282 research outputs found

    Cross-Domain Evaluation of a Deep Learning-Based Type Inference System

    Get PDF
    Optional type annotations allow for enriching dynamic programming languages with static typing features like better Integrated Development Environment (IDE) support, more precise program analysis, and early detection and prevention of type-related runtime errors. Machine learning-based type inference promises interesting results for automating this task. However, the practical usage of such systems depends on their ability to generalize across different domains, as they are often applied outside their training domain. In this work, we investigate Type4Py as a representative of state-of-the-art deep learning-based type inference systems, by conducting extensive cross-domain experiments. Thereby, we address the following problems: class imbalances, out-of-vocabulary words, dataset shifts, and unknown classes. To perform such experiments, we use the datasets ManyTypes4Py and CrossDomainTypes4Py. The latter we introduce in this paper. Our dataset enables the evaluation of type inference systems in different domains of software projects and has over 1,000,000 type annotations mined on the platforms GitHub and Libraries. It consists of data from the two domains web development and scientific calculation. Through our experiments, we detect that the shifts in the dataset and the long-tailed distribution with many rare and unknown data types decrease the performance of the deep learning-based type inference system drastically. In this context, we test unsupervised domain adaptation methods and fine-tuning to overcome these issues. Moreover, we investigate the impact of out-of-vocabulary words.Comment: Preprint for the MSR'23 technical trac

    A Bayesian Approach to Graphical Record Linkage and De-duplication

    Full text link
    We propose an unsupervised approach for linking records across arbitrarily many files, while simultaneously detecting duplicate records within files. Our key innovation involves the representation of the pattern of links between records as a bipartite graph, in which records are directly linked to latent true individuals, and only indirectly linked to other records. This flexible representation of the linkage structure naturally allows us to estimate the attributes of the unique observable people in the population, calculate transitive linkage probabilities across records (and represent this visually), and propagate the uncertainty of record linkage into later analyses. Our method makes it particularly easy to integrate record linkage with post-processing procedures such as logistic regression, capture-recapture, etc. Our linkage structure lends itself to an efficient, linear-time, hybrid Markov chain Monte Carlo algorithm, which overcomes many obstacles encountered by previously record linkage approaches, despite the high-dimensional parameter space. We illustrate our method using longitudinal data from the National Long Term Care Survey and with data from the Italian Survey on Household and Wealth, where we assess the accuracy of our method and show it to be better in terms of error rates and empirical scalability than other approaches in the literature.Comment: 39 pages, 8 figures, 8 tables. Longer version of arXiv:1403.0211, In press, Journal of the American Statistical Association: Theory and Methods (2015

    Exploring the value of big data analysis of Twitter tweets and share prices

    Get PDF
    Over the past decade, the use of social media (SM) such as Facebook, Twitter, Pinterest and Tumblr has dramatically increased. Using SM, millions of users are creating large amounts of data every day. According to some estimates ninety per cent of the content on the Internet is now user generated. Social Media (SM) can be seen as a distributed content creation and sharing platform based on Web 2.0 technologies. SM sites make it very easy for its users to publish text, pictures, links, messages or videos without the need to be able to program. Users post reviews on products and services they bought, write about their interests and intentions or give their opinions and views on political subjects. SM has also been a key factor in mass movements such as the Arab Spring and the Occupy Wall Street protests and is used for human aid and disaster relief (HADR). There is a growing interest in SM analysis from organisations for detecting new trends, getting user opinions on their products and services or finding out about their online reputation. Companies such as Amazon or eBay use SM data for their recommendation engines and to generate more business. TV stations buy data about opinions on their TV programs from Facebook to find out what the popularity of a certain TV show is. Companies such as Topsy, Gnip, DataSift and Zoomph have built their entire business models around SM analysis. The purpose of this thesis is to explore the economic value of Twitter tweets. The economic value is determined by trying to predict the share price of a company. If the share price of a company can be predicted using SM data, it should be possible to deduce a monetary value. There is limited research on determining the economic value of SM data for “nowcasting”, predicting the present, and for forecasting. This study aims to determine the monetary value of Twitter by correlating the daily frequencies of positive and negative Tweets about the Apple company and some of its most popular products with the development of the Apple Inc. share price. If the number of positive tweets about Apple increases and the share price follows this development, the tweets have predictive information about the share price. A literature review has found that there is a growing interest in analysing SM data from different industries. A lot of research is conducted studying SM from various perspectives. Many studies try to determine the impact of online marketing campaigns or try to quantify the value of social capital. Others, in the area of behavioural economics, focus on the influence of SM on decision-making. There are studies trying to predict financial indicators such as the Dow Jones Industrial Average (DJIA). However, the literature review has indicated that there is no study correlating sentiment polarity on products and companies in tweets with the share price of the company. The theoretical framework used in this study is based on Computational Social Science (CSS) and Big Data. Supporting theories of CSS are Social Media Mining (SMM) and sentiment analysis. Supporting theories of Big Data are Data Mining (DM) and Predictive Analysis (PA). Machine learning (ML) techniques have been adopted to analyse and classify the tweets. In the first stage of the study, a body of tweets was collected and pre-processed, and then analysed for their sentiment polarity towards Apple Inc., the iPad and the iPhone. Several datasets were created using different pre-processing and analysis methods. The tweet frequencies were then represented as time series. The time series were analysed against the share price time series using the Granger causality test to determine if one time series has predictive information about the share price time series over the same period of time. For this study, several Predictive Analytics (PA) techniques on tweets were evaluated to predict the Apple share price. To collect and analyse the data, a framework has been developed based on the LingPipe (LingPipe 2015) Natural Language Processing (NLP) tool kit for sentiment analysis, and using R, the functional language and environment for statistical computing, for correlation analysis. Twitter provides an API (Application Programming Interface) to access and collect its data programmatically. Whereas no clear correlation could be determined, at least one dataset was showed to have some predictive information on the development of the Apple share price. The other datasets did not show to have any predictive capabilities. There are many data analysis and PA techniques. The techniques applied in this study did not indicate a direct correlation. However, some results suggest that this is due to noise or asymmetric distributions in the datasets. The study contributes to the literature by providing a quantitative analysis of SM data, for example tweets about Apple and its most popular products, the iPad and iPhone. It shows how SM data can be used for PA. It contributes to the literature on Big Data and SMM by showing how SM data can be collected, analysed and classified and explore if the share price of a company can be determined based on sentiment time series. It may ultimately lead to better decision making, for instance for investments or share buyback
    • …
    corecore