2,505 research outputs found

    An Unsupervised Deep Learning Approach for Scenario Forecasts

    Full text link
    In this paper, we propose a novel scenario forecasts approach which can be applied to a broad range of power system operations (e.g., wind, solar, load) over various forecasts horizons and prediction intervals. This approach is model-free and data-driven, producing a set of scenarios that represent possible future behaviors based only on historical observations and point forecasts. It first applies a newly-developed unsupervised deep learning framework, the generative adversarial networks, to learn the intrinsic patterns in historical renewable generation data. Then by solving an optimization problem, we are able to quickly generate large number of realistic future scenarios. The proposed method has been applied to a wind power generation and forecasting dataset from national renewable energy laboratory. Simulation results indicate our method is able to generate scenarios that capture spatial and temporal correlations. Our code and simulation datasets are freely available online.Comment: Accepted to Power Systems Computation Conference 2018 Code available at https://github.com/chennnnnyize/Scenario-Forecasts-GA

    Unsupervised Deep Epipolar Flow for Stationary or Dynamic Scenes

    Full text link
    Unsupervised deep learning for optical flow computation has achieved promising results. Most existing deep-net based methods rely on image brightness consistency and local smoothness constraint to train the networks. Their performance degrades at regions where repetitive textures or occlusions occur. In this paper, we propose Deep Epipolar Flow, an unsupervised optical flow method which incorporates global geometric constraints into network learning. In particular, we investigate multiple ways of enforcing the epipolar constraint in flow estimation. To alleviate a "chicken-and-egg" type of problem encountered in dynamic scenes where multiple motions may be present, we propose a low-rank constraint as well as a union-of-subspaces constraint for training. Experimental results on various benchmarking datasets show that our method achieves competitive performance compared with supervised methods and outperforms state-of-the-art unsupervised deep-learning methods.Comment: CVPR 201

    Encoding Multi-Resolution Brain Networks Using Unsupervised Deep Learning

    Full text link
    The main goal of this study is to extract a set of brain networks in multiple time-resolutions to analyze the connectivity patterns among the anatomic regions for a given cognitive task. We suggest a deep architecture which learns the natural groupings of the connectivity patterns of human brain in multiple time-resolutions. The suggested architecture is tested on task data set of Human Connectome Project (HCP) where we extract multi-resolution networks, each of which corresponds to a cognitive task. At the first level of this architecture, we decompose the fMRI signal into multiple sub-bands using wavelet decompositions. At the second level, for each sub-band, we estimate a brain network extracted from short time windows of the fMRI signal. At the third level, we feed the adjacency matrices of each mesh network at each time-resolution into an unsupervised deep learning algorithm, namely, a Stacked De- noising Auto-Encoder (SDAE). The outputs of the SDAE provide a compact connectivity representation for each time window at each sub-band of the fMRI signal. We concatenate the learned representations of all sub-bands at each window and cluster them by a hierarchical algorithm to find the natural groupings among the windows. We observe that each cluster represents a cognitive task with a performance of 93% Rand Index and 71% Adjusted Rand Index. We visualize the mean values and the precisions of the networks at each component of the cluster mixture. The mean brain networks at cluster centers show the variations among cognitive tasks and the precision of each cluster shows the within cluster variability of networks, across the subjects.Comment: 6 pages, 3 figures, submitted to The 17th annual IEEE International Conference on BioInformatics and BioEngineerin

    Unsupervised Deep Learning via Affinity Diffusion

    Get PDF
    Convolutional neural networks (CNNs) have achieved unprecedented success in a variety of computer vision tasks. However, they usually rely on supervised model learning with the need for massive labelled training data, limiting dramatically their usability and deployability in real-world scenarios without any labelling budget. In this work, we introduce a general-purpose unsupervised deep learning approach to deriving discriminative feature representations. It is based on self-discovering semantically consistent groups of unlabelled training samples with the same class concepts through a progressive affinity diffusion process. Extensive experiments on object image classification and clustering show the performance superiority of the proposed method over the state-of-the-art unsupervised learning models using six common image recognition benchmarks including MNIST, SVHN, STL10, CIFAR10, CIFAR100 and ImageNet

    Unsupervised Deep Learning by Neighbourhood Discovery

    Get PDF
    Deep convolutional neural networks (CNNs) have demonstrated remarkable success in computer vision by supervisedly learning strong visual feature representations. However, training CNNs relies heavily on the availability of exhaustive training data annotations, limiting significantly their deployment and scalability in many application scenarios. In this work, we introduce a generic unsupervised deep learning approach to training deep models without the need for any manual label supervision. Specifically, we progressively discover sample anchored/centred neighbourhoods to reason and learn the underlying class decision boundaries iteratively and accumulatively. Every single neighbourhood is specially formulated so that all the member samples can share the same unseen class labels at high probability for facilitating the extraction of class discriminative feature representations during training. Experiments on image classification show the performance advantages of the proposed method over the state-of-the-art unsupervised learning models on six benchmarks including both coarse-grained and fine-grained object image categorisation.Comment: 36th International Conference on Machine Learning (ICML'19). Code is available at https://github.com/Raymond-sci/AN

    Cloud Classification with Unsupervised Deep Learning

    Full text link
    We present a framework for cloud characterization that leverages modern unsupervised deep learning technologies. While previous neural network-based cloud classification models have used supervised learning methods, unsupervised learning allows us to avoid restricting the model to artificial categories based on historical cloud classification schemes and enables the discovery of novel, more detailed classifications. Our framework learns cloud features directly from radiance data produced by NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument, deriving cloud characteristics from millions of images without relying on pre-defined cloud types during the training process. We present preliminary results showing that our method extracts physically relevant information from radiance data and produces meaningful cloud classes.Comment: 5 pages, 6 figures, Proceedings for Climate Informatics Workshop 2019 Pari
    • …
    corecore