) is at a different scale. With respect to the baseline
methods included in Table 1, the comparison in terms of
computational time is not completely fair as the implementation
we adopted were sometimes in different languages, although
having similar characteristics5. To give an idea on our
machines, our implementation runs approximately with the same
computational time of Farnebäck (2003) and Zivkovic (2004) and
is ∼75 faster than the SIFT-Flow implementation included in
Zhuo et al. (2019).

On a more theoretical side, we may reason on the fact
that very simple background subtraction approaches may have
a computational load that is comparable to ours (in the
simplest case, the operation can be performed as a simple
difference between images) to the price of a poor robustness
to variable scene conditions. Improving the robustness also
means burdening the computation and specific solutions are
required to speed up the computation (see e.g., Gorur and
Amrutur, 2011 for the Gaussian Mixture Models). On the other
hand, optical flow algorithms have been studied for decades,
with a significant number of existing solutions that differ in
computational speed, quality of the estimation, and robustness
to complex situations. It is worth noting that even in the
case of “simple" solutions to the optical flow estimation the
computational cost is significant. To make an example, we cite
the very popular Lucas-Kanade algorithm that has a complexity
in the order of O(n3) where n is the number of pixels in an image
(Baker and Matthews, 2004). When the method relies on the
global optimization step, the computational cost is designed to

5Both Python and Matlab are interpreted languages, and as such their

computational capabilities can be roughly considered as comparable.

increase, and parallelization methods are often of help (Petreto
et al., 2018). With these considerations in mind, we observe
that the method we employ is an alternative—sometimes less
accurate, but always more efficient and robust to different scene
challenges—to such classical approaches, with no particular need
for speedup strategies.

7. DISCUSSION

In this work, we explored the use and properties of GCKs for
efficiently addressing motion saliency estimation in videos. We
showed that our method provides a good compromise between
effectiveness and efficiency, with saliency maps that are able to
reliably highlight the motion in a scene. Indeed, in our work,
saliency estimation is an intermediate step in a more complex
pipeline whose final goal is to address motion classification, and
as such, we need a method that quickly provides us information
on where to focus the attention for the next steps of analysis. A
good property of the GCKs is that they also provide a powerful
representation for such higher-level tasks: we are currently
investigating their application to dynamic events segmentation
and motion classification. This may open the door to an end-to-
end pipeline in which the very same low-level features could be
exploited in multiple stages of the analysis, from the detection to
the higher-level understanding of a dynamic event.
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