5 research outputs found

    Segmentation of 3D meshes combining the artificial neural network classifier and the spectral clustering

    Get PDF
    3D mesh segmentation has become an essential step in many applications in 3D shape analysis. In this paper, a new segmentation method is proposed based on a learning approach using the artificial neural networks classifier and the spectral clustering for segmentation. Firstly, a training step is done using the artificial neural network trained on existing segmentation, taken from the ground truth segmentation (done by humane operators) available in the benchmark proposed by Chen et al. to extract the candidate boundaries of a given 3D-model based on a set of geometric criteria. Then, we use this resulted knowledge to construct a new connectivity of the mesh and use the spectral clustering method to segment the 3D mesh into significant parts. Our approach was evaluated using different evaluation metrics. The experiments confirm that the proposed method yields significantly good results and outperforms some of the competitive segmentation methods in the literature.We would first like to thank Xiaobai Chen et al. for providing the Princeton segmentation benchmark (http://segeval.cs.princeton.edu/). We also would like to thank Liu and Hao Zhang et al. for helping us by providing the binary of the AEI and helping us to evaluate our method

    Geometric Approximations and their Application to Motion Planning

    Get PDF
    Geometric approximation methods are a preferred solution to handle complexities (such as a large volume or complex features such as concavities) in geometric objects or environments containing them. Complexities often pose a computational bottleneck for applications such as motion planning. Exact resolution of these complexities might introduce other complexities such as unmanageable number of components. Hence, approximation methods provide a way to handle these complexities in a manageable state by trading off some accuracy. In this dissertation, two novel geometric approximation methods are studied: aggregation hierarchy and shape primitive skeleton. The aggregation hierarchy is a hierarchical clustering of polygonal or polyhedral objects. The shape primitive skeleton provides an approximation of bounded space as a skeleton of shape primitives. These methods are further applied to improve the performance of motion planning applications. We evaluate the methods in environments with 2D and 3D objects. The aggregation hierarchy groups nearby objects into individual objects. The hierarchy is created by varying the distance threshold that determines which objects are nearby. This creates levels of detail of the environment. The hierarchy of the obstacle space is then used to create a decom-position of the complementary space (i.e, free space) into a set of sampling regions to improve the efficiency and accuracy of the sampling operation of the sampling based motion planners. Our results show that the method can improve the efficiency (10 − 70% of planning time) of sampling based motion planning algorithms. The shape primitive skeleton inscribes a set of shape primitives (e.g., sphere, boxes) inside a bounded space such that they represent the skeleton or the connectivity of the space. We apply the shape primitive skeletons of the free space and obstacle space in motion planning problems to improve the collision detection operation. Our results also show the use of shape primitive skeleton in both spaces improves the performance of collision detectors (by 20 − 70% of collision detection time) used in motion planning algorithms. In summary, this dissertation evaluates how geometric approximation methods can be applied to improve the performance of motion planning methods, especially, sampling based motion planning method

    Unsupervised Spectral Mesh Segmentation Driven by Heterogeneous Graphs

    No full text
    A fully automatic mesh segmentation scheme using heterogeneous graphs is presented. We introduce a spectral framework where local geometry affinities are coupled with surface patch affinities. A heterogeneous graph is constructed combining two distinct graphs: A weighted graph based on adjacency of patches of an initial over-segmentation, and the weighted dual mesh graph. The partitioning relies on processing each eigenvector of the heterogeneous graph Laplacian individually, taking into account the nodal set and nodal domain theory. Experiments on standard datasets show that the proposed unsupervised approach outperforms the state-of-The-Art unsupervised methodologies and is comparable to the best supervised approaches. © 1979-2012 IEEE

    Variational Methods and Numerical Algorithms for Geometry Processing

    Get PDF
    In this work we address the problem of shape partitioning which enables the decomposition of an arbitrary topology object into smaller and more manageable pieces called partitions. Several applications in Computer Aided Design (CAD), Computer Aided Manufactury (CAM) and Finite Element Analysis (FEA) rely on object partitioning that provides a high level insight of the data useful for further processing. In particular, we are interested in 2-manifold partitioning, since the boundaries of tangible physical objects can be mathematically defined by two-dimensional manifolds embedded into three-dimensional Euclidean space. To that aim, a preliminary shape analysis is performed based on shape characterizing scalar/vector functions defined on a closed Riemannian 2-manifold. The detected shape features are used to drive the partitioning process into two directions – a human-based partitioning and a thickness-based partitioning. In particular, we focus on the Shape Diameter Function that recovers volumetric information from the surface thus providing a natural link between the object’s volume and its boundary, we consider the spectral decomposition of suitably-defined affinity matrices which provides multi-dimensional spectral coordinates of the object’s vertices, and we introduce a novel basis of sparse and localized quasi-eigenfunctions of the Laplace-Beltrami operator called Lp Compressed Manifold Modes. The partitioning problem, which can be considered as a particular inverse problem, is formulated as a variational regularization problem whose solution provides the so-called piecewise constant/smooth partitioning function. The functional to be minimized consists of a fidelity term to a given data set and a regularization term which promotes sparsity, such as for example, Lp norm with p ∈ (0, 1) and other parameterized, non-convex penalty functions with positive parameter, which controls the degree of non-convexity. The proposed partitioning variational models, inspired on the well-known Mumford Shah models for recovering piecewise smooth/constant functions, incorporate a non-convex regularizer for minimizing the boundary lengths. The derived non-convex non-smooth optimization problems are solved by efficient numerical algorithms based on Proximal Forward-Backward Splitting and Alternating Directions Method of Multipliers strategies, also employing Convex Non-Convex approaches. Finally, we investigate the application of surface partitioning to patch-based surface quadrangulation. To that aim the 2-manifold is first partitioned into zero-genus patches that capture the object’s arbitrary topology, then for each patch a quad-based minimal surface is created and evolved by a Lagrangian-based PDE evolution model to the original shape to obtain the final semi-regular quad mesh. The evolution is supervised by asymptotically area-uniform tangential redistribution for the quads
    corecore