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Abstract: 

Salient object detection models mimic the behavior of human beings and capture the most salient region/object from 

the images or scenes. This field has many important applications in both computer vision and pattern recognition 

tasks.  Despite hundreds of models proposed in this field, it still has a large room for research. This paper 

demonstrates a detailed overview of the recent progress of saliency detection models in terms of heuristic-based 

techniques and deep learning-based techniques. We have discussed and reviewed its co-related fields, such as Eye-

fixation-prediction, RGBD salient-object-detection, co-saliency object detection, and video-saliency-detection 

models. We have reviewed the key issues of the current saliency models and discussed future trends and 

recommendations. The broadly utilized datasets and assessment strategies are additionally investigated in this paper.  

1. Introduction:  

The human vision system (HVS) has the incredible 

capability to recognize and focus the impressive 

objects or regions quickly, which are more visually 

distinct and prominent in the images/sceneries  This 

process has been explored in computer vision [1-4] to 

detect those salient objects which have more 

importance and valuable information inside the images 

or videos, such as object recognition tasks, scene 

perception, and underwater vision, etc. This is an 

emerging topic and has recently engrossed the wide 

consideration of researchers from various disciplines. 

The mechanism of detecting a salient-object from an 

image is called saliency detection or salient-object-

detection. The basic concept of salient-object-detection 

is shown in Figure 1. The first row represents the 

original images, and the corresponding ground-truth of 

each image is shown in the second row. 

Saliency detection process first locates and identifies 

the correct location/region of the object, and then 

segments it from its background. For this purpose, a lot 

of models have been proposed, which have achieved a 

good performance in simple images/scenes having a 

single object. however, it is still difficult to find a 

salient-object in complex scenes, which have a more 

complex and cluttered background [5]. 

 

 
Figure 1. An example of salient-objects and their 

corresponding ground-truth. 

Thereinto, bottom-up saliency detection is the 

mechanism that automatically captures the more 

focused and stimuli objects’ regions of human visual 

attention without any prior knowledge [6]. Usually, 

saliency is termed as variance and contrast between a 

pixel and its surrounding locality [7]. Moreover, 

saliency-map is used to describe the degree of image 

saliency. In the saliency-map, each saliency value 

represents the pixel values of its corresponding regions 

in the image. It has a long history and it is still 

considered as an active research area in computer 

vision research. 

In general, good saliency detection approaches must 

ensure precise object detection, high resolution and 
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computational efficiency[8]. Currently, different 

researchers have been classified as state-of-the-art 

methods based on different principles.  In this work, we 

discuss comprehensively salient-object-detection 

models. We also discuss the common datasets and 

evaluation measures used for saliency- detection 

approaches.  We summarized the related work and 

suggest some recommendations for future research 

work.  

The remaining paper is organized as follows: In 

section 2, we briefly review various salient-object-

detection models such as RGBD salient-object-

detection models, Co-saliency-detection models, and 

video-saliency-detection models. In section 3, we 

discuss briefly the co-related databases for saliency 

detection. In section 4, we enlist the databases and 

applications of salient-object detection and finally, we 

provide the conclusion and future recommendations. 

2. Review of visual saliency detection 

models: 

Visual attention has been explored in multiple 

disciplines of computer vision [9-12]. Based on the 

early cognitive theories, in 1980, Treisman and Gelade 

[13] presented a theory of feature integration and 

proposed feature integration model and feature 

registration model for visual attention. Wolfe et al. [14] 

proposed a biological structure (Guided-Search-Model) 

and Koch and Ullman [15] proposed a Computational 

Attention framework. These theories are founded on 

bottom-up center-surround mechanisms. In 1998, Itti et 

al. presented a visual attention model [12,1] to describe 

human visual attention, which generates a map for 

saliency detection by combining three different feature 

maps (i.e., color, orientation, and intensity) at various 

scales based on center-surround mechanisms. recently 

hundreds of visual attention models have been 

proposed, including fixation point prediction models.  

afterward, Liu et al. [16] defined saliency detection 

as a binary segmentation work. Zhang and Sclaroff [17] 

analyzed the saliency-map by using Boolean map 

topology. To get a saliency-map, Li et al. [9] 

incorporated a reconstruction error scheme via dense 

and sparse representation.  Zhu et al. [18] added a 

simple boundary to compute the background measure 

and find the spatial format in the image regions along 

with their corresponding boundaries. Consequently, an 

optimization method was adopted to incorporate 

different low-level cues such as background measures 

and obtained uniform saliency-maps. Scharfenberger et 

al. [19] presented a statistical pattern scheme, which 

robustly uses the essential heterogeneous textural 

features of the image and computes the relevant 

saliency of every region in the image effectively.      In 

addition, there are several other techniques rely on 

mathematical calculation. Hou and Zhang [2] proposed 

the residual spectrum framework by using the Fourier 

transform phase spectra to generate a saliency map. 

Achanta et al. [20] obtained a saliency map based on 

local contrast by integrating low-level features. These 

classic models have yet achieved an admirable 

performance, but, due to the absence of high-level 

semantic information, these low-level models are still 

getting tough to achieve the desired results.  

Nowadays, the resurgence of the deep-learning-

based Convolutional Neural Network [21] and 

especially fully Convolutional Neural Network [22] 

provides a feasible technology for saliency detection. 

Different than traditional methods, which use the low-

level visual information mostly based on contrast-

priors [23], CNN based methods use high-level 

semantic information and abolish the need for 

handcrafted features. A CNN normally has hundreds or 

even ten thousands of parameters and neurons with 

various receptive field sizes. Neuron with the large 

receptive-field size is used to identify global 

information for the most salient-regions of the image, 

and the small receptive fields are used to identify the 

local information between the small regions of the 

image. The interest of researchers is rising in the CNNs 

model due to its tremendous performance and more 

desirable properties compared to classical hand-crafted 

feature-based models. 

From the viewpoint of information processing 

mechanisms, saliency detection approaches can be 

generally categorized as bottom-up approaches and 

top-down models. The bottom-up methods are based 

on low-level visual features without high-level 

semantic information. On the other hand, the top-down 

approaches assume that the extrinsic cues for saliency 

detection with more semantic information. The top-

down methods [2,24] are generally task-driven and 

require abundant training data with human-labeled 

ground truths. Thus these models can extract high-level 

semantic features from images to describe the specific 

objects (e.g. car, pedestrian). However, due to the 

complication and variation of daily tasks and behaviors, 

the high-level methods are not much explored.  

In the last two decades, research work in this zone 

has developed in two directions: visual-attention-

prediction (i.e., eye fixation-prediction) and saliency 

detection in computer vision. The earlier class 

emphasizes on locating the fixation-points of a human 

observer at the first glimpse [25,26], whereas the latter 

class tries to identify or/and segment the most 

prominent and salient objects from the original image  

[27].  In the following sub-section, we briefly review 

the fixation prediction models while providing 

comprehensive detail on salient-object-detection 

models. 
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 2.1 Fixation Prediction Models:  

To simulate visual attention, eye-fixation-prediction 

models have generally been corroborated against eye 

actions of human attention. Eyeball movements express 

important information concerning cognitive procedures 

such as analysis, scene perception, and visual search. 

Thus, they are frequently preserved as a proxy for 

changes of attention [7]. Primates have a strong talent 

to analyze complicated scenes in real-time. Visual 

systems will first make selections in the collected 

information before the extra processing of visual 

information. it can lessen dramatically the complication 

of obtained information. This selection method is 

accomplished in a limited field of view, named visual-

attention-prediction. HVS imposes a solid dynamic 

selectivity process when sensing the exterior 

surroundings; in that scenario, dynamic selection 

functions as the procedure of the visual-attention-point 

transfer. Moreover, HVS can quickly grasp huge 

volumes of image information. The overhead 

sentiments elucidate the biological foundation of 

attention-point-prediction. Figure 2 shows some 

samples of human eye fixation prediction, where the 

red light blobs show the more salient-regions. 

     The initial classes of attention-prediction models are 

engrossed in human-visual-attention and eye gaze 

prediction. Itti et al.’s basic model used three simple 

feature channels (i.e., color, orientation, and intensity). 

This model becomes the basis of future models in this 

field and the standard benchmark for assessment. It has 

been presented to associate with human eye flux in 

free-viewing tasks [28,29]. Le Meur et al. [30] 

presented a method for bottom-up saliency detection 

constructed on contrast-sensitivity functions, 

perceptual-decomposition, center-surround interactions, 

and visual-masking. Later, Le Meur et al. [31] 

prolonged this model to the spatiotemporal field by 

combining chromatic, achromatic and spatial-temporal 

based information. In this modified model, they 

extracted the early visual-features from the visual input 

into some single parallel channels. A feature map is 

achieved for each channel, and then a distinctive 

saliency-map is constructed from the union of those 

channels. Kootstra et al. [32] proposed three symmetry-

saliency basic operators and made their comparison 

with human eye-tracking data. This technique is 

constructed on the radial symmetry operators and 

isotropic-symmetry of Reisfeld et al. [33] and the 

color-symmetry of Heidemann [34].  

 

  

Figure 2. Examples of Human eye-fixation-prediction. 

2.2 Saliency detection models 

   In this paper, the literature of saliency detection has 

been classified into heuristic-based and learning-based 

approaches. In saliency detection, contrast is a very 

important factor for salient region identification [35] 

[36]. The brain is very sensitive to high-contrast 

objects/ regions in an image. Traditional heuristic 

approaches of the saliency detection are mostly based 

on low-level visual features and most of the 

computational frameworks are unsupervised [37]. 

These conventional bottom-up methods follow the 

heuristic features approach (i.e., such as contrast, 

location, and texture) during saliency detection. 

Heuristic features are usually called visual priors or 

cues for saliency detection [38]  [39]. The contrast-

prior is a very crucial feature and one of the most used 

priors. Concretely, the contrast priors comprise of 

local-contrast prior and global-contrast prior, and the 

contrast-prior assumes that the salient-regions are 

always dissimilar from their neighborhoods or scenes 

[40]. Beside contrast-priors, location priors consist of 

center-priors and background-priors. Center-priors 

describe the salient-object appears in the middle of the 

image, while the background-priors state that a border 

of an image has more chances to be part of the 

background. In this sub-section, we will discuss some 

important cues or priors in heuristic-based saliency 

detection models. 

2.2.1 Heuristic-based saliency detection models 

A. Saliency detection based on local contrast 

Contrast represents the obvious difference between two 

or more pixels/regions in an image. The distance 
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between the two features is called a contrast-based 

saliency value. The edges of a salient-object produce a 

high saliency score in local-contrast saliency methods 

[39], thus highlighting the entire salient target. Local-

contrast based saliency detection [41-44,9,45,46,24,47] 

has been proposed, which calculates the saliency value 

map by considering local features (i.e., color, 

illumination, orientation, and other motion information) 

between different regions.  

     Itti et al. [41] presented a center-surround method 

and by using a linear and non-linear combination of 

multi-scale saliency-map to extract low-level elements 

(i.e., color, intensity, texture, and orientation). Ma and 

Zhang [42] used color contrast as a saliency measure in 

a local neighborhood. In [43], Jiang et al. introduced a 

regional level saliency descriptor primarily based on 

local-contrast, backgroundness, and other well-known 

features. Jiang et al. [44] proposed a strategy based on 

multi-scale local contrast regions, which computes 

saliency values throughout different regional 

segmentation to create robustness and combines each 

value of these regions to obtain a pixel-wise saliency 

map. In [9], the authors adopted a similar framework 

by estimating regional saliency using multiple 

hierarchical segmentation. Li et al. [45] lengthened the 

pairwise local-contrast with the aid of creating a 

hypergraph, which is made by a non-parametric multi-

scale non-parametric gathering of superpixels, in order 

to obtain both interior consistency and exterior 

separation of regions. Salient object detection is then 

achieved via looking for salient vertices and 

hyperedges in the hypergraph. Liu et al. [24] proposed 

a multi-scale contrast based saliency-detection 

algorithm by linearly merging local features in a 

Gaussian image pyramid. Goferman et al. [47] 

consecutively devised a model based on local low-level 

contrast, global-contrast, visual organization policies 

and other high-level elements to capture conspicuous 

salient items along with their contexts. Jian et al. [48] 

designed a saliency-detection model based on principal 

local color contrast. 

B. Saliency detection based on global contrast 

Unlike local-contrast based methods, a global-contrast 

based method [23,49-55] usually separates an object 

from its surroundings. Global-contrast based methods 

have advantages over local-contrast based techniques 

as they generate excessive saliency values at their 

object boundaries. In global feature consideration, 

similar saliency values are disseminated in similar 

regions leading to generate high saliency cost. 

     Cheng et al. proposed a color histogram as the 

global-contrast and calculated the weighted sum of 

color difference for every region with all other regions 

of the same image [23]. Harel et al. [49] presented a  

global-based saliency-detection method based on graph 

theory. Zhai and Shah  [50] computed the saliency 

score by calculating the sum of the color difference of 

each pixel with all other pixels. Achanta et al. [51] 

presented a frequency-tuned model that estimates 

pixels level saliency score by directly computing the 

color difference from its average image color.  Perazzi 

et al. [48] measured the global-contrast by applying the 

uniqueness of the element and the spatial distribution 

of the image. Goferman et al. [52] proposed a patch 

uniqueness method for saliency estimation by 

considering global contrast with respect to other 

patches. Yan et al. [53] introduced a hierarchical 

saliency-detection approach to address the small-scale 

changes in the high contrast structure. Shen et al. [54] 

introduced a low-rank recovery technique to add low-

level visual structures with high-level priors for 

saliency detection. Imamoglu et al. [55] used the 

wavelet transform to produce multiscale structures that 

curb local contrast with global saliency.  Perazzi et al. 

[48] applied Gaussian filters to compute the global 

uniqueness and spatial distribution for salient object 

detection. Though adequate research has been carried 

on global priors, however, it still has weaknesses in 

capturing the semantic information. 

C. Saliency detection based on center-prior 

The primitive center-prior is actually based on the idea 

that a salient object frequently lies close to the middle 

of the image [53,56,57,44,43]. The center-prior tries to 

highlight the center region or combines with other cues 

to highlight the salient region/object as a spatial feature 

during saliency detection. However, we know that the 

salient object does not appear every time in the image 

center. To conquer this drawback, Xie et al. [57] 

utilized a convex hull of interest points to predict the 

coarse center of the salient object. Jian et al. [35]  used 

perceptual directional patches based on a discrete 

wavelet frame transformed to a fixed position of the 

salient object.  

D. Saliency detection based on backgroundness-

prior 

Backgroundness prior [58,9,59-61] deems the narrow 

border as a background region of the image. The 

saliency score can be calculated as the contrast against 

the background by considering the background seeds as 

a reference. Jiang et al. [58] offered a saliency-

detection method by using absorbing Markov Chain,  

in which superpixels are the transit and absorbing 

nodes around the center and border of the image. Li et 

al. [9] proposed a saliency-detection scheme based on 

dense and sparse reconstruction errors by using image 

boundaries as background templates. Wei et al. [60] 

constructed an undirected weighted graph and 

estimated the saliency value as the shortest distance to 
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the background. Yang et al. [61] proposed a two-

scheme saliency computation model by performing a 

manifold ranking approach on the basis of an 

undirected weighted graph by considering the 

relevance score of each side in the background queries. 

Saliency detection may fail based on pseudo-

background, specifically when the item attaches the 

boundary. Boundary connectivity prior [23,18] is used 

to resolve this problem. Naturally, the background is 

more connected to the border than any salient object. 

Zhu et al. [18] used this idea to find the boundary 

connectivity score by estimating the length of the 

image border with respect to the spanning area of the 

salient region. Recently, a saliency-detection model 

based on background seeds by object proposals and 

extended random walk is proposed [38]. 

E. Saliency detection based on objectness prior 

 Beyond these techniques, objectness prior can also be 

used to assist salient object detection by using object 

proposals, which was introduced by Alexe et al. [62] to 

measure the probability value that there exists a whole 

object by assessing score of an objectness for every 

random window of the image. Chang et al. [63] 

presented a computational scheme by combining the 

regional saliency and objectness into a graphical 

saliency. Jiang et al. [64] computed regional objectness 

based on average objectness value of its all regional 

pixels. According to the objectness prior, Jia and Han 

[65] calculated the saliency score for each region and 

then compared these to the soft foreground and 

background. To connect objectness with the saliency 

score, local saliency is calculated by randomly taking a 

great number of sampling windows [66]. For images of 

complex scenes, Li et al. [67] proposed a three-center- 

biased objectness measure. They proposed a co-

transduction approach to fuse boundary superpixels 

and objectness labels with each other. Moreover,  Jiang 

et al. [64]  computed the saliency score by non-linearly 

fusing the scores of uniqueness, objectness, and 

focusness.  

F. Saliency detection based on Bayesian framework 

Regarding saliency computation, the Bayesian model 

[57] is presented for finding salient objects by 

approximating the pixel x posterior probability as the 

foreground in the image. For saliency prior calculation, 

the interest pixels are estimated via a convex-hull 

function, which splits the image into inner and outsides 

regions and then obtains a rough estimation score for 

foreground and background.  Liu et al. [68] used an 

optimization model based on a Bayesian framework for 

saliency detection by roughly estimating a convex-hull 

to classify the input image into potential foreground 

and pure background regions. To generate a saliency 

map, a common Linear Elliptic mechanism with 

Dirichlet boundary is presented using these cues to 

model the diffusion of the seeds to other regions.  

Table 1 shows some representative methods of 

visually heuristic-based models using different 

cues/priors. 
 

Table 1. A list of Traditional-based models using different 

cues/priors, where LC=local-contrast, GC= global-contrast, 

CP=center-prior, BA=Bayesian, CS=center-surround, 

CLP=color prior, B=background-prior, BC=background 

connectivity, O=objectness prior, F=focusness-prior, 

IN=informative feature, OR= orientation cue SD= spatial 

distribution, NA=not available and M= Matlab code. 

G. Discussion 

  The above-discussed priors are the most common 

priors used in the heuristic-based saliency detection 

models. There are some other traditional techniques 

also introduced for saliency detection such as 

frequency domain analysis [51], cellular automata [76], 

sparse representation [9], random walks[59], low-rank 

recovery[77], compactness prior [78] and orientation 

prior[12].  

These traditional-based approaches for salient-

object-detection consist of intrinsic cues, which aim to 

withdraw different cues from the given input image by 

Referred Pub Year Key priors Code 

FCS[41] HVEI 2001 LC+CLP C++  

FG[42] MM 2003 LC, GC NA 

FT[51] CVPR 2009 GC+CS C++ 

CA[47] CVPR 2010 LC+CS+GC NA 

CB[44] BMVC 2011 LC+CP C+M 

ULR[54] CVPR 2011 GC+CP+CLP C+M 

SVO[63] ICCV 2011 CS+O C+M 

RC[23] CVPR 2011 BC+GC C++ 

FES [69] SCIA 2011 CS+LC M 

SWD[70] CVPR 2011 LC+CS M 

SF[48] CVPR 2012 GC+SD C 

GS[60] ECCV 2012 BC NA 

DSR[9] ICCV 2013 LC+BA C+M 

CHM[45] ICCV 2013 LC+CS C+M  

HSD[53] CVPR 2013 GC EXE 

WT[55] TM 2013 LC+GC+B M 

LMLC[57] TIP 2013 CS+BA C+M 

MC[58] ICCV 2013 BC C+M 

GMR[61] CVPR 2013 B M 

UFO[64] ICCV 2013 GC+F+O C+M 

CIO[65] ICCV 2013 GC+O NA 

PISA[71] CVPR 2013 SD+CP NA 

GR[72] SPL 2013 GC+CS M 

PCA[73] CVPR 2013 GC C++ 

COV[74] JOV 2013 LC+CS M 

RBD[18] CVPR 2014 BC M 

SLF[75] CVPR 2014 F+ B M 

PDE[68] CVPR 2014 CP+B+CLP   NA 

ILP[67] ITOIP 2015 GC+SD NA 
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itself to highlights the target regions and to suppress 

backgrounds. Moreover, much more complementary 

saliency priors can be utilized for saliency detection in 

order to enhance the performance and robustness, such 

as backgroundness, background connectivity, 

foregroundness, focusness, objectness, orientation, 

contrast, etc.  

In this overview, based on common priors/cues, our 

classification only specifies the supremacy of the priors, 

because a model can consist of the single or the 

combination of different priors.  The local and global 

are the most frequently used uniqueness saliency priors 

for saliency detection [235].  

The traditionally heuristic-based approaches for 

saliency detection have got a great achievement in the 

field of computer vision, but still, it fails in some 

spatial cases, especially when the image contains a 

very complex scene, low contrast (e.g. underwater 

images) and interlaced objects. To overcome these 

problems, the learning-based approaches (supervised 

learning, semi-supervised learning or unsupervised 

learning-based approaches) are applied which we will 

introduce in the next section. 

2.2.2 Learning-based saliency detection: 

All of the above-mentioned methods which we 

studied among traditional-based approaches are using 

intrinsic low-level cues and based on unsupervised 

techniques, and these techniques are sometimes 

insufficient to detect accurately salient targets 

especially when the image is complex and shares 

common visual features. To tackle these issues, 

learning-based methods with training data are utilized 

to find a salient object in the complex background 

image. 

A. Classic Learning-based saliency detection 

methods 

These are supervised or semi-supervised learning based 

saliency detection methods, also called data-driven 

approaches, in which high-level features and 

supervised information are integrated to enhance the 

degree of accuracy for saliency maps. Judd et al. [79] 

proposed a model for Eye-fixation-prediction via a 

Support Vector Machine (SVM) classifier based on a 

training dataset including fixation locations of fifteen 

viewers. In [24], Liu et al. presented a binary saliency 

estimation scheme based on a conditional random field 

(CRF). Yang et al. [80] proposed a method that trains a 

Conditional random field (CRF) and a discriminative 

dictionary for saliency detection. The designed method 

includes a layered structure starting from the top-down 

manner, which is trained under structured supervision 

and then followed a max-margin mechanism for 

efficient learning. In [81], Borji et al. integrated low-

level features (e.g., orientation, color, and intensity) 

with high-level visual-features (e.g., humans, faces and 

cars, etc.) to train a direct mapping approach by means 

of AdaBoost classifier for eye fixations. Wang et al. 

[82] proposed a method from multiple instances 

learning, where low-level, mid-level and high-level 

features are integrated for salient object detection. 

Jiang et al. [43] proposed a model of saliency detection 

as a regression structure and then trained a regression 

forest classifier to generate saliency values. In [91], Lu 

et al. presented a model and trained it to learn optimal 

seeds, and then these seeds are propagated through a 

diffusion process. Tong et al. [91] [35] put forward a 

salient-object-detection model via bootstrap learning 

technique, instead of training only a classifier in a large 

dataset. They also train a group of weak SVMs in order 

to obtain a strong classifier by incorporating the weak 

classifier through the multi-kernel boosting method. 

As the classic learning-based methods utilize prior 

knowledge and occasionally outperform the traditional 

hand-crafted feature-based saliency-detection 

techniques, these methods boost the performance of 

saliency detection. Owing to the classic learning-based 

approaches are still hand-crafted features, which may 

degrade the performance of the models if they are not 

carefully collected. But, recently the development of 

CNNs-based approaches turned the trend of researchers 

to deep-learning approaches instead of classical 

machine learning algorithms, due to their tremendous 

performance. 

B. Deep-Learning based saliency detection models 

In this section, we introduce Deep-Learning based 

saliency detection models, especially CNNs and FCN-

based based approaches.  

 Convolutional-Neural-Networks (CNNs) [21]  has 

attracted great attention from researchers for its 

functionality in representing high-level semantics and 

has been successfully applied in many computer vision 

problems [22,83]. Recently, CNNs [84,85] has also 

shown its effectiveness in the field of saliency 

detection and has the capability to capture the most 

salient regions without prior knowledge. Generally, 

saliency-detection approaches established on CNNs 

can be classified into two basic classes: (1) region-

based models, and (2) FCN-based (i.e., pixels-based) 

models, according to their processing with input 

images. The region-based approaches divide the input 

images into multi-scale or smaller regions. Then, CNN 

is utilized to extract the high-level features of these 

small regions and then input to multi-layer perceptrons 

(MLPs) to get the saliency value of each small region. 

The region-based models achieved a good performance 

against traditional state-of-the-art models, however, 

these models can’t persevere the spatial information 

due to the segmentation of small regions. To overcome 
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this demerit, a Fully Convolutional-Neural-Network 

(i.e. FCN-based approach) is designed, also called end-

to-end models by predicting saliency map directly with 

the end-to-end network.  

Wang et al. [86] developed deep networks for 

saliency computation by combining shape, texture and 

contrast information from the local regions of the input 

image. In the global search stage, a list of candidate 

object regions is created via an object proposal method 

[87]. In [88], Lee et al. proposed a unified deep 

learning framework for saliency detection by utilizing 

high-level and low-level features of the image. The 

VGGNet [89] is trained to extract the high-level 

features and then the low-level features are integrated 

to identify the salient regions. He et al. [84] proposed a 

region-based model to learn feature representations 

from superpixels. It can reduce the computational cost 

as compared to pixel-wise CNN.  Zou et al. [90] 

proposed a hierarchical-related feature (HARF) 

framework for saliency detection, which integrates the 

basic features from regions using a multi-level deep 

learning network. Kim et al. [91] proposed a two-bran 

CNN based saliency-detection model by considering 

the coarse representation and fine representation. A 

number of region candidates are generated through 

selective search [92] method and then taken as inputs 

to the CNN. Wang et al. [93] proposed a fast R-CNN 

based multi-scale mask framework for saliency 

detection, which segments the input image into multi-

scale regions and an edge-based propagation approach 

is used to refine the saliency map. In [94], Kim et al. 

proposed a CNN model to estimate the saliency values 

of each image patches/region. Li et al. [95] utilized 

both low-level features captured through hand-crafted 

methods and high-level features by using CNNs 

methods to enhance the saliency accuracy. In this 

model, candidate bounding boxes with interior region 

masks are produced by using a selective search method 

[92]. Li et al. [85] captured deep features from multi-

scale regions for saliency detection. And a superpixel 

refinement scheme is utilized to obtain an enhanced 

spatial coherence result. Zhao et al. [96] introduced a 

multi-context deep learning model, which captures the 

local and global scale features from the given 

superpixels to predict the corresponding saliency value 

of each region. In [97], Hariharan et al. presented a 

hypercolumn approach for salient object segmentation, 

and the features of different type layers are fused for 

further classification purposes. Liu et al. [97]  proposed 

a hierarchically refine scheme which gradually 

produces a saliency map by exploiting the VGG net to 

produce a global coarse prediction. In [98], a 

refinement subnetwork recurrent convolutional-layers 

(RCL) are designed to fine-tune the coarse-level 

prediction map into fine-level saliency map. 

The recent advanced CNNs saliency-detection 

frameworks have gotten considerably better results 

than earlier hand-crafted features methods. 

Furthermore, the CNNs extracted features comprises 

more high-level features because these CNNs are 

typically pre-trained for visual recognition activities on 

very large datasets. However, the Region-based CNNs 

are functioned at the segment-based or patch level 

rather than utilizing pixel-level, where each pixel is 

basically allocated the saliency score of its enclosing 

segment. As a result, it gives a blurred saliency map 

that lacks the fine details of the salient objects and their 

boundaries. Moreover, all the segmented patches or 

regions of the images are processed as an independent 

sample for classification purposes; even they may 

overlap each other. This redundancy causes a 

significant increase in computation as well as requires 

more space during training and testing. Furthermore, 

the region-based CNNs models cannot preserve the 

contextual information well. Thus, to overcome the 

shortcomings of region-based CNNs, the well-known 

end-to-end based Fully Convolution Network is 

adopted, which predicts pixel-wise saliency maps.  

As we know that the region-based CNNs techniques 

can’t well preserve the contextual information of the 

salient object because CNN is operated independently 

for each image patches or regions. To dispose of the 

above issue, Fully-Convolutional-Networks (FCNs) 

[22] operates on pixel-levels instead of regions or 

patches level. FCNs based saliency-detection 

techniques can eliminate problems such as vague 

predictions over the blurriness boundaries of the salient 

objects. FCNs-based models for salient object detection 

also have drawn the attention of the researchers due to 

its tremendous performance. Long et al. [22] 

introduced an FCNs based saliency-detection model, 

which is trained pixels-to-pixels by presenting the 

meaningful information obtained by deep and coarse 

layers. Li et al. [99] presented a model with a spatial 

pooling stream (SPS) and a pixel-wise fully 

convolutional stream (FCS) to generate a saliency map. 

Tang et al. [100] used the deeply supervised net [101] 

and designed a holistically-nested edge detector (HED) 

[83] for saliency detection.  

In [102], Tang et al. proposed a saliency-detection 

scheme via fusing both pixel-level CNN and region-

level CNN saliency prediction. Kruthiventi et al. [103] 

proposed an incorporated deep architecture for fixation 

prediction and salient object detection by fully 

connected CRF [104]. In [105], the authors designed a 

recurrent attentional convolutional-deconvolution 

(RACDNN) approach for saliency detection. In 

RACDNN, a segment of the input image is chosen in 

each time-step by a spatial transformer [106]. Zhang et 

al. [107] proposed a saliency-detection method based 

on CNNs and a multi-level amalgam framework. The 
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Deeplab[108] scheme is employed to get the high-level 

features, and a multi-scale binary-pixel-labeling 

framework is also employed to recover spatial 

coherency. Li et al. [109] presented a multi-task CNN  

 
Model Pub Year #Training Images Training Set Pre-trained 

Model 

LCIR[89] IVPR 2014 4600 VOC-2012 - 

LEGS [86] CVPR 2015 3,340 MSRA-B, PASCALS - 

SuperCNN [84] IJCV 2015 800 ECSSD - 

HARF [90] ICCV 2015 2500 MSRA-B - 

MDF[85] CVPR 2015 4447 HKU-IS - 

MC [96] CVPR 2015 8000 MSRA-10K GoogLeNet 

ELD [88] CVPR 2016 approximately 9000 MSRA10K VGGNet 

SSD-DL [91] ECCV 2016 2500 MSRA-B AlexNet 

SFRLC [93] ICIP 2016 4000 DUT-OMRON VGGNet 

SPSD [94] ICPR 2016 2500 MSRA-B AlexNet 

LCNN [95] Neuro 2017 2900 MSRA-B + PASCALS AlexNet 

FCNSS[22] CVPR 2015 4600 VOC2012 VGGNet 

DCL [99] CVPR 2016 2,500 MSRA-B VGGNet 

DHSNET [97] CVPR 2016 6,000 MSRA10K VGGNet 

DSRCNN [100] MM 2016 10,000 MSRA10K VGGNet 

CRPSD [102] ECCV 2016 10,000 MSRA10K VGGNet 

SU [103] CVPR 2016 10,000 MSRA10K VGGNet 

RACDNN [105] CVPR 2016 10,565 DUTS+NJU2000+RGBD VGG 

DS [109] TIP 2016 nearly 10,000 MSRA10K VGGNet 

DISC [110] TNNLS 2016 5233 MSRA10K VGG-16 

IMC [107] WACV 2017 nearly 6,000 MSRA10K ResNet 

MSRNet [111] CVPR 2017 2,500 MSRA-B + HKU-IS VGGNet 

DSS [112] CVPR 2017 2,500 MSRA-B VGGNet 

SRM[113] ICCV 2017 10,553 DUT-OMRON ResNet 

NLDF[114] CVPR 2017 2500 MSRA-B VGG-16 

DSLM[115] ITOC 2018 15,000 DUT-OMRON+ MSRA10K VGG-16 

PAGR[116] CVPR 2018 10,553 DUTS-TR VGG-19 

CKT [117] ECCV 2018 10K MSRA10K VGG-16 

RAS[118] ECCV 2018 10000 plus MSRA-B, DUT-OMRON VGG-16 

THR[119] ICCV 2019 5000 plus DUTS,HRSOD VGG-16 

AFN[120] CVPR 2019 10,553 DUTS-TR VGG-16 

BASNet [121] CVPR 2019 10,553 DUTS-TR ResNet-34 

Refinet [122] ITOM 2019 3000 MSRA-B. VGG-16 

SPBR [123] arXiv 2019 5000 MSRA-B, HKU-IS VGG-16 

 

Table 2. A brief summary of deep-learning-based saliency detection models. 

 

a framework, which works for both salient-object-

detection and semantic segmentation. They replaced 

the originally connected layers in VGGNet [89] with 

convolutional-layers. Li et al. [111] designed s a multi-

scale CNN to simultaneously locate contours and 

regions for salient object detection. In [124], a deep 

architecture is exploited to pick up a small amount of 

candidate bounding boxes/regions that are well-

segmented to provide support in the generation of the 

salient maps. A CRF model [125] is applied to refine 

the spatial coherency. In [112], Hou et al. proposed a 

structure model that semantic information from upper 

layers is propagated to lower layers for locating salient 

objects.  Chen et al. [110] presented a coarse-to-fine 

based approach, in which progressive representation 

learning are used for saliency map prediction. Wang et 

al. [113] presented a stage-wise scheme established on 

spatial pyramid pooling method [126] which combines 

multi-scale global contextual priors and fuses high-

level syntactic information (ciphered in the master 

network layers) along with the contextual rich 

information of low-level features (ciphered in the 

refinement network module). In [115], Yuan et al. 

propose a dense and sparse-labeling network for 

saliency detection. Inspired by the MumfordShah (MS) 

functional loss [127], Luo et al. [114] proposed a non-
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local deep feature (NLDF) framework, which captures 

local and global features via a multi-resolution grid 

structure during saliency detection. Fu et al. [122] 

proposed a refinement- network (refinet) model to 

firstly locate boundaries of salient objects and then 

generated a saliency map through the refinet 

framework. Zhang et al. [1], proposed a multi-level 

attention-guided network by introducing multi-path 

recurrent feedback to utilize the local and global 

information. In Li et al. [2] proposed a Contour-to-

Saliency network approach, which can generate 

saliency masks from a well-trained contour network 

and feedback the result for further training. the model 

updates the parameters gradually during training.  Jiang 

et al. [123] proposed a pooling-based approach and 

merged two independent CNNs to collect global and 

local information. Chen et al. [118] employed residual 

learning and reverse attention at side-output and 

obtained a concise model appropriate for embedding 

devices.  In [119], Zeng et al. merged three 

independent CNNs for global-features, local-features, 

and spatial consistency.  Feng et al. [120] designed 

Attentive Feedback and Boundary-Enhanced Loss for 

extracting structure-wise and boundary-wise features. 

Similarly, in [121], Qin et al. proposed a predict-refine 

architecture with an encoder-decoder module to get a 

saliency map with more refine boundaries. 

Discussion: 

As compared to region-based CNNs models, FCNs 

based models are the end-to-end based CNNs models 

utilizing pixel-level values for predicting saliency-

maps, and hence, also called pixel-to-pixel CNNs 

models. The FCN-based approaches are very efficient 

and overcome the limitation of region-based CNNs 

models. It can also preserve the contextual information 

in a very good manner and hence, provide a more 

robust result.  As region-based CNN models use a 

separate network for utilizing local and global features, 

the FCN-based models learn local and global features 

in one network. While the shallower layers provide 

global information and more details about edges of the 

object, while the deeper layers provide the high-

semantic, local and more meaningful information. 

These FCN-based networks are mostly pre-

trained/learned on ImageNet dataset [128] for image 

classification purpose, and these learned models can be 

then fine-tuned for multiple purpose (e.g., object 

detection [129], object-localization [130], and saliency 

detection [96,122]. The pre-trained models minimize 

the training cost and provide more sophisticated results 

than training from scratch. Furthermore, the FCN 

models contain a stack of different types of layers, 

which can perform a different type of function, and 

hence,  provide structure-wise flexibility and diversity 

than previous region-based CNNs models.  A brief 

summary of deep learning-based models is shown in 

Table 2, and a visual comparison of some conventional 

heuristic-based and new learning-based methods is 

shown in Figure 7. 

    Although Deep learning techniques, especially FCNs 

based methods, have achieved a very great 

performance, yet it fails in many circumstances that 

need to improve in the future. For example, it needs 

improvements in low-contrast images, which have 

more common foreground and background similarity, 

transparent objects, and images that contain complex 

backgrounds. Similarly, the repetition of poolings and 

strides operations in FCNs minimize image resolution 

and degrade the performance of the models. more time 

and large memory is also a challenging issue for these 

deep models. Also, these methods require a large 

amount of training data.  

    To resolve these issues, there are several different 

types of CNN-based architectures proposed in recent 

years. Some approaches have shown tremendous 

response and need to be further explored in the future. 

For example, multi-scale and multi-level deep 

networks can utilize the features at different layers by 

using fusion, skip-connections, and short-connections 

among different levels. Similarly, the encoder-decoder 

architecture is the most promising approach and has 

shown a great performance in different classification 

and segmentation tasks. In these types of methods, the 

high-level features are back-propagated to lower-layer 

and making a stronger union of multi-level features. 

Another good approach for the promising result is to 

use ResNet [131] which is a  deep network and can 

perform the complicated task very well. ResNet is 

more powerful than VGGNet [132]. The fusion of 

different cross-models also can boost performance. A 

standard training-loss function can also boost 

performance and require more attention in the future. 

Similarly, the embedded applications such as mobiles, 

robotics, autonomous driving, etc., need a lot of 

research in the salient object-detection area to reduce 

time, memory space and energy consumption  

2.3 RGBD saliency detection 

RGBD saliency detection is an emerging topic and still 

has a large research gap for improvements. Dissimilar 

from 2D-image saliency detection methods, the depth 

cue has to be incorporated in saliency detection for 3D-

images. RGBD saliency detection methods utilize color 

information and depth cue at the same time to identify 

the salient-object. There are commonly two ways to 

incorporate the depth cues with 2-D images[133]: (1) 

Depth feature-based methods [134-139], which aim to 

incorporate the depth facts as an additional material 
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along with color measurements. (2) Depth-measure 

based methods [140-143], which capture the 

comprehensive information from the depth cue, such as 

shape and structure via utilizing designed Depth-

measures.  

These are the hand-crafted-features based methods 

with depth cues to detect a salient-object in an image. 

Various studies have worked on saliency detection for 

3D multimedia content. Lang et al. [134] perceived 

salient-objects by incorporating global-context depth 

priors into 2D models. Ju et al. [135] presented the 

RGBD saliency process created on anisotropic center-

surround variance, in which saliency is estimated as 

how much an object is different from its surroundings. 

In [139], Fang et al. extracted color, texture, luminance, 

and depth feature from the RGBD based images to 

estimate the contrast feature maps. Then, the 

combination and improvement methods are exploited 

to get the resultant 3D saliency-map. Song et al. [136] 

utilized the depth information as a regional feature for 

computing low-level contrast-based saliency, and also 

used as a weighting feature for measuring mid-level 

saliency. Then high-level location priors are applied to 

build the high-level saliency-map. In the last stage, a 

multiscale discriminative saliency fusion technique is 

applied to combine the multiple saliency-maps and get 

the concluding saliency output. 

   Furthermore, motivated by the assessment that the 

salient-regions are definitely dissimilar from their local 

and global surroundings in the depth feature map, a 

“depth contrast” is a general depth property to be 

calculated. For this purpose, Niu et al. [138] computed 

global-contrast with domain knowledge to estimate the 

stereo saliency. In [137], Peng et al. proposed a multi-

contextual contrast framework for calculating depth 

saliency by considering the contrast-prior, global 

uniqueness, and background-prior to the depth-map. 

Then a multi-level RGBD saliency approach is 

exploited to fuse the low contrast features, medium-

level local alliance, and high-level prior techniques.  

Ju et al. [140] proposed a depth-aware framework for 

saliency detection by applying an anisotropic center-

surround difference (ACSD) measure, Furthermore, 

they built a huge dataset for stereo saliency detection, 

which contains 1985 stereo images and estimated 

depth-maps. Coalescing the ACSD measure method 

with color saliency-map, In [141], Guo et al. proposed 

a salient-object-detection model for RGB-D images 

established on evolution strategy. It is a re-iterative 

generation process to enhance the early saliency-map 

and produce the final output. As the backgrounds 

include the regions that are extremely mutable in 

depth-map, some high contrast background regions 

might raise false-positive. To get a ride over this 

disturbing, Feng et al. [142] used a Local-Background-

Enclosure measure (LBE)  framework to straightly 

extract a salient region from depth-map, which 

calculates the ratio of object margins located in frontal 

of background.  Wang et al. [143] introduced a multi-

stage salient-object-detection scheme for RGBD 

images by joining the Minimum-Barrier Distance 

transform saliency-map and multi-layer cellular 

automata-based saliency-map. 

Recently, deep learning [144-146,37] is also applied in 

RGBD saliency detection to learn more discriminatory 

RGBD features. In [144], Qu et al. proposed a CNN 

model for RGBD saliency detection. They combined 

the low-level saliency features such as local-contrast, 

global-contrast, spatial-prior and background-prior and 

generated coarse saliency vectors. These vectors are 

then combined with depth modalities and fed into CNN 

to train it from scratch to produce the RGBD hyper-

features. Han et al. [145] proposed a two-stream late-

time fusion structure to combine RGBD deep features.  

A stage-wise approach is followed to train the network 

and obtained optimistic performance. Similarly in [37], 

Wang, et al. proposed RexNet which produces end-to-

end saliency-map with a sharp-edged object. In this 

method, first, the image is divided into two 

independent segments: edge regions and superpixel 

regions. The network then produced end-to-end 

saliency score for these regions, and the context in 

multiple layers are combined with regional saliency 

scores. The proposed model is then extended to RGBD 

saliency detection by applying depth refinement.  Chen 

et al. [146] proposed an end-to-end RGBD salient-

object-detection network, which is correspondent-

aware for combining cross-modal and cross-level 

features. The presented cross-modal connections and 

level-wise supervisions clearly motivate the capturing 

of complementary facts from the counterpart, and thus, 

growing fusion capability by decreasing fusion 

uncertainty. In [147], Wang et al. proposed a two-

stream CNN by utilizing a fusion strategy. Similarly, in 

[148], Liu et al. proposed a fusion-based two-stream 

network for RGBD saliency detection. The depth 

structure information help in the foreground and 

background identification. Then a  propagation-based 

module is used for the identification of object 

boundaries. 

Discussion:  

 Currently, there are three ways to capture the depth-

map for 3D-images: (1) structured light technique [149] 

are used to extract the depth information by the 

variation of a light signal produced by the camera. This 

is a good technique but mostly sensitive to illumination. 

(2) Time-of-Flight (TOF) [150], utilize the round-trip 

time of the light signals for estimating the depth cue. 

This is also a robust technique but commonly has a low 

resolution. (3) The stereo imaging system (i.e.,  
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Figure 3. A 3D saliency conditions in RGBD images. (a) 

Color-depth saliency: both RGB images and depth images are 

salient. (b)Color saliency: only RGB images are salient. (c) 

Depth saliency: only depth images are salient. 

binocular imaging) [151], captures two photos by using 

two cameras at different positions and finds the 

distance of the object through triangular rules. This 

method has a low cost but requires post-processing 

steps. So, it is true that RGBD images need further 

research on how to get good quality depth information 

and then how to utilize it in a proper way because the 

improper use of the depth information leads to 

performance degradation. Figure 3 shows some 

different conditions of depth-maps, and Table 3 

represents a brief summary of RGBD based saliency 

detection. 

 

Model Pub Year 

DM[134] ECCV  2012 

DSA [135] ICIP 2014 

SDS [139] TIP 2014 

DSM [136] TIP 2017 

LSA [138] CVPR 2012 

ROD [137] ECCV  2014 

DSDA [140] SPIC 2015 

ISE [141] ICME 2016 

LBE [142] CVPR 2016 

MBDT [143] SPL 2017 

RDF [144] TIP 2017 

CTF [145] ITC 2017 

 EPMC[37] TIP 2018 

PCF [146] CVPR 2018 

AFD[147]                    IEEE  Access 2019 

TSR [148] ICIP 2019 

Table 3.  A brief summary of RGBD saliency detection. 

2.4 Co-Saliency-Detection 

Co-saliency-detection is the process that tries to 

discover the most common and salient-objects from a 

given group of images. For this purpose, the inter-

image correspondence feature is used as a simple 

attribute check to distinguish the shared objects 

(attributes-wise) from all other salient-objects. The 

low-level or high-level features are first calculated for 

every image in the sequence to obtain a co-saliency-

map. The low-level features are the heuristic 

characteristics of an image, represent color, texture, 

and luminance, etc. while the high-level features 

represent the semantic information obtained via deep 

learning techniques, two types of models are utilized to 

extract the intra-image and inter-image features for co-

saliency detection. The intra-image saliency models are 

used to extract a feature from an individual image, and 

the inter-image saliency models are used to extract the 

features from a group of images.  For intra-image co-

saliency, the common saliency detection methods can 

be utilized, however, the inter-image models use 

different types of techniques, such as similarity based-

matching, low-rank based analysis, clustering, and 

method of propagation. After calculating these two 

types of models, a fusion scheme is utilized to 

incorporate these models and obtain a final co-

saliency-map.  

Co-saliency-detection is often nearly correlated to 

the notion of a co-segmentation scheme that plans to 

segment most identical objects or regions from 

multiple images [152]. As indicated in [153], there are 

three main variations between the co-saliency process 

and the co-segmentation process. First, Co-saliency-

detection approaches focus only on encountering the 

salient-objects that are common, while on the other 

hand similar non-salient parts of the background can 

also be considered in co-segmentation methods 

[154,155]. Second, a few co-segmentation approaches, 

e.g.,[156], want user response to lead the process of 

segmentation in a vague situation. Third, salient-

object-detection frequently performs as a pre-

processing step, and hence more real and efficient 

approaches are favored than co-segmentation 

approaches, particularly over a huge number of images. 

The traditional-based methods are basically the 

earliest and the simple methods for Co-saliency-

detection by using hand-captured co-saliency features 

for scoring each pixel/region in the image group. 

Generally, these are low-level methods that are 

comprised of four basic components containing pre-

processing, feature extraction, applying low-level cues, 

and weighted combination.  

Chang et al. [157] proposed a fully unsupervised 

method to resolve the co-segmentation problem. They 

produced an optimized CRF model by establishing a 

co-saliency prior to the clue about conceivable 

foreground locations to substitute user input data and a 

unique global-energy term to get the co-segmentation 

procedure efficiently. Tan et al. [158] presented an 

autonomous Co-saliency-detection scheme that 

originated on the similarity matrix, which measures the 
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co-saliency process by using the bipartite superpixel-

level mechanism of graph matching across the set of 

image pairs. Fu et al. [153] presented a cluster-based 

Co-saliency-detection approach by utilizing the global 

contrast and spatial distribution cues on a single image, 

and use the corresponding cues over a group of images 

to find the saliency co-occurrence. Li et al. [159] 

presented a co-saliency model by utilizing a low-rank 

matrix recovery scheme for computing intra saliency 

detection and a region-level fusion scheme. The 

region-level fusion scheme utilizes the similarities that 

exist among different regions and the global uniformity 

measures over the image set. The pixel-level 

refinement scheme is utilized to measure the 

similarities between pixel and region as well as their 

object priors. Ye et al. [160] proposed a saliency 

detection framework based on object discovery and 

recovery using gross similarity matching. They first 

generated an exemplar saliency map by discovering the 

consistent exemplars for co-salient objects. Then a 

local and global recovery of co-salient object regions, 

foci of attention area and border connectivity of the 

regions are exploited to create final co-saliency maps 

for all corresponding image set. Li et al. [161] 

introduced a saliency-guided co- saliency detection 

scheme, where the first step recuperates the co-salient 

chunks, lost in the single saliency map by using the 

efficient manifold ranking scheme, and the second step 

extracts the correlated relationship via a ranking 

scheme with different types of queries. Ge et al. [162] 

proposed a two-stage propagation method for co-

saliency detection, where the inter-saliency 

propagation stage is exploited to recognize shared 

features and build the pairwise shared foreground cue 

maps, and the intra-saliency propagation stage is 

utilized to suppress the background locations and refine 

the processing of the first stage. Song et al. [163] 

proposed an RGBD Co-saliency-detection model by 

using bagging-based clustering. The candidate object 

regions are created by utilizing region pre-

segmentation and RGBD single saliency maps. Then a 

clustering via feature bagging technique is executed 

recurrently to compute various weak co-saliency 

measures based on the cluster level. Finally, an 

adaptive fusing multiple (WCS) map is utilized to 

evaluate the clustering quality.  In [164], Huang et al. 

designed a scheme for Co-saliency-detection by 

considering color feature reinforcement method, and 

co-saliency map are obtained by utilizing feature 

coding coefficients and salient foreground dictionary.  

In [165], Cong et al proposed an energy function 

refinement and hierarchical sparsity reconstruction 

framework for RGBD co-saliency detection. A 

hierarchical sparsity reconstruction scheme is utilized 

to formulate the inter-image correspondence with the 

help of an intra saliency map. The global sparsity 

reconstruction framework is utilized with the ranking 

scheme and captures the global characteristics among 

the entire image via a common dictionary, and the 

pairwise sparsity reconstruction model is utilized to 

find the co-relationship among the images via a set of a 

pairwise dictionary. Finally, an energy function is 

adapted to improve inter-image consistency and intra-

image smoothness.  In [166], Li et al planned a low-

rank weighted Co-saliency-detection framework 

through a two-stage EMR. A two-stage ranking method 

is utilized to create multiple co-saliency maps for each 

input image, and then for each image, a group of 

variable sizes of salient regions is extracted and fused 

the co-saliency maps with their corresponding 

superpixels. Then an adaptive weight for each co-

saliency map is designed via sparse error matrix. 

Finally, the co-saliency maps and their corresponding 

weights are multiplied to obtain the fusion results and 

optimized further by using Graph Cuts. 

Recently, learning-based Co-saliency-detection 

methods have attracted much research attention and 

attained a reasonable performance, comprising deep 

learning, self-paced learning, and metric learning. 

These methods directly learn the features of the co-

salient-objects from a given image group, instead, 

relying on hand-crafted cues.    In [167] Zhang et al 

proposed a co-saliency object detection framework by 

introducing looking deep and looking at wide 

perceptions under the Bayesian framework. The term 

looking deep aims that the high-level features are 

extracted by using CNN with multiple layers to 

discover better representation, and the term looking 

wide tries to detect some visually identical neighbors to 

effectually suppress the mutual background regions. 

Zhang et al. [168] proposed a self-paced multiple-

instance-learning (SP-MIL) framework by integrating 

the MIL and SPL models, where the Multi-Instance-

Learning (MIL) model specifies to train a predictor for 

every instance via rising inter-class differences and 

reducing the intra-class difference. The self-paced 

learning (SPL) aims to progressively learn from the 

easy/faithful examples to more composite/confusable 

ones. In [169], Wei et al. proposed a pixel-to-pixel 

based group-wise deep Co-saliency-detection 

framework. A block of thirteen convolutional-layers 

are introduced to capture the basic features, and then, 

the group-wise properties and individual properties are 

extracted to specify the group-wise properties and 

single image properties. Finally, a combined learning 

scheme with the convolution-deconvolution process is 

devised to get the co-saliency map. To cope with the 

wide variation in the image scene, Han et al. 

[170]proposed a metric learning co-saliency model 

through a new objective function, in which metric 

learning aims to learn a distance metric to bring the 
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same-class sample closer and make the different-class 

samples far away from each other. 

 

 

 
. 

Figure 4. An example of Co-saliency-detection by using 

the iCoseg dataset. The 1st row displays the input images and 

the 2nd row represents the corresponding ground-truth 

images 

 

 

Discussion: 

Co-saliency-detection is an emerging topic for the 

research community and achieved considerable 

progress in the last few years, there is still a very large 

space for future improvement in this field. Here we 

enlist some major issues that need development in this 

field: (1) image complexity, co-saliency models need 

considerable improvements for complex and clutter 

images. (2) if the foreground consists of different types 

of objects with multiple colors, then it is difficult to 

find only salient objects.  (3) Co-saliency cannot 

perform well on large-scale data, because it contains 

more outliers, noise and variation (4) co-saliency 

models are not efficient and consume more time. (5) 

Inter-correspondence constraint needs a lot of 

improvements, to effectively monopolize the common 

attributes among multiple images. A summary of co-

saliency techniques is presented in Table 4 and Figure 

4, shows the common salient objects among several 

images.  

 

 
 

Model 

 

Pub 

 

Year 

 

Main techniques 

FCC [157] CVPR 2011 based on clustering and similarity matching 

SA [158] ICASSP 2013 Based on superpixel-level graph matching 

CCS [153] TIP 2013 Based on clustering-with-multiple cues 

CRPR [159] ICME 2014 Based on low-rank matrix recovery and similarity matching 

CODR[160] SPL 2015 Based on gross similarity-ranking 

SCS [161] SPL 2015 Based on ranking-scheme 

CSP [162] SPIC 2016 Based on two-stage propagation 

CDBC[163] SPL 2016 Based on bagging clustering 

CFR [164] SPL 2017 Based on color-feature reinforcement 

CLDW [167] CVPR 2015 Deep-learning based on Bayesian framework 

SMIL [168] ICCV 2015 self-paced based on  multi-instance-learning 

GWDC [169] APA 2017 Pixel-to-pixel deep co-saliency network 

UMLCD [170] TCSVT 2018 Distance based metric-learning 

HSCSR[165] ITOM 2018 Based on hierarchical sparsity reconstruction and global 

sparsity reconstruction ranking scheme 

EMR [166] MTA 2019 Based on a low efficient manifold ranking 

MGFCN [171] CVPR 2019 Based on the mask-guided fully convolutional network 

Table 4.  A brief summary of Co-saliency detection. 

2.5 Video Saliency 

Video sequences utilize the sequential feature, motion 

and color appearance information for the perceiving 

and identification of scenes. In video-saliency, an 

object is salient if it has some repetition, motion-

relevancy and some other distinctive targets in the 

video sequences. These are the unsupervised methods 

exploiting the low-level cues, such as color-appearance, 

motion-cue, and some other prior constraints. The 

traditional-based video-saliency methods further split 

into the Fusion-based Model and Direct-pipeline-based 

Models [133]. Fusion-based models first compute the 

spatial saliency (i.e., spatial-cue, describe the intra-

frame information in each frame) and their 

corresponding temporal-saliency (temporal cue, 

represents the inter-frame association among different 

frames). Then, the results of these two saliency-maps 

are combined to obtain video-saliency-detection. 

Spatial saliency detection utilizes the center-surround, 

contrast-prior, background-prior, sparse re-construction 

and low-rank analysis to get the saliency representation 

in each separate frame, while the temporal saliency 
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detection exploits the motion cue to describe the 

moving objects in the video. 

Fang et al. [172] obtained static saliency using 

luminance, color and texture features in a compressed 

domain, and get motion saliency using motion cue and 

then, a fusion method is utilized to achieve the final 

saliency-map for each video frame. Ren et al. [173] 

obtained a spatial saliency by using a sparse 

reconstruction method to detect the regions with high 

center-surround contrast. For temporal saliency, a 

reconstruction process for the target patch and their 

neighboring overlapping patches are used to 

reconstruct the target patch. Finally, a fusion 

mechanism is applied for video-saliency. In [174], Liu 

et al. extracted superpixel-wise low-level features and 

frame-wise global features for spatial saliency.  For 

temporal saliency integrated the motion uniqueness of 

superpixels and finally fused the spatial and temporal 

saliency-maps by using the adaptive fusion method. Xi 

et al. [175] used background-prior for spatial saliency 

and SIFT flow and bidirectional consistent propagation 

for temporal saliency and fused these both saliencies 

by using simple addition to get the final saliency. In 

[176], Chen et al used color contrast and gradient 

guided contrast for spatial and temporal saliency-maps 

respectively and applied a fusion method to get the 

final saliency. 

The models in this class use spatiotemporal features 

to directly discover the salient-object. Xue et al. [177] 

used a low-rank and sparse decomposition scheme on 

video slices as a temporal feature and separated the 

foreground from backgrounds. The spatial information 

is utilized to keep the completeness of the discovered 

motion objects. Wang et al. [178] proposed a 

spatiotemporal saliency approach built on the gradient 

flow and energy improving scheme, which is good for 

complicated scenes, different motion arrangements, 

and dissimilar looks. The gradient flow field describes 

the salient parts by integrating the intra-frame and 

inter-frame. Liu et al. [179] proposed a dynamic 

pipeline scheme for video-saliency-detection by 

utilizing the graph-based motion saliency based on 

superpixel-level, spatial propagation, and temporal 

propagation. Guo et al. [180] presented the video-

saliency method by computing spatial saliency and 

motion saliency and then applied object proposal 

scheme for ranking and voting, to filter non-salient-

regions and estimated the initial saliency. Finally, 

initial saliency is refined by considering temporal 

consistency and appearance diversity. In [181], Kim et 

al. random walk with restart is used to identify the 

salient-object, in which the temporal consistency and 

motion distinctiveness are exploited to extract temporal 

consistency and a quick variation is utilized as the 

restarting distribution of the random walker. Similarly, 

[182] and [183] proposed a geodesic distance-based 

method to compute superpixel-wise saliency by using 

undirected inter-frame and intra-frame graphs 

constructed from spatiotemporal edges, appearance, 

and motion. In summary, fusion techniques are 

comparatively more natural than direct-pipeline 

techniques. Furthermore, the spatial saliency methods 

are image saliency methods which can provide a basis 

for spatiotemporal saliency and can be used directly in 

video-saliency.  

Indeed, deep-learning-based video-saliency methods 

have demonstrated a great performance over the 

existing traditional-based (hand-crafted features based) 

methods. These learning-based methods independently 

extract the features from each individual frame and 

then utilize frame-by-frame processing to calculate 

saliency. Le et al. [184] presented a deep learning 

model to extract the Spatio-temporal deep-features 

(STF).  The region-based CNN is applied to extract the 

local features and the global features are extracted from 

temporal-segments by using a block-based CNN.  

Using the STF features, a Random Forest (RF) and 

Spatio-temporal CRF (CRF) are presented to achieve 

the ultimate saliency. In [185], Wang et al. proposed a 

deep learning model to detect salient-objects in the 

video. The static network generates a fixed saliency-

map for every frame using FCNs and then the frame-

pairs map and static saliency are fed into a dynamic 

network to generate the dynamic saliency-map. Le et al. 

[186] presented an end-to-end 3D Recurrent Fully-

Convolutional-Network (DSRFCN3D) for salient-

region-detection in video streams, which contains an 

encoder, decoder and refinement networks respectively. 

The encoder network captures 3D features (both spatial 

and temporal information) from a feeding video block. 

The decoder network estimates the precise saliency 

voxel from the 3D deep feature by gradually refining 

the intermediate saliency voxel through supervised 

learning at every hidden 3D deconvolution layer [101]. 

On the other hand, the refinement method along with 

skip-connection layers and 3D recurrent-convolution-

layer (RCL) is designed to learn the relevant contextual 

evidence. In [187] Li et al introduced an unsupervised 

video-saliency by using the saliency-guided stacked 

scheme of autoencoders. First, the saliency cues 

captured from the spatiotemporal acquaintances at 

three different stages (i.e., pixel-, superpixel- and 

object-levels) are collected as a feature-vector of high-

dimension properties. In the second step, the initial 

saliency-map is obtained by learning the stacked auto-

encoders by the unsupervised way. At last, some post-

processing actions are applied to further enhance the 

salient-object and demolish the false clue., Similarly, 

Cong et al. [188] proposed a sparse reconstruction and 

propagation method to detect salient objects in video. 
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Figure 5. A video-saliency-detection example on the DAVIS 

dataset. The first row represents the original video frames of 

input data and the second row represents the corresponding 

ground-truths. 

Discussion: 

To sum up, video-saliency-detection is also an 

emerging field for future research, as it is largely 

unexplored and there are still many challenges that 

need to be addressed. The key issue in video-saliency-

detection is how to abolish the background and fixed 

objects in order to find more relevant salient items in 

the video. For this purpose, mostly optical flow is used, 

but it is not an efficient technique and also does not 

provide much more accuracy. Recently deep learning 

techniques outperformed the traditional techniques, but 

the major issue in deep learning is the non-availability 

of large annotated datasets for video-saliency-detection. 

The next key issue in the video-saliency-detection is to 

find robust techniques to capture the inter-frames 

attributes that provide a consistent appearance 

saliency-map for all frames, for this purpose some 

energy function is adapted to improve the consistency, 

but still, it needs further improvements. Video-saliency 

also needs improvements, where most of the frames 

consist of complex backgrounds and multiple objects. 

A video-saliency-detection summary is shown in Table 

5, and some example video-frames are shown in Figure 

5Error! Reference source not found., which shows 

the same salient object among different frames of the 

same video. 

 
 

Model 

 

Pub 

 

Year 

 

Main techniques 

 

 LRSD [177] ICASSP 2012 Low-rank , sparse decomposition and spatial information about object completeness  

SSDSR [173] ICME 2012 Sparse reconstruction process for both temporal and spatial-saliency 

SBSSD[174] TCSVT 2014 Superpixel-level motion features as a spatiotemporal and global contrast and spatial sparsity 
as a spatial saliency 

VSDMC 

[172] 

TCSVT 2014 luminance, color, and texture for static saliency map and motion saliency map 

 GFGR [178] TIP 2015 Gradient flow field for salient regions, then local and global contrast and energy optimization 
function 

SGVS [182] CVPR 2015 Geodesic distance is used for Spatiotemporal saliency map, global appearance, and location 

features 

STBP [175] TIP 2017 Spatiotemporal background prior, SIFT flow and superpixel 

SGSP [179] TOC 2017 Superpixel-level graph, temporal propagation and spatial propagation 

VOP [189] TOC 2017 Object proposal ranking and saliency refinement optimization process 

USGD [183] PAMI 2018 Geodesic distance and energy optimization techniques 

SUDF[184] ICME 2017 Deep learning STF feature, STRCP, and Random Forest 

VFCN[185] TIP 2018 Directly capturing spatial and temporal saliency information with the help of deep learning 

DSFCN 

[186] 

BMVC 2017 An end-to-end 3D FCN method learns spatial and temporal information directly 

DSVS[190] TIP 2019 3D stereoscopic video saliency with two main STSM and SSAM modules 

SBRP [188] ITOIP 2019 A sparse reconstruction and propagation-based approach 

TASED-Net 

[191] 

ICCV 2019 An encoder-Decoder-based approach 

Table 5.  A brief summary of video-saliency detection Models. 

 

3. Datasets and Applications 

3.1 Datasets for saliency detection: 
 

In this section, we presented the most common datasets 

used for saliency detection techniques like RGB-D 

saliency-detection, co-saliency-detection, and video-

saliency-detection. As the advancement in saliency 

detection techniques, more challenging datasets have 

been introduced to further challenge the state-of-the-art 

models. The early datasets contain a very simple 

background and a single image in the foreground, 

having the ground-truth being annotated with the 

bounding-box methods, such as MSRA-A and MSRA-

B [192]. The recent datasets are very complex and 

cluttered background having more than one object, 

being annotated with pixel-level ground-truth 

annotation, Pixel-based annotation datasets carry more 
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accurate results than bounding-box annotation.  

  For simple RGB image saliency detection, we 

collected a total of 10 datasets, as shown in table 6, 

such as Judd-A[193,5], UCSB [194], OSIE [195], 

ECSSD [25], DUT-OMRON [61], MSRA10K [196], 

ACSD [51], PASCAL-S [197] and XPIE [198]. There 

are some datasets which also hold the fixation data, 

collected for each image during the free-viewing 

process, such as Judd-A, UCSB, and OSIE.  The list of  

RGBD datasets consists of RGBD1000 [137], NJUD 

[140], DES [199] as shown in Table 7.  some example 

images from PASCAL challenging dataset is shown in 

Figure 6. 

For Co-saliency-detection we listed a total of 8 

datasets that are used commonly, as shown in Table 8. 

The first 5 are for simple RGB image saliency 

detection, such as MSRC [200], iCoseg [156], Image 

Pair [201], Cosal2015 [202], INCT2016 [203], which 

comprises more than two images in each group except 

Image Pair dataset which contains only one image pairs. 

The last 2 datasets, of Table 8 , such as RGBD 

Coseg183 [204] and   RGBD Cosal150 [205] are for 

RGBD co-saliency-detection. The RGBD Coseg183 is 

a dataset, containing 183 images with depth-cue, 

distributed in 16 groups. The RGBD Cosal150 dataset, 

have 150 RGBD images, distributed in 21 image 

groups.   

For video-saliency-detection, there are several 

datasets available, such as USVD [179], ViSal [178], 

SegTrackV1 [206], SegTrackV2 [207] ], MCL [181], 

VOS [187]  and DAVIS [208], as shown in Table 9. 

The DAVIS dataset is one of the frequently used and 

more challenging datasets, containing 50 video series 

along with pixel-wise ground-truth for every video 

frame. The UVSD dataset is a new dataset and 

particularly designed for video-saliency-detection 

which contains 18 unrestricted videos with complex 

motion patterns and more scattered scenes, with pixel-

wise annotated ground-truth for each video frame. An 

extended video-saliency-detection dataset called VOS 

is created, which comprises 116103 total frames that 

distributed in two-hundred (i.e. 200) video sequences. 

This dataset contains 7467 binary ground-truth 

annotated frames, which is good enough to train and 

learn a deep learning model to capture the salient-

objects in the video. 

A dataset is the collection of data for a specific 

application domain. Unfortunately, each dataset may 

suffer from different types of biases, which can affect 

the performance of the models. For example, Torralba 

and Efros acknowledged three biases in the field of 

computer vision, called selection bias, capture bias (i.e., 

center-bias) and negative-set-bias [209]. Selection bias 

occurs, when someone prefers a specific type of image 

during data assembling and it may produce an error 

because the individual prefers his own choice while 

violating standard rules for selection. The selection 

bias collects more similar images in the dataset and 

hence, lacks variability in the dataset. To avoid 

selection bias, it is necessary to have an independent 

selection. The Capture bias transmits the effect of 

image structure into the dataset (i.e., People tend to 

capture the images of similar objects in a similar way), 

which also lack variability in the dataset. For example, 

center-bias means that most of the captured objects lie 

in the center of images. This type of bias makes the 

dataset challenging for quantitative comparison and 

sometimes even produces an ambiguous comparison. 

For example, a petty saliency method that contains a 

Gaussian blob at the center of an image, always 

produce the best score than many fixation prediction 

methods [79  ]. The Negative-set bias represents that an 

individual personally not like to include a particular 

object into the dataset, while a dataset must represent 

every possible thing. The Negative-set-bias can disturb 

the ground-truth by employing the annotator’s 

particular favorite to some particular object. Hence, it 

is encouraged to have more varieties of images in a 

good dataset. 

3.2 Applications of saliency detection: 
Saliency-detection technique is usually used in the field 

of image retrieval [210,211], image segmentation [212-

214], object discovery [214], target detection and 

cognition [215-219], video summarization and 

skimming [220,221], image and video compression 

[222], image resizing,  image automation pruning [223], 

content-based image retrieval [224-226], photo collage 

[43,227] image editing and manipulating [228,229], 

human-robot interaction [230,231] and visual tracking 

[36,232,233].  

 

3.3  Evaluation Measures 
The qualitative and quantitative evaluation techniques 

are the two common techniques to assess the 

performance of salient-object-detection models. The 

qualitative technique visually compares the predicted 

saliency maps with their corresponding ground-truth 

masks. It is the more simple technique but it has no 

fixed value and hence, varies from person to person. 

On the other hand, a quantitative evaluation gives a 

fixed value, acceptable for each observer. There are 

different types of evaluation techniques available in the 

literature for comparing predicted saliency maps with 

their corresponding ground-truth. Here we only discuss 

the standard top-five techniques that consider as a 

standard in salient object detection. All of these 

techniques consider overlapping regions between 

predicted maps and their corresponding ground-truth 

masks. For mathematical notation, we use G for 

ground-truth mask and S for predicted saliency map. 
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We use |  ·  |  for both binary masks to indicate the 

number of entries in the mask. 

 

 

 

 
 

Figure 6.  Some example images from PASCAL challenging dataset. 

 
Dataset Pub Year Image No Max Res. Object property Background Property 

ACSD [51] 2009 1K 400 × 400 Single moderate Clean, simple 

ECSSD [25] 2012 1K 400 × 400 Single, large Clean, simple 

DUT-OMRON [61] 2013 5168 400 × 400 Single, small complex 

Judd-A[193,5] 2014 900 1024×768 Single, moderate Clean and simple 

UCSB [194] 2014 700 405 × 405 Single, large Clean and simple 

OSIE [195] 2014 700 800 × 600 Multiple, moderate simple 

MSRA10K [196] 2014 10K 400 × 400 Single, large Clean, simple 

PASCAL-S [197] 2014 1K 500 × 500 Multiple, moderate simple 

HKU-IS [85] 2015 850 400 × 400 Multiple, moderate complex 

XPIE [198] 2017 4447 300 × 300 Single, moderate complex 

Table 6. A list of salient-object detection datasets for RGB. 

 

Dataset Pub Year Image No Max Res Object property Depth attribute 

RGBD1000 [137] 2014 10K 640 × 640 Single, moderate Kinect capturing 

LFSD dataset [75] 2014 100 1080 × 1080 Complex Lytro light field capturing 

DES [199] 2014 135 640×480 Single, moderate Kinect capturing 

NJUD [140] 2015 2K 600 × 600 single, moderate depth estimation 

Table 7. A list of salient-object detection datasets for RGBD Images. 

Dataset Pub Year Image No Group No Group size Max Res. Object 

property 

MSRC [200] 2005 230 7 30-53 320 × 210 Complex 

Caltech[234] 2006 101 257 30607 500 × 800 Complex 

iCoseg [156] 2010 643 38 4-42 500 × 300 Multiple 

Image Pair[201] 2011 210 115 2 128 × 100 Single 

Cosal2015[202] 2016 2015 50 26-52   500 × 333 Multiple 

INCT2016 [203]  2016 291 12 15-31 500 × 375 Multiple 

RGBD Coseg183[204] 2015 183 16 12-36 640 × 480 Multiple 

RGBD Cosall50[205] 2018 150 21 2-20 600 × 600 single 

Table 8.  A list of Co-saliency-detection datasets. 
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Dataset Pub 

Year 

Frame 

No 

Video 

No 

Video 

size 

Max Res. Object 

property 

Background Property 

SegTrackV1 [206] 2010 244 6 21-71 414 × 352 Single Diverse 

SegTrackV2[207] 2013 1065 14 21-279 640 × 360 Single Diverse 

FBMS [182] 2014 13860 59 720 960 × 540 Single  Diverse 

ViSal [178] 2015 963 17 30-100 512 × 228 Single Diverse 

MCL [181] 2015 3689 9 131-789 480 × 270 Single, 

small 

Complex 

DAVIS [208] 2016 3455 50 25-104 1920×1080 Multiple Complex 

VOS-E 2016 49206 97 83-962 800 × 640 Single Simple 

UVSD [179] 2017 6524 18 71-307 352 × 288 Single, 

small 

Clustered, complex 

VOS [187] 2018 116103 200 ∼500 800 × 800 single Complex 

 

Table 9. A list of video-saliency-detection datasets 

 

 

 

1. Precision-recall (PR) 

Precision and Recall can be calculated by translating 

the saliency-map S into a binary mask B and then 

comparing B with its corresponding ground-truth G. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝐵∩𝐺|

|𝐵|
, 𝑎𝑛𝑑 𝑅𝑒𝑐𝑎𝑙𝑙 =

|𝐵∩𝐺|

|𝐺|
 .                 (1)                                       

The key phase in this process is the binarization of S to 

B. Three most frequent methods such as fixed 

threshold,  adaptive threshold [51] and GrabCut 

method [235]masks are used for the binarization 

process.  

2. F-Measure.  

Precision and recall cannot comprehensively estimate 

the excellence of the saliency map. For this purpose, 

the F-measure method The qualitative as a harmonic 

weighted-mean of the Precision and Recall methods 

with a non-negative weight 𝛽2 

𝐹𝛽 =
(1+𝛽2)𝑃×𝑅

𝛽2 𝑃 ×𝑅
,                                                            (2)                                                          

whereas P is the Precision and R represents Recall. the 

𝛽2  value is often set to 0.3 to raise the weight of 

precision more than recall [51].  

3. Receiver-Operating-Characteristics 

(ROC) curve. 

Similarly, true positive rates (TPR) and false positive 

(FPR) can be calculated by applying a fixed threshold 

during saliency-map binarization. 

𝑇𝑃𝑅 =
|𝐵∩𝐺|

|G|
, 𝑎𝑛𝑑 FPR =

|𝐵∩𝐺|

|B∩𝐺|+|�̅� ∩ �̅�|
 ,                    (3)                                             

where 𝐵 and 𝐺 indicate the complement sets of binary 

mask 𝐵 and ground-truth G correspondingly. The ROC 

curve is the plotting of TPR values against FPR values 

by trying all probable thresholds.  

4. Arear under the ROC curve (AUC). 

As the name indicates, it is computed as the area under 

the ROC curve. The performance of AUC over a 

perfect saliency method will get exactly 1 score, while 

the performance of AUC at random guessing will get 

around about 0.5 scores. 

5. Mean-Absolute-Error (MAE). 

The above overlap-based assessment measures actually 

do not focus on the assignment of the true negative 

saliency value (i.e., the pixels marked correctly as non-

salient). They prefer those approaches that can 

effectively allocate high saliency values to salient 

pixels but mostly they neglect the detection of non-

salient-regions. Furthermore, for some applications 

[223], the saliency-map sometimes requires more 

consideration than its binary mask. Hence, Mean-

absolute-error (MAE) is an easy and reliable 

assessment metric for saliency-map. It is calculated as 

the average of pixel-wise absolute error between the 

saliency-map S and the corresponding ground-truth G, 

normalized to [0, 1], which is defined as follows: 

𝑀𝐴𝐸 =
1

𝑊 ×𝐻
∑ ∑ |𝑆𝑖𝑗 − 𝐺𝑖𝑗|𝐻

𝐽=1
𝐻
𝐼=1  ,                          ( 4)                                             

where H and W denote the height and width of the 

image respectively.
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(a)                (b)                (c)                (d)                 (e)                 (f)                 (g)                 (h)                (i)                 (j)  

Figure 7. A visual comparison of saliency-maps. (a) Original image, (b) Ground-truth, (c) DSR[9], (d) FES[69], (e) GR [72], (f) 

MC [58], (g) ELD[88], (h) PiCANet[236], (i) NLDF[70], (j) RAS [118]. 
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Figure 8. The MAE score graph for non-learning and learning-based models. The * means the heuristic-based salient object 

detection models.

3.1. Discussion and Future recommendations: 
   In this review, we comprehensively presented a 

survey on salient object detection and discussed the 

conventional-heuristic-based approaches and new 

learning-based approaches. We also discussed the co-

related areas such as fixation prediction, RGBD-

saliency detection, Co-saliency-detection, and video-

saliency-detection. A visual comparison of some 

example heuristic and learning-based models are 

shown in Figure 7, which shows clearly that deep 

learning-based models outperform in the state-of-the-

art models.  This review provides depth insights and 

guidelines for upcoming progress in saliency detection. 

The heuristic-based approaches follow the intrinsic 

cues, due to which these methods are working well in a 

specific environment and cannot generalize well in 

other scenarios. Recently, deep learning-based models 

have shown great performance over the conventional 

heuristic-based methods. Deep learning-based methods 

follow extrinsic cues and can collect high-level 

semantic knowledge from large datasets, and hence 

have the power to generalize well in different scenarios. 

These methods also called task-driven methods, 

because they can learn features from a specific dataset 

and can effectively apply the learned knowledge for 

other environments. Although the deep-learning 

methods outperformed all conventional heuristic-based 

methods, yet they have many issues that need to be 

tackled in the future.  the following are some 

considerable issues that need to be tackled in the future: 

Needs large-data for training: The learning-based 

techniques require a large number of data for extracting 

features during training, it is very difficult to have a 

large number of data in different environments. To 

tackle this issue, different augmentation techniques 

have been proposed for creating false data. however 

still, the performance is not as the original dataset and 

needs further efforts. The other option is to design such 

a model that can be trained on little data. Encoder-

decoder models require fewer data comparatively and 

require further exploration. 

Dataset bias: Dataset bias also can degrade the 

performance of the data, if the collector violates the 

standard rules. For this purpose, proper knowledge will 

be needed to collect the dataset. 

Feature-loss due to pooling and strides: In learning-

based methods, the resolution of the image becomes 

smaller and smaller due to different pooling and stride 

operation and causes to lose important features during 

training. For this purpose, different multi-scale, multi-

level, skip-connection, short-connection networks are 

encouraged to recover the loss features. 

 Manual-annotations: The learning-based methods 

require manual-annotations for each corresponding 

instance in the dataset. It is very difficult to generate 

large data with the corresponding pixel-level 

annotation. For this purpose, unsupervised-learning is 

encouraged in the future. Unsupervised-learning 

methods are most time-efficient than supervised-

learning approaches. 

Complex background: CNNs techniques achieved 

great success in simple background images. However, 

the complex and clutter background images still require 

much improvement in salient-object detection. 

    As we know, saliency detection has vast applications 

and attracted much attention from researchers. For this 
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purpose, the following research trends may play an 

important role in the future. 

 1. Instance level salient object detection: the recent 

approaches of salient-object detection are object-

agnostic (i.e., the salient regions do not split into 

objects), however, the humans have the talent to split 

the salient or stimuli objects at instance-level. Instance-

level saliency approach can be used in several 

applications, such as video compression and photo 

editing.  

2. Flexible Network Architecture: it is verified that 

the deeper CNNs model can capture more accurate 

salient objects based on their high-level semantic 

knowledge. For this purpose, deeper networks like 

ResNet can be the more preferable choice in the future. 

Similarly, to avoid features losing, encoder-decoder 

and multi-level network can perform well in model 

selection.    

3. Collaboration among different modules:  In 

computer vision, the collaboration and sharing of 

information among common tasks such as object 

segmentation, object-detection, object-tracking, and 

object-categorization strongly boost each other. 

Similarly, the contextual and prior information from 

other modules can also boost the salient object 

detection. Especially, exploring the association 

between salient object detection, fixation prediction, 

and semantic perception models can benefit each other. 

4.  Extending the salient object detection behavior 

into other fields: apart from image and video, the 

visual-saliency concept can be extended into speech 

recognition, auditory perceptions, touch behavior, and 

scene-captioning. 

5. 3D Object Detection:  RGB-D images can improve 

the performance of salient object detection, however, 

there is very narrow work in this field. 

6. Co-saliency and video saliency need more 

advanced techniques: In the case of Co-saliency 

detection, the inter-image correspondence technique is 

used to find the common salient objects among a group 

of images. For this purpose, different techniques have 

been adopted. However, it needs much consideration in 

the future. similarly, in video saliency, the inter-frame 

correspondence techniques also need further 

exploration to find a robust association among multiple 

frames for salient-object detection. 

7. Interpretable deep learning Models: Inerpretablity 

techniques can help in understanding the predictions of 

a specific model in a specific scenario.  By using these 

approaches, we can learn which type of dataset, model, 

and hyper-parameters can perform excellently in 

salient object detection.  

8. Emotion-based saliency detection:  The 

combination of visual-based saliency models with 

emotion-based models can be used to extend the 

performance of saliency detection. These models find 

the relationship of saliency with emotion, that how 

images can invoke human emotion. 
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