83 research outputs found

    Image Analysis Applications of the Maximum Mean Discrepancy Distance Measure

    Get PDF
    The need to quantify distance between two groups of objects is prevalent throughout the signal processing world. The difference of group means computed using the Euclidean, or L2 distance, is one of the predominant distance measures used to compare feature vectors and groups of vectors, but many problems arise with it when high data dimensionality is present. Maximum mean discrepancy (MMD) is a recent unsupervised kernel-based pattern recognition method which may improve differentiation between two distinct populations over many commonly used methods such as the difference of means, when paired with the proper feature representations and kernels. MMD-based distance computation combines many powerful concepts from the machine learning literature, such as data distribution-leveraging similarity measures and kernel methods for machine learning. Due to this heritage, we posit that dissimilarity-based classification and changepoint detection using MMD can lead to enhanced separation between different populations. To test this hypothesis, we conduct studies comparing MMD and the difference of means in two subareas of image analysis and understanding: first, to detect scene changes in video in an unsupervised manner, and secondly, in the biomedical imaging field, using clinical ultrasound to assess tumor response to treatment. We leverage effective computer vision data descriptors, such as the bag-of-visual-words and sparse combinations of SIFT descriptors, and choose from an assessment of several similarity kernels (e.g. Histogram Intersection, Radial Basis Function) in order to engineer useful systems using MMD. Promising improvements over the difference of means, measured primarily using precision/recall for scene change detection, and k-nearest neighbour classification accuracy for tumor response assessment, are obtained in both applications.1 yea

    Designing the next generation intelligent transportation sensor system using big data driven machine learning techniques

    Get PDF
    Accurate traffic data collection is essential for supporting advanced traffic management system operations. This study investigated a large-scale data-driven sequential traffic sensor health monitoring (TSHM) module that can be used to monitor sensor health conditions over large traffic networks. Our proposed module consists of three sequential steps for detecting different types of abnormal sensor issues. The first step detects sensors with abnormally high missing data rates, while the second step uses clustering anomaly detection to detect sensors reporting abnormal records. The final step introduces a novel Bayesian changepoint modeling technique to detect sensors reporting abnormal traffic data fluctuations by assuming a constant vehicle length distribution based on average effective vehicle length (AEVL). Our proposed method is then compared with two benchmark algorithms to show its efficacy. Results obtained by applying our method to the statewide traffic sensor data of Iowa show it can successfully detect different classes of sensor issues. This demonstrates that sequential TSHM modules can help transportation agencies determine traffic sensors’ exact problems, thereby enabling them to take the required corrective steps. The second research objective will focus on the traffic data imputation after we discard the anomaly/missing data collected from failure traffic sensors. Sufficient high-quality traffic data are a crucial component of various Intelligent Transportation System (ITS) applications and research related to congestion prediction, speed prediction, incident detection, and other traffic operation tasks. Nonetheless, missing traffic data are a common issue in sensor data which is inevitable due to several reasons, such as malfunctioning, poor maintenance or calibration, and intermittent communications. Such missing data issues often make data analysis and decision-making complicated and challenging. In this study, we have developed a generative adversarial network (GAN) based traffic sensor data imputation framework (TSDIGAN) to efficiently reconstruct the missing data by generating realistic synthetic data. In recent years, GANs have shown impressive success in image data generation. However, generating traffic data by taking advantage of GAN based modeling is a challenging task, since traffic data have strong time dependency. To address this problem, we propose a novel time-dependent encoding method called the Gramian Angular Summation Field (GASF) that converts the problem of traffic time-series data generation into that of image generation. We have evaluated and tested our proposed model using the benchmark dataset provided by Caltrans Performance Management Systems (PeMS). This study shows that the proposed model can significantly improve the traffic data imputation accuracy in terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) compared to state-of-the-art models on the benchmark dataset. Further, the model achieves reasonably high accuracy in imputation tasks even under a very high missing data rate (\u3e50%), which shows the robustness and efficiency of the proposed model. Besides the loop and radar sensors, traffic cameras have shown great ability to provide insightful traffic information using the image and video processing techniques. Therefore, the third and final part of this work aimed to introduce an end to end real-time cloud-enabled traffic video analysis (IVA) framework to support the development of the future smart city. As Artificial intelligence (AI) growing rapidly, Computer vision (CV) techniques are expected to significantly improve the development of intelligent transportation systems (ITS), which are anticipated to be a key component of future Smart City (SC) frameworks. Powered by computer vision techniques, the converting of existing traffic cameras into connected ``smart sensors called intelligent video analysis (IVA) systems has shown the great capability of producing insightful data to support ITS applications. However, developing such IVA systems for large-scale, real-time application deserves further study, as the current research efforts are focused more on model effectiveness instead of model efficiency. Therefore, we have introduced a real-time, large-scale, cloud-enabled traffic video analysis framework using NVIDIA DeepStream, which is a streaming analysis toolkit for AI-based video and image analysis. In this study, we have evaluated the technical and economic feasibility of our proposed framework to help traffic agency to build IVA systems more efficiently. Our study shows that the daily operating cost for our proposed framework on Google Cloud Platform (GCP) is less than $0.14 per camera, and that, compared with manual inspections, our framework achieves an average vehicle-counting accuracy of 83.7% on sunny days

    Identification through Finger Bone Structure Biometrics

    Get PDF

    Proceedings of the 2021 Symposium on Information Theory and Signal Processing in the Benelux, May 20-21, TU Eindhoven

    Get PDF

    Finger Vein Verification with a Convolutional Auto-encoder

    Get PDF

    Online Geometric Human Interaction Segmentation and Recognition

    Get PDF
    The goal of this work is the temporal localization and recognition of binary people interactions in video. Human-human interaction detection is one of the core problems in video analysis. It has many applications such as in video surveillance, video search and retrieval, human-computer interaction, and behavior analysis for safety and security. Despite the sizeable literature in the area of activity and action modeling and recognition, the vast majority of the approaches make the assumption that the beginning and the end of the video portion containing the action or the activity of interest is known. In other words, while a significant effort has been placed on the recognition, the spatial and temporal localization of activities, i.e. the detection problem, has received considerably less attention. Even more so, if the detection has to be made in an online fashion, as opposed to offline. The latter condition is imposed by almost the totality of the state-of-the-art, which makes it intrinsically unsuited for real-time processing. In this thesis, the problem of event localization and recognition is addressed in an online fashion. The main assumption is that an interaction, or an activity is modeled by a temporal sequence. One of the main challenges is the development of a modeling framework able to capture the complex variability of activities, described by high dimensional features. This is addressed by the combination of linear models with kernel methods. In particular, the parity space theory for detection, based on Euclidean geometry, is augmented to be able to work with kernels, through the use of geometric operators in Hilbert space. While this approach is general, here it is applied to the detection of human interactions. It is tested on a publicly available dataset and on a large and challenging, newly collected dataset. An extensive testing of the approach indicates that it sets a new state-of-the-art under several performance measures, and that it holds the promise to become an effective building block for the analysis in real-time of human behavior from video

    Bayesian edge-detection in image processing

    Get PDF
    Problems associated with the processing and statistical analysis of image data are the subject of much current interest, and many sophisticated techniques for extracting semantic content from degraded or corrupted images have been developed. However, such techniques often require considerable computational resources, and thus are, in certain applications, inappropriate. The detection localised discontinuities, or edges, in the image can be regarded as a pre-processing operation in relation to these sophisticated techniques which, if implemented efficiently and successfully, can provide a means for an exploratory analysis that is useful in two ways. First, such an analysis can be used to obtain quantitative information relating to the underlying structures from which the various regions in the image are derived about which we would generally be a priori ignorant. Secondly, in cases where the inference problem relates to discovery of the unknown location or dimensions of a particular region or object, or where we merely wish to infer the presence or absence of structures having a particular configuration, an accurate edge-detection analysis can circumvent the need for the subsequent sophisticated analysis. Relatively little interest has been focussed on the edge-detection problem within a statistical setting. In this thesis, we formulate the edge-detection problem in a formal statistical framework, and develop a simple and easily implemented technique for the analysis of images derived from two-region single edge scenes. We extend this technique in three ways; first, to allow the analysis of more complicated scenes, secondly, by incorporating spatial considerations, and thirdly, by considering images of various qualitative nature. We also study edge reconstruction and representation given the results obtained from the exploratory analysis, and a cognitive problem relating to the detection of objects modelled by members of a class of simple convex objects. Finally, we study in detail aspects of one of the sophisticated image analysis techniques, and the important general statistical applications of the theory on which it is founded
    • …
    corecore