
Università degli Studi di Padova
Department of Mathematics

Ph.D. COURSE IN MATHEMATICAL SCIENCES
CURRICULUM COMPUTATIONAL MATHEMATICS
CYCLE XXX.

Variational Methods and Numerical
Algorithms for Geometry

Processing

Thesis written with the financial contribution of Fondazione Cariparo

Coordinator: Prof. Martino Bardi

Supervisor: Prof. Serena Morigi

Ph.D. student: Martin Huska

Abstract

In this work we address the problem of shape partitioning which enables the decomposition
of an arbitrary topology object into smaller and more manageable pieces called partitions.
Several applications in Computer Aided Design (CAD), Computer Aided Manufactury
(CAM) and Finite Element Analysis (FEA) rely on object partitioning that provides a
high level insight of the data useful for further processing. In particular, we are interested
in 2-manifold partitioning, since the boundaries of tangible physical objects can be
mathematically defined by two-dimensional manifolds embedded into three-dimensional
Euclidean space. To that aim, a preliminary shape analysis is performed based on shape
characterizing scalar/vector functions defined on a closed Riemannian 2-manifold. The
detected shape features are used to drive the partitioning process into two directions
– a human-based partitioning and a thickness-based partitioning. In particular, we
focus on the Shape Diameter Function that recovers volumetric information from the
surface thus providing a natural link between the object’s volume and its boundary, we
consider the spectral decomposition of suitably-defined affinity matrices which provides
multi-dimensional spectral coordinates of the object’s vertices, and we introduce a novel
basis of sparse and localized quasi-eigenfunctions of the Laplace-Beltrami operator called
Lp Compressed Manifold Modes.

The partitioning problem, which can be considered as a particular inverse problem, is
formulated as a variational regularization problem whose solution provides the so-called
piecewise constant/smooth partitioning function. The functional to be minimized consists
of a fidelity term to a given data set and a regularization term which promotes sparsity,
such as for example, Lp norm with p ∈ (0, 1) and other parameterized, non-convex penalty
functions with positive parameter, which controls the degree of non-convexity.

The proposed partitioning variational models, inspired on the well-known Mumford
Shah models for recovering piecewise smooth/constant functions, incorporate a non-convex
regularizer for minimizing the boundary lengths. The derived non-convex non-smooth
optimization problems are solved by efficient numerical algorithms based on Proximal
Forward-Backward Splitting and Alternating Directions Method of Multipliers strategies,
also employing Convex Non-Convex approaches.

iv

Finally, we investigate the application of surface partitioning to patch-based surface
quadrangulation. To that aim the 2-manifold is first partitioned into zero-genus patches
that capture the object’s arbitrary topology, then for each patch a quad-based minimal
surface is created and evolved by a Lagrangian-based PDE evolution model to the
original shape to obtain the final semi-regular quad mesh. The evolution is supervised
by asymptotically area-uniform tangential redistribution for the quads.

Keywords: Shape Analysis, Manifold Partitioning, Variational Methods, Op-
timization Algorithms.

Abstract

In questo lavoro affrontiamo il problema della partizione delle forme il cui scopo è la
decomposizione di un oggetto di topologia arbitraria in parti più piccole e meglio gestibili
chiamate partizioni. Svariate applicazioni in Computer Aided Design (CAD), Computer
Aided Manufactury (CAM) e Finite Element Analysis (FEA) sfruttano tali decomposizioni
in quanto forniscono un’informazione globale sulla forma. In particolare, siamo interessati
al partizionamento di varietà topologiche di dimensioni 2, in quanto il bordo di oggetti
fisici tangibili può essere definito matematicamente da varietà bidimensionali immerse
nello spazio euclideo tridimensionale. A tale scopo, viene eseguita un’analisi preliminare
sulla forma che fa uso di diverse funzioni scalari/vettoriali definite sulla varietà. Il processo
di partizionamento si può affrontare da due punti di vista: uno basato sulla percezione
visiva umana e un altro basato sullo spessore delle componenti della forma in esame. In
particolare, ci concentriamo sulla funzione ’Diametro di forma’ che recupera informazioni
volumetriche dalla superficie, fornendo così un naturale legame tra il volume dell’oggetto e
il suo bordo; inoltre studiamo la decomposizione spettrale di opportune matrici di affinità
che fornisce coordinate spettrali multidimensionali caratterizzanti la forma dell’oggetto;
infine introduciamo una nuova base, denominata Lp Compressed Manifold Modes, di
quasi-autofunzioni sparse e localizzate dell’operatore Laplace-Beltrami.

Il problema di partizionamento può essere considerato un particolare problema inverso,
pertanto è fomulato come un problema di regolarizzazione variazionale che ha come
soluzione la cosiddetta funzione di partizionamento. Il funzionale da minimizzare è somma
di un termine di fedeltà a un determinato set di dati e di un termine di regolarizzazione
che promuove la sparsità, come ad esempio la norma Lp con p ∈ (0, 1) o altre funzioni di
penalizzazione non convesse e parametrizzate, con parametro positivo, che controlla il
grado di non convessità.

I metodi proposti per ottenere la funzione di partizione, ispirati ai modelli variazionali
di Mumford-Shah di funzionali costanti o smooth a tratti, incorporano un regolarizzatore
non convesso per ridurre al minimo le lunghezze del contorno delle partizioni. Per la
soluzione dei problemi di ottimizzazione non convessi e non smooth si propongono metodi

vi

numerici basati su Proximal Forward-Backward Splitting, Alternating Directions Method
of Multipliers e strategie Convex Non-Convex.

Inoltre, studiamo un’applicazione del partizionamento di forma nell’ambito della patch-
based surface quadrangulation. A questo scopo la varietà viene prima suddivisa in patch di
genere zero che catturano la topologia arbitraria dell’oggetto, quindi per ogni patch viene
creata una superficie minima ad elementi quadrilateri che si evolve secondo un modello
differenziale alle derivate parziali, seguendo un approccio Lagrangiano per ottenere una
rappresentazione a griglie quadrilatere semi-regolari. L’evoluzione è supervisionata da
una ridistribuzione tangenziale uniforme dell’area-asintotica dei quadrilateri.

Parole Chiave: Analisi della Forma, Partizionamento di Varietà, Metodi Vari-
azionali, Algoritmi di Ottimizzazione

Table of contents

1 Introduction 1

2 Variational Formulation of the Shape Partitioning Problem 7
2.1 Mumford-Shah Variational Models . 10

3 First Order Optimization Methods 13
3.1 Convex Optimization Methods . 14
3.2 Non-Convex Optimization Methods . 21
3.3 Convex-NonConvex Strategy . 23

4 Spatial Discretization 25
4.1 Discrete Differential Operators . 27
4.2 Quad-based Finite Volumes Spatial Discretization 32

5 Shape Analysis 35
5.1 Meshless approach to SDF computation by particles flow 35

5.1.1 SDF: Examples . 41
5.2 Affinity Matrix . 49
5.3 Compact Support LpCMs as Localized Shape Descriptors 52

5.3.1 The sparsity-inducing variational model for LpCMs 55
5.3.2 Discretization of the variational model 59
5.3.3 Applying ADMM to the proposed model 61

6 Shape Partitioning 67
6.1 Sparsity-Inducing Non-Convex Variational Shape Partitioning 69

6.1.1 Discretization of the SMCMR model 72
6.1.2 Algorithm SMCMR . 75

6.2 Localized Shape Descriptors in Non-Convex Shape Partitioning 77
6.3 Convex Non-Convex approach in Segmentation over Surfaces 81

viii Table of contents

6.3.1 Non-convex penalty functions . 82
6.3.2 Convexity Analysis . 83
6.3.3 Applying ADMM to the proposed CNC model 85

6.4 Experiments on the Partitioning Algorithms 89
6.4.1 Data Set and Hardware Specifications 89
6.4.2 Experimental results of SMCMR Framework 91
6.4.3 Experimental Results of Partitioning Driven by Lp Compressed

Modes . 96
6.4.4 Experimental Results of CNC Segmentation on Surfaces 102

7 Application in Surface-Patch Quadrangulation 109
7.1 Related Work . 110
7.2 Mesh Partitioning . 112
7.3 Build of the Topology Skeleton . 113

7.3.1 Step 1: Construction of the boundaries of Si 113
7.3.2 Step 2: Discretization of the boundaries into rectangular topology 114
7.3.3 Step 3: Construction of the topology-skeleton S 117

7.4 Skeleton Evolution . 118
7.4.1 Lagrangian Evolution . 118
7.4.2 Numerical scheme . 123

7.5 Numerical experiments . 128
7.5.1 Example 1: Mesh Quadrangulation 129
7.5.2 Example 2: Different resolutions 131

8 Conclusions 135

References 139

Appendix A Proofs in Section 5.3 on Lp Compressed Manifold Modes 149

Appendix B Proofs in Section 6.3 on the CNC Approach in Segmentation
Over Surfaces 155

Appendix C Proofs in Section 7.4 on the Tangential Evolution 161

Chapter 1

Introduction

The recent development of 3D scanning technology for reverse engineering and sophis-
ticated scan devices for medical imaging, have incredibly increased the generation and
availability of digital models of 3D physical objects simply represented by a set of 3D
points on the surface of the object. These raw 3D data connected into spatial triangula-
tions, called 3D meshes, provide only local information on the structure of the overall
surface. A high level insight of the raw 3D data set is required to make the digital model
useful for further processing required in a variety of applications including computer
graphics, computer-aided design (CAD), computer-aided modelling (CAM), computer-
aided engineering (CAE) and computer vision. At this aim, shape analysis is preliminarily
applied to detect high level model features, that can be useful for further tasks such as
shape comparison, classification and retrieval or even the simple reconstruction of the
data as a consistent CAD model.

Driven by the shape analysis, the 3D object partitioning is one of the fundamental
geometry processing which provides a global insight on the model structure that can
be exploited to deduce some depth level insight on the model. The 3D data points are
partitioned into non-overlapping parts covering the entire object, which represent distinct
attribute values of the virtual object. There are numerous object partitioning techniques
based on various shape attributes. The most used features are principal curvatures, mean
and Gaussian curvature, dihedral angles, normal directions, and so on. In [51] the authors
proposed a survey of existing local shape descriptors. Specific criteria dictate which
elements belong to the same partition and these criteria are built upon the segmentation
objective which in turn depends on the application.

Convexity/Concavity and thickness are popular shape criteria used in object decom-
position. The convexity-driven segmentation of a shape finds a very intuitive match
with the decomposition of an object made by the human vision system [31, 130]. This is

2 Introduction

to the fact that an approximate convex decomposition can more accurately represent
the important structural features of the model by ignoring insignificant features, such
as wrinkles and other surface texture. Unlike, the thickness of parts of a shape is a
less intuitive detection strategy for a human eye. Nevertheless, this geometry feature
represents a strategic quantity in shape analysis in the context of industrial design and
production. In the field of industrial production of 3D models, in fact, the measuring of
the thickness of different parts of an object is of fundamental importance to be able to
better estimate the cost of production of molds that allow to realize the object with the
desired shape, and then to estimate the cost of production of the objects themselves.

Much work has been done on approximate decomposition of a shape into convex
components. Concavity-aware partitioning is proposed in [5] and [76]. In Asafi et al.
[3] weakly convex components are obtained by a point-visibility test. The same idea is
followed in [61] to approximate convex components of shape represented by, eventually
incomplete, point clouds.

Partitioning methods based on spectral analysis emphasize mostly the concavity
attribute, being able to partition even shallow concavities. The spectral analysis method
uses the eigenvalues of properly defined matrices based on the connectivity of the graph
in order to partition a mesh. Liu and Zhang [78] use spectral analysis on the dual graph
of the mesh. They define an affinity matrix using both geodesic distances and angular
distances as proposed by the fuzzy clustering method in [63]. This type of matrix has
been used successfully for clustering since it groups elements having high affinity, see for
example [130].

The basis generated by the eigenfunctions of Laplace-Beltrami Operator LBO, used
in [130], called Manifold Harmonic Basis (MHB), has been proposed in [118] in analogy
to Fourier analysis.

However, in the shape partitioning context, rather than a multiresolution repre-
sentation of the shape, which is the peculiarity of the MHB on manifolds, the focus
is on identifying the observable features of the manifold which represent for example
protrusions, ridges, details in general localized in small regions.

Hence, in the partitioning context, a more suitable alternative to the MHB is repre-
sented by the Compressed Manifold Basis (CMB), introduced in [88], which is character-
ized by compact support quasi-eigenfunctions of the LBO obtained by imposing sparsity
constraints.

Focusing on thickness as a segmentation property, the Shape Diameter Function
(SDF), proposed in [108], is a measure of thickness that recovers volumetric information
from the surface boundaries, thus providing a natural link between the object’s volume

3

and its boundary. The SDF is a scalar function which maps for every point on the
surface its distance to the opposite inner part of the object. As successfully proved in
[108] this definition of the SDF is invariant to rigid body transformations of the whole
object, and very robust to any deformation that does not alter the volumetric shape
locally. This consistency over pose changes made SDF a very attractive shape-attribute
for partitioning of a 3D object. Moreover, there is also a noticeable connection between
SDF and Medial Axis, since distance from a point to Medial Axis is approximately half
of the SDF value in the point. We will refer to this shape descriptor also as SDF map
of a 3D object, whose target is not to mimic the partitioning of an object made by the
human vision system into perceptually meaningful components, but rather to define a
thickness-oriented partitioning.

In addition to the criteria deduced by the shape analysis that dictate the rules of the
division into parts, the partitioning methods can be grouped into a few categories accord-
ing to their computational methodology: (i) Region growing; (ii) Watershed-based; (iii)
Reeb graphs; (iv) Model-based; (v) Skeleton-based; (vi) Clustering; (vii) Spectral analysis;
(viii) Explicit Boundary Extraction; (ix) Critical points-based; (x) Multiscale Shape
Descriptors; (xi) Markov Random Fields and (xii) Variational partitioning/segmentation.
A detailed analysis of the aforementioned categories is given in [1] and exhaustive surveys
are provided in [4],[107].

The concept of iteratively seeking a partition that minimizes a given error metric,
named variational partitioning, has been introduced in [35] where the authors presented
an optimization cost function based on clustering face normal of the mesh. Since
then, several variational mesh partitioning have been proposed mostly for surface-based
segmentation. In [128] a variational mesh segmentation framework based on fitting
general quadrics (including planes as a special case) is proposed. Wu and Kobbelt [125]
extend [35]’s work by introducing sphere, circular cylinder and rolling ball patch as basic
primitives. An important result on part-based segmentation has been presented in [130],
where a convexified version of the variational Mumford-Shah model is presented and
extended to 3D meshes. The cost function contains a data term measuring the variation
within a segment and a regularization term based on the total variation of the gradient,
measuring the length of the boundary between segments.

In this work, we present a study in the wide field of object partitioning via variational
methods. In particular, we deal with the 2-manifold partitioning which mimics the human

4 Introduction

vision system with possible adjustment to obtain a patch-based manifold partitioning, and
in addition, we address the thickness-oriented partitioning which is commonly applied,
in contrast to the one driven by human-vision system, in industrial applications.

Summarizing, the contributions in this thesis can be grouped into following topics:

1. Shape Analysis
We realize a numerical method to evaluate the so-called Shape Diameter Function
that recovers the volumetric information of an object from a closed surface, thus,
forming a natural connection of the object’s volume and its boundary; Section 5.1,
presented in [58].
Next, we propose the spectral decomposition of an appropriately defined Affinity
matrix that allows for obtaining a multidimensional spectral coordinates of the
surface; Section 5.2, presented in [59].
At last, we introduce a new orthonormal basis of sparse quasi-eigenfunctions of
the Laplace-Beltrami operator by interpreting a sparsity-inducing term in the
variational formulation used for obtaining the so-called Compressed Manifold
Modes; Section 5.3, presented in [56].

2. Decomposition Variational Models
We focus on a new variational formulation of the partitioning problem where the
functional to be minimized, similarly to the Mumford-Shah models, consists of a
fidelity term to the observed data and a regularization term where we propose a
sparsity-inducing penalty either to the solution or to its gradient using Lp norm
with p ∈ (0, 1) to minimize the boundary lengths between segmented parts; Chapter
6, presented in [59, 56, 55].
The resulting functionals turn out to be non-convex or even non-differentiable thus
requiring particular care in the study of resolvability of the problem itself and in
its numerical solution.

3. Numerical Optimization
We propose efficient and effective numerical algorithms for solving the non-convex
decomposition problem, using techniques of proximal operators, Forward-Backward
scheme, and methods based on Alternating Directions Method of Multipliers. We
promote the Convex Non-Convex strategy which admits a non-convex regularization,
while maintaining the overall functional convex via a suitable tuning of the model
parameters; Sections 6.1, 5.3, 6.3, presented in [59, 56, 55].

4. Applications to Patch-Surface Quadrangulation
We focus on an application of the surface decomposition into zero genus patches to

5

the reconstruction of a quadrilateral, semi-regular mesh.
To that aim, we utilize a Lagrangian PDE surface evolution model with supervised
tangential redistribution of the points towards asymptotically uniform areas of the
surface; Chapter 7, presented in [57].

Overall, the work is organized as follows. In Chapter 2 we introduce the variational
formulation for of the shape partitioning problem, in Chapter 3 we present some optimiza-
tion methods that provide solutions to convex and non-convex optimization problems.
Then in Chapter 4 we present the discretization of an embedded 2-manifold in R3 as
well as the discretization of differential operators defined on surfaces that will be used
throughout the next chapters. In Chapter 5 we analyse the so-called shape descriptors
which drive the Partitioning procedures described in Chapter 6 and we conclude with an
application of the Partitioning in Patch-Surface Quadrangulation summarized in Chapter
7.

Chapter 2

Variational Formulation of the
Shape Partitioning Problem

This work is devoted to variational models and their related numerical algorithms
for solving geometry processing problems. Variational approaches allow us to solve
many inverse problems by minimization and regularization using different tools from
optimization, numerical analysis, scientific computing and utilizing knowledge about
the model, geometry constraints and a priori information. The variational method with
regularization has been proved to be one of the most powerful techniques for solving many
image processing tasks [119]. More recently, many variational regularization approaches
have been proposed in geometry processing to solve important problems such as surface
reconstruction [11], fairing [85], simplification [84] and partitioning [130].

Our work is focused on the shape partitioning problem by variational regularization
methods. The aim is to partition a shape into its main constituent parts for further
analysis and understanding. Shape partitioning is used in CAD, finite element method
(FEM) and many others computer graphics and vision applications.

The variational approach proposes to compute an approximated solution u ∈ Ω by
minimizing an error metric defined by a functional J (u)

min
u∈Θ
{J (u) := F(u)} . (2.1)

The functional F named fidelity it captures the error metric in terms of closeness to
the observed data f . Common choices for the fidelity term are the Euclidean L2 norm

8 Variational Formulation of the Shape Partitioning Problem

and the L1 norm

F(u) = ∥F (u)− f∥2
2 ,

F(u) = ∥F (u)− f∥1 , (2.2)

for F (·) a possible continuous linear operator which definition depends on the problem
assumed.

When dealing with inverse problems one usually add constraints on the solution for
expressing certain prior knowledge into the optimization problem. A regularization term
(or regularizer) R(u) is added to the functional (2.1), which now reads as

min
u∈Θ
{J (u) := F(u) + µR(u)} (2.3)

where µ > 0 is a weighting parameter balancing the trade-off between F and R, often
referred to as the regularization parameter.

The usual requirements are on the smoothness and sparsity of the solution or of its
gradient. Popular convex choices for R(·) are the L2 norm and L1 norm terms which
read as

R(u) = ∥u∥2
2 , R(u) = ∥∇u∥2

2 , (2.4)
R(u) = ∥u∥1 , R(u) = ∥∇u∥1 . (2.5)

The L1 norm penalty (2.5) is the commonly used convex relaxation of the L0 pseudo-norm,
while the non-convex Lp norm for 0 < p < 1 leads to a pure non-convex regularization
term

R(u, p) = ∥u∥p , R(u, p) = ∥∇u∥p . (2.6)

The penalty functions are applied either on the function values or its gradient,
producing different results in the function smoothness and sparsity. In addition to the
Lp norm, other similar-in-shape parametrized functions φ(t, a) have been introduced in
recent literature [89, 30] such as

φlog(t; a) = log(1 + at)
a

, φrat(t; a) = t

1 + at/2 , φatan(t; a) =
atan

(
1+2at√

3

)
− π

6

a
√

3/2
(2.7)

where the concavity parameter a controls their shape from nearly convex for a→ 0+ to
strongly non-convex for a≫ 0. These parametrized functions satisfy appealing properties
that will be discussed in Section 6.3.1.

9

t
2

|t|

t
0.7

t
0.3

Log (1+0.5 t)
0.5

Log (1+2.5 t)
2.5

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.5

1.0

1.5

2.0

2 4 6 8

2

4

6

8

Fig. 2.1 Plots of different penalty functions, for small t values (left), for large t values
(right).

The effect of the regularization can be illustrated in Fig. 2.1 where we visualize
the plots of L2 norm, L1 norm, Lp norm for p = 0.7 and p = 0.3, and the logarithmic
penalty function φlog(t; a) for concavity parameter a = 0.5 and a = 2.5. Focusing on these
penalties, the L2 norm strongly penalizes large values and mildly the small ones. The L1

norm slightly improves the L2 norm penalty by penalizing more small values around zero,
Fig. 2.1 left, but still the large values are quite strongly penalized, thus, for example
the original large values (intensities) are also decreased. The L1 norm enlightens the
concept of sparsity, as those function values that are small, are strongly penalized unless
they diminish to zero. The Lp norm, as p goes to zero, enforces this concept of sparsity.
Small function values are penalized even more, while the large ones, Fig. 2.1 right, are
not penalized so strongly, as in L1 or L2 case, thus, the original expected intensities are
better preserved. At last, the φlog(t; a) parametrized penalty function acts in-between L1

and Lp norm, as for the concavity parameter a→ 0+, it asymptotically converges to L1

norm, and with increasing a, it gets more concave, having similar properties to Lp norm
with p < 1.

The penalties in (2.6) and (2.7) are non-convex functions. Therefore, one can no
longer deploy the classical tools for convex optimization, but has to turn to different
theoretical and numerical strategies.

In case the regularization is applied to the magnitude of the function gradients, the
L2 norm penalty acts as diffusion, the L1 norm penalty creates a piecewise-constant
functions with smoothed jumps in function gradients, while the non-convex penalty leads
to a piecewise-constant functions, with better preserved jumps in function gradient.

10 Variational Formulation of the Shape Partitioning Problem

In this work we strongly take advantage of non-convex penalties in variational shape
partitioning. In particular, we adopt a two steps approach that consists of the following
steps:

1. Regularization and reconstruction of the observed data producing the partitioning
function u. More precisely, the approximated solution u∗ will be obtained by
minimizing a variational model of the form

u∗ = arg min
u
{J (u) = F(u) + µR(u)} . (2.8)

2. Apply a thresholding strategy or a similar simple clusterization method, e.g. K-
means, on the partitioning function u∗, to produce the final decomposition into K
parts.

Eventually, the tracking/smoothing of the partitions’ boundary can be required,
according to the application context.

A state-of-the-art variational model that can be written in form (2.8) is the well-known
Mumford-Shah functional introduced in [86] for image segmentation. In the following
we briefly provide its overview since this model has strongly motivated the partitioning
variational models proposed in this work.

2.1 Mumford-Shah Variational Models

Let Ω ⊂ Rd be a given bounded open set and f : Ω→ Rd a measurable function on it.
The Mumford-Shah functional provides a partition Ω = Ω1 ∪Ω2 ∪ · · · ∪ΩK of the domain
Ω with respect to f such that

(ι) the function f varies smoothly and/or slowly within each Ωi

(ιι) the function f varies discontinuously and/or rapidly across most of the boundary
Γ ⊂ Ω between different Ωi.

The problem is formulated as the minimization of the following functional

J (u,Γ) =
∫

Ω
|f − u|2dΩ + µ Length(Γ) + η

∫
Ω\Γ
|∇u|2dΩ, (2.9)

which is known as the piecewise-smooth Mumford-Shah model.

2.1 Mumford-Shah Variational Models 11

This model approximates f by a piecewise-smooth function u : Ω → Rd whose
restrictions ui to the pieces Ωi of a partition i are continuous or differentiable everywhere
and maybe discontinuous across the (d− 1)-dimensional jump set Γ. The weight µ > 0
controls the length of the jump set Γ and η > 0 enforces the smoothness of u away from
Γ. The second term in (2.9) imposes that the boundaries Γ be as short as possible. The
first term in (2.9) is the so-called fidelity term, which represents the closeness of u to
the observed data f . The restriction of (2.9) for the limiting case η →∞, imposes zero
gradient outside Γ, that is u is required to assume the constant value f̄i on each connected
component Ωi. The resulting minimization problem, known as the piecewise-constant
Mumford-Shah model, often referred to as the special case of the Chan-Vese model [29],
considers the following functional

J (Γ) =
K∑
i=1

∫
Ωi

|f − f̄i|2dΩ +
K∑
i=1

µ Length(Γi) (2.10)

where Length(Γi) = |∂Ωi| and f̄i := meanΩi
f . The minimization of the functionals (2.9)

or (2.10) represents a non-convex optimization problem due to the second term, so the
obtained solutions are in general local minimizers.

In [27] the authors presented a convex relaxation of the Mumford-Shah model in the
form

J (u) =
∫

Ω
|u(x)− f |2dΩ + µ

∫
Ω
|∇u|dΩ , (2.11)

which is proved to be equivalent to the solution of (2.10). This result on convex relaxation
led to new studies that improve the model (2.11) [99, 72]. Nevertheless, recently, non-
smooth, non-convex functionals have shown remarkable advantages over convex ones,
for example in the image restoration context; theoretical explanation and numerical
examples can be found in numerous articles [69],[91],[68].

We introduce a general form of the piecewise-smooth Mumford-Shah functional,
applied to the so-called partitioning function u, that will be considered in this work as

J (u) =
∫

Ω
|f − u|2dΩ + µ

∫
Ω
φ(|∇u|)dΩ + η

∫
Ω
|∇u|2dΩ (2.12)

where the first term represents the fidelity to the observed data f produced by preliminary
shape analysis techniques, the second term approximates the measurement of the boundary
lengths via the regularization of u through a non-convex penalty function φ(·), weighted
by the parameter µ > 0. The last term represents the quadratic regularization of the
gradient of u, thus smoothing the gradient away from the boundary.

12 Variational Formulation of the Shape Partitioning Problem

The usual choice for the penalty function φ(·) in (2.12) is the L1 norm that leads
to the well known Total Variation (TV) regularizer [22]. Nevertheless, in this work, we
focus on different, non-convex choices for φ(·) as the sparsity-inducing Lp pseudo-norm
for 0 < p < 1 or a set of non-convex parametrized function penalties that are described
in Section 6.3.1.

Moreover, let us notice that the piecewise-constant relaxed Mumford-Shah functional
is obtained from (2.12) by setting η = 0.

The variational model (2.12) and its variants will be applied both on the partitioning
of 3D shape and to the segmentation of scalar fields defined over a 2-manifold. 2D images
mapped over surfaces are special cases of the latter context. For example QR-codes
mapped on the object’s surface.

Chapter 3

First Order Optimization Methods

In this chapter we present some recent first-order numerical optimization methods for
the solution of convex/non-convex and possibly non-smooth unconstrained minimization
problems with cost-function J (u) defined as

u∗ = arg min
u∈Θ
{J (u) := F(u) + µR(u), u ∈ Θ} (3.1)

where the parameter µ > 0 controls the trade-off between the fidelity term F(u) and the
regularization term R(u) which stabilizes the inverse problem.

The set Θ is a finite dimensional Euclidean space with inner product ⟨·, ·⟩ and norm
∥ · ∥ = ⟨·, ·⟩1/2. For a convex J (·), the natural optimization strategy is to apply a method
from the well-known convex optimization tools and thus to use results from convex
analysis that provide a unique, global minimizer for (3.1). In case J (·) is non-convex,
we can still utilize convex optimization methods, or the ones devised for the non-convex
optimization. However, the solution provided by these numerical methods applied to
non-convex functional results in a minimizer that depends on the initialization and the
convergence is guaranteed to the local minima only. Since, as we will see in the next
chapters, the shape partitioning is neater if the regularization term is non-convex rather
then if it is convex, in order to maintain convexity of the objective function J (u) while
using non-convex regularizers, we can follow the Convex Non-Convex (CNC) strategy to
derive conditions on the parametrized penalty functions φ(t, a) that guarantee that the
overall objective functional J (u) is convex.

We restrict this brief survey to the First-Order Methods (FOM), which are iterative
methods that only exploit information of the objective function and its gradient (sub-
gradient) and converge rather slowly. However, for very large-scale optimization problems,
as the considered shape partitioning problem, usually a fast lower-precision solution is

14 First Order Optimization Methods

favoured. Appropriate references to the methods described in this chapter can be found
in various literature, see for example [9, 18, 44, 19, 94, 26, 109].

3.1 Convex Optimization Methods

We first recall a basic result on the existence and uniqueness of a solution to the problem
(3.1), see [36]. Under the following assumptions

(ι) F(u) and R(u) are proper, lower semi-continuous and convex

(ιι) F(u) is differentiable with ∇F(u) is Lipschitz continuous with constant L

(ιιι) J (u) is coercive

problem (3.1) possesses at least one solution. Moreover, if J (u) is strictly convex, the
solution is unique.

In the following we briefly describe the most representative first order methods and
strategies used in case of optimization problems with splitted objective function in the
form (3.1).

Gradient Descent Method

In case J is convex and smooth, the simplest and the most straightforward method to
solve (3.1) is to follow the gradient-descent or steepest descent method, probably one of
the oldest optimization methods, which generates a sequence {uk} for initialized u0 as
follows

uk+1 = uk − α∇J (uk) , k = 0, 1, . . . (3.2)

where the scalar parameter α > 0 stands for a suitable step-size in the steepest-descent
direction, which can be either constant or varying throughout the iterations in a more
sophisticated way.

The iterations (3.2) create a sequence u0, u1, . . . , such that J (u0) ≥ J (u1) ≥
After k iterations uk will be close enough to a minimizer. In case of non-differentiable J ,
the gradient is replaced by the subgradient at the points which are not differentiable.
On the other hand, the subgradient method [109] results in the same steepest directions
at differentiable points.

3.1 Convex Optimization Methods 15

Proximal Gradient Method

This method is useful in particular when dealing with a functional defined in the form (3.1)
with F(u) and R(·) proper, convex, and J (u) that can be splitted into a differentiable
part F(·) and a possibly non-differentiable term R(·). Such splitting is not unique as
it can be performed in various way, thus, leading to different implementations when
applied.

The k-th iteration of the proximal gradient method reads as follows

uk+1 = proxαkR

(
uk − αk∇F(uk)

)
(3.3)

where αk > 0 is the step-size scalar parameter and the proximal operator proxαf (x) of a
convex function f at x with positive parameter α is defined as

proxαf (x) = arg min
u

(
f(u) + 1

2α∥u− x∥
2
2

)
. (3.4)

Many FOM methods are based on finding the minimizer of a quadratic approximation
Qα(u, x) to J (u) which consists of sum of the regularization term R(u) and the quadratic
approximation to the fidelity F(u) at a given point x defined as

Qα(u, x) := F(x) + ⟨u− x,∇F(x)⟩+ 1
2α∥u− x∥

2
2 + µR(u) (3.5)

where α > 0 represents the step-size. Applying the proximal operator defined in (3.4)
to (3.3), we obtain

uk+1 = arg min
u

{
µR(u) + 1

2α
u− (uk − α∇F(uk)

)2

2

}
(3.6)

that can be rewritten into the following form

uk+1 = arg min
u

{
F(uk) +

⟨
u− uk,∇F(uk)

⟩
+ 1

2α∥u− u
k∥2

2 + µR(u)
}
, (3.7)

which exactly coincides with the minimization of the quadratic approximant Qα(u, uk)
in (3.5) evaluated at the previous time-step uk.

Let F(u) be a differentiable function and∇F(u) be Lipschitz continuous with constant
L > 0, i.e.

∥∇F(u)−∇F(x)∥2 ≤ L∥u− x∥2 , ∀u, x ∈ Θ .

16 First Order Optimization Methods

Assuming that the step-size is in the interval αk ∈ (0, 1/L] or estimated through the
line search, the sequence {uk} generated by the proximal gradient method (3.3) converges
to an optimal solution u∗ of the problem (3.1), not necessarily unique, with convergence
rate of order O(1/k), see Th. 1.2 in [9]. However, the typical line search parameter value
used is 1/2.

The method itself is a generalization of other well-known approaches, as it reduces
for F = 0 to proximal minimization [94] and for R = 0 to the classical gradient-descent
algorithm.

Forward-Backward Splitting Method

The forward-backward splitting method can be derived from the relative difference
between two successive iterations of the gradient-descent method

uk+1 − uk

α
= −∇F(uk)−∇R(uk+1) (3.8)

where the gradient ∇F is evaluated explicitly from iteration k (forward step) while the
gradient ∇R is implicit at iteration k+1 (backward step). Rearranging (3.8), one obtains
the known formula of Forward-Backward splitting that can be written into a two-step
iteration as

Fw. step : xk+1 = (I − α∇F)uk

Bw. step : uk+1 = (I + α∇R)−1xk+1 (3.9)

= arg min
u

{
R(u) + 1

2α∥u− x
k+1∥2

2

}
(3.10)

= proxαR(xk+1) ,

which exactly coincides with the Proximal Gradient Iteration.
Assuming that the problem (3.1) has a solution and that the time-step α is in the

interval α ∈ (0, 2/L), the sequence {uk} generated by the F-B Splitting Method converges
to a solution of problem (3.1). This is proved in [36] for the case of the proximity operator
in (3.10) available in exact form, and in [120] when it can only be approximated up to a
certain precision. The convergence rate is of order O(1/k).

Iterative Shrinkage-Thresholding Algorithms

The class of iterative shrinkage-thresholding algorithms (ISTA) is related to forward-
backward splitting method. The shrinkage-thresholding algorithms were designed under

3.1 Convex Optimization Methods 17

the assumption that J (u) can be splitted into convex, smooth F(u) and convex, possibly
non-smooth R(u) parts, moreover, R(u) is considered simple, separable function in form

R(u) =
n∑
i=1
Ri(ui) . (3.11)

This assumption allows to split the minimization problem into n one-dimensional problems
that are solved via a shrinkage operator or a thresholding defined as

Tα(x)i = (|xi| − α)+ sgn(xi) .

The most popular algorithm accelerating ISTA is Fast ISTA (FISTA) [8], however,
the idea of accelerating ISTA was first introduced by Nesterov in [87] ISTA represents
an extension to the gradient descent method with acceleration that aims to solve the
problem (3.1) via minimization of the quadratic approximation Qα(u, x) in (3.5) to J (u)
defined as

pα(x) = arg min
u
{Qα(u, x)} . (3.12)

By ignoring the constant terms, we can rewrite (3.5) as

pα(x) = arg min
u

{
µR(u) + 1

2α ∥u− (x− α∇F(x))∥
}
, (3.13)

from which the iteration k of ISTA reads as

uk+1 = pα(uk) . (3.14)

Since the R(u) term is separable, the computation of uk+1 reduces to solving a one-
dimensional minimization problem for each of its components, which by simple calculus
produces

uk+1 = Tα
(
uk − α∇F(uk)

)
where Tα is the shrinkage operator.

Assuming the problem (3.1) has at least one solution, and that the step-size α ∈
(0, 1/L) then the sequence {uk} converges to a minimizer of J (u) with convergence rate
order of O(1/k).

ISTA speeds up the convergence of sub-gradient and proximal gradient methods under
the assumption (3.11).

FISTA [8] on the other hand, instead of the actual iteration uk+1 uses in its iteration
a specific combination of uk+1 and uk and sets the relaxation parameter α automatically

18 First Order Optimization Methods

and iteratively as αk = tk−1
tk+1 . The iteration k for initialized u0, x0 = u0 and t0 = 1 reads

uk+1 = pα(xk) in (3.13)

tk+1 =
1 +

√
1 + 4(tk)2

2
xk+1 = uk+1 + αk(uk+1 − uk) . (3.15)

FISTA speeds up the convergence rate of ISTA to O(1/k2), thus the convergence of
sub-gradient and proximal gradient methods as well. The assumption (3.11) of splitting
R to easier, lower dimensional problems still holds in this case.

Alternating Minimization Methods

In this category we recognize various methods based on the Lagrangian, its variations
and splitting strategies that enclose methods as Augmented Lagrangian (ALM) [12] ,
Alternating Directions Method of Multipliers (ADMM) [18] or the Split-Bregman Method
[45].

The Augmented Lagrangian method, often referred to as the Multipliers Method, was
derived from the classical penalty method. The aim is to solve the optimization problem

min
u∈Θ
{J (u) := F(u) + µR(Au)} , (3.16)

with A a given linear map defined in Θ. The unconstrained optimization problem
(3.16) is equivalent via the standard variable splitting/substitution trick to the equality
constrained problem in form

min
u∈Θ, x∈Θ1

{J (u) := F(u) + µR(x)}

s.t. Au = x . (3.17)

The main difference from the penalty method is that the quadratic penalty function is
not added to the cost function itself, but rather to the Lagrangian of the problem that is
defined as follows

L(u, x; ρ) = F(u) + µR(x) + ⟨ρ,Au− x⟩+ β

2 ∥Au− x∥
2
2 (3.18)

where ρ represents the dual variable of Lagrangian multipliers associated to the so
called consensus constraint Au = x, and β > 0 is additional trade-off penalty parameter
associated with the quadratic penalty term. The Augmented Lagrangian function defined

3.1 Convex Optimization Methods 19

in (3.18) represents a sort of classical Lagrangian penalized with a quadratic term and is
equivalent to the Lagrangian of the problem

min
u∈Θ, x∈Θ1

{
J (u) := F(u) + µR(u) + β

2 ∥Au− x∥
2
2

}
s.t. Au− x = 0 . (3.19)

The main idea behind ALM is that minimization of the classical Lagrangian for
problem (3.17) is difficult to handle, however, its penalized version (3.18) by a quadratic
term is an easier task. The iterations of the Augmented Lagrangian algorithm read as
follows

(uk+1, xk+1) = arg min
u,x
L(u, x; ρk)

ρk+1 = ρk + β(Auk+1 − xk+1) . (3.20)

In (3.20), the issue arises when the optimization of F +R in the original functional in
(3.17) is not easy to perform, while it is easy for F and R separately.

The original ALM leads to joint minimization of L in two variables u and x what
can be a challenging task. Another popular optimization algorithm is the so-called
Alternating Directions Method of Multipliers (ADMM).

In ADMM the solution of the saddle-point problem defined in (3.18) is determined
by minimizing alternatively w.r.t. u and x as follows

uk+1 = arg min
u
L(u, xk; ρk)

xk+1 = arg min
x
L(uk+1, x; ρk)

ρk+1 = ρk + β(Auk+1 − xk+1) , (3.21)

with initialized ρ0 and x0.
The advantage of the above iterations is that at iteration k, the update is done by

minimizing over just one variable, while keeping the others fixed in the most recent
values, thus, solving a lower dimensional problem that is also presumably easier to solve.

The sub-problems in (3.21) can be reformulated in terms of the proximal operator as

uk+1 = prox 1
β

F(xk − ρk)

xk+1 = prox 1
β

R(uk+1 + ρk)

ρk+1 = ρk + β(Auk+1 − xk+1) . (3.22)

20 First Order Optimization Methods

Under the assumption that F(u) and R(u) are closed, proper and convex; and
assuming the Augmented Lagrangian L in (3.18) has a saddle point, then the ADMM
iterates (3.21) converge to (u∗, x∗) that is the solution of (3.17) while strong duality
for ρ∗ holds, without any additional assumptions on A [18, 44]. The obtained solution
(u∗, x∗) does not necessarily has to be optimal.

The ADMM framework is popular also for non-convex optimization problems, however,
there is no general theory for convergence in presence of non-monotone operators or non-
convex functionals to be optimized [44]. The recent development [52, 75, 123] suggests
that a general convergence theory in the non-convex case may be developed, although,
for some specific problems it may be still not possible to successfully prove convergence
of ADMM-based algorithms.

Primal-Dual Algorithm

The Primal-Dual strategy was introduced for additional structures present in J . In
particular, the presence of a linear continuous operator A defined in Θ and applied on
u in one of the functionals F(Au) such that its presence makes the evaluation of the
proximal operator for F(Au) non-trivial.

Thus, the primal problem is defined as

min
u
{F(Au) +R(u)} . (3.23)

Let us recall the convex Legendre conjugate for F

F∗(y) = ⟨Au, y⟩ − F(Au) ,

from which we can write the primal-dual problem as the saddle-point problem

min
u

max
y
⟨Au, y⟩+R(u)−F∗(y) . (3.24)

From (3.24), the dual problem is defined as

max
y
− (F∗(y) +R∗(−A∗y)) . (3.25)

3.2 Non-Convex Optimization Methods 21

The Primal-Dual Algorithm [26] for initialized (u0, y0) updates the variables as follows

yk+1 = proxF∗(yk + αAūk)
uk+1 = proxR(uk − βA∗yk+1)
ūk+1 = uk+1 + θ(uk+1 − uk) (3.26)

where α > 0, β > 0 are chosen step sizes in order to satisfy αβL2 < 1 for L the Lipschitz
constant L = ∥A∥ and θ ∈ [0, 1] is the extrapolation step size.

The primal-dual gap is defined as the difference of the primal (3.23) and the dual
problem (3.25) that vanished for (û, ŷ) being the optimal saddle-point for convex functions.

In relation to the previous methods, for A = I the primal-dual algorithm is equivalent
to ADMM algorithm.

3.2 Non-Convex Optimization Methods

In this section, we focus on the algorithms used when J is non-convex. Many of the
algorithms from the previous Section 3.1 can be in general used also for the non-convex
optimization, if treated properly. Non-convex regularizers R(u) are advantageous since
they usually result in sparser solutions for a given residual energy. On the other hand,
non-convex formulations are generally more difficult to solve due to suboptimal local
minima, initialization issues, etc.. However, in many applications, the local minima
solutions provide satisfactory results w.r.t. sparsity/closeness-to-optimal-solution.

In what follows, we summarize the state-of-the-art methods and strategies.

Iteratively Re-weighted Methods

In this category fall the methods that approximate the non-convex penalty norm, usually
enclosed in R, through a weighted convex one for which the weights are re-computed at
each iteration. In particular, the main methods are Iteratively Re-weighted Least Squares
(IRLS) [124, 46], L1 Norm (IRL1) [23, 80], and in general Iteratively Re-weighted Norm
(IRN) [101].

All the methods are based on the same principle of relaxing L1 or Lp, p ∈ (0, 1) norm
by weighted L1 or L2 norms what allows for a convex optimization at each iteration.

22 First Order Optimization Methods

Majorization-Minimization Methods

This strategy seeks minimum of the problem (3.1) in two steps, MAJORIZATION and
MINIMIZATION. At each iteration k in the majorization step one constructs the so-called
surrogate function g(u, uk) to the concave functional J at point uk such that the following
properties are satisfied

(ι) J (uk) = g(uk, uk) , ∀u ∈ Θ

(ιι) J (u) ≤ g(u, uk) , ∀u, uk ∈ Θ .

The above majorization relation between functions is closed under the formation of
sums, non-negative products and limits. This means that g(u,w) lies above J (u) and is
tangent at u ≡ w. In general, this strategy [54] is suited also for maximization problems,
where the surrogate function g(u, uk) can be defined as minorizating one. In general, a
surrogate function is not necessarily convex and can be constructed as

• Jensen’s inequality – leading to Expectation-Maximization (EM) algorithms

• Chord above the function graph – used in image reconstruction

• Supporting hyperplanes

• Quadratic, piecewise linear functions

• Arithmetic-geometric mean inequality

• The Cauchy-Schwartz inequality – multidimensional scaling

The minimization step consists in solving

uk+1 = arg min
u∈Θ

g(u, uk) . (3.27)

This scheme immediately implies that

g(uk, uk−1) ≤ g(u, uk−1)

for every u ∈ Θ and hence
J (uk) ≤ J (uk−1)

for every k ≥ 1. Thus, naturally producing a descent sequence for minimizing problem
(3.1).

3.3 Convex-NonConvex Strategy 23

In [32] an MM strategy is applied to solve a non-convex optimization problem in the
form (3.1) and the convergence of the algorithm is investigated by using recent results in
non-convex optimization.

3.3 Convex-NonConvex Strategy

The CNC strategy is a rather novel strategy for obtaining a global optimal solution
while using non-convex penalty functions. Originally, the idea was formulated, apart
from greedy strategies, in Graduated Non-Convexity Algorithm (GNC) by Blake and
Zisserman [13] and Nikolova [89]; and has been successfully applied to image restoration
and reconstruction.

More precisely, the key idea is to control the degree of non convexity of the regularizer
R(u) in order to guarantee that the total objective function J (u) in (3.1) is convex. This
is obtained by balancing the positive second derivatives in the fidelity term F against
the negative second derivatives in the R term [13].

CNC strategies have been successfully applied by Selesnick in [30, 106] where he
proposes a set of parametrized non-convex penalty functions φ(·; a) to control the convexity
of J (u). The parameter a in φ(·; a) stands for the concavity parameter which controls
the shape of the penalty function φ. In CNC regime, suitable conditions on a should be
derived to guarantee the convexity of J (u). Other CNC approaches have been proposed
by Morigi et al. [68, 70, 67] in the context of image restoration.

Chapter 4

Spatial Discretization

Fig. 4.1 Approximation of a 2-manifold (left) by a triangular mesh (right).

In this chapter, we will focus on the spatial discretization and approximation of
a continuous domain Ω which can represent a closed/open 2-manifold M and the
discretization of local, continuous differential operators defined on it. A triangular mesh
M := (V, T) represents a piecewise-linear approximation to M embedded in R3. V

is the set of n vertices V ∈ Rn×3 = {X1, . . . , Xn} sampled over the surface M. The
connectivity set T ∈ NnT ×3 defines how vertices in V are interconnected into nT triangles.
This connectivity graph T provides automatically the set of 3nT

2 unique edges E ⊆ V ×V ,
see an example illustrated in Fig. 4.1.

26 Spatial Discretization

In this work, we will deal with different polygonal mesh representations having
different properties. The constituents of a two-dimensional polygonal mesh are vertices,
edges and facets (elements). In general, facets may share vertices and edges. We consider
only conforming meshes, in which every two faces share either a single vertex, or an
entire common edge. By this assumption, we do not consider meshes having the so-called
T-joints.

The valence of a vertex is the number of its incident edges, while its star is the set of
its incident facets and edges. A 1-ring neighbourhood is the set of adjacent vertices, if
not stated otherwise.

A triangle mesh is a mesh in which all facets are triangles, while a quad mesh is a
mesh in which all facets are quadrilaterals that not necessarily have to be planar. In
quad mesh, a vertex is called regular if it has valence equals to 4 while for a triangular
meshes the regular vertex has valence 6. The vertices having valence different from 4 (or
6 for triangular meshes) are called extraordinary or irregular vertices (EV).

A regular mesh is a mesh that can be globally mapped to a rectangular domain. We
will refer to this type of mesh as patch. They have limited applicability as they are
suitable for surfaces of disk or toroidal topology only.

A mesh is called valence semi-regular if most of its vertices are regular ones. Often a
valence semi-regular mesh is referred to simply as semi-regular. However, some literatures
distinguish these two types of mesh and they define a semi-regular mesh as a mesh
created by gluing together a set of different patches where each patch is a regular mesh
with boundary.

On the opposite, a mesh having a large number of irregular vertices is called unstruc-
tured mesh [15].

The local 1-ring vertex neighbourhood of a vertex Xi, denoted by N(Xi), can be
defined as

N(Xi) = {Xj : ∀eij ∈ E} .

Therefore, vi = |N(Xi)| is the valence of vertex Xi.
A 1-ring triangle neighbourhood of a vertex Xi, denoted by N△(Xi), is defined as the

set of triangles τj which share the vertex Xi.
For non-uniform unordered point cloud V no direct topologic relation between points

is provided, thus the set N(Xi) will be defined by the indexes of the points Xj ∈ V which
are inside the ball whose diameter is related to the density measure (4.1) defined in the
following.

Appropriate density features of a scattered data set V are the separation distance
qV and the fill distance hV of the set V , which, for a compact, connected region Ω, are

4.1 Discrete Differential Operators 27

respectively defined as:

qV := 1
2 min1≤i<j≤n ∥Xi −Xj∥2,

hV := supX∈Ω min1≤i≤n ∥X −Xi∥2.

(4.1)

The separation distance qV is half the minimum distance between two points in V , and
the local sample density or fill distance hV is defined as the radius of the largest inner
empty disk. We can measure the uniformity of the set V by using the positive scalar
value ρ = ρ(V) = qV

hV
. Optimal values for ρ depend on the type of data distribution;

e.g. for planar domains, if the data are points of an equilateral triangular grid, then
ρopt =

√
3/2, while for a regular square grid we have ρopt =

√
2/2, [24].

The usefulness of the local neighbourhood shows advantage in the estimation of the
normals, or the approximation to local differential operators of a function defined over
the manifold M and sampled over the vertices V of the associated mesh M .

4.1 Discrete Differential Operators

Assuming that a scalar function u : M→ R, is sampled over the vertices V of the mesh
M . Denoting by ui := u(Xi), i = 1, . . . , n, the sampled functions are represented by
the vectors u ∈ Rn. Since polygonal meshes are piecewise linear surfaces, the concepts
of continuous differential operators of a function u cannot be applied directly. The
assumption required is that meshes can be interpreted as piecewise linear approximations
of smooth surfaces in order to compute the discrete differential operators directly from
the mesh data.

The general idea is to compute discrete differential properties as spatial averages
over a local neighbourhood N(Xi) of a point Xi on the mesh. Towards that aim more
ways of constructing the averaging region from local neighbourhoods have been used
ranging from Barycentric cells, Voronoi and Mixed Voronoi cells used in up to the whole
N(Xi) used in Finite volume approximations, or the elements (triangles) themselves are
considered in Finite Elements Method.

Alternatively, we can consider the mesh also as a graph structure, adapting the results
from Finite Volumes/Elements methods to this simpler structure.

28 Spatial Discretization

1) Weighted Gradient

At each vertex Xi, the 1-ring neighbourhood N(Xi) defines vi discrete directional deriva-
tives, each calculated along a different direction identified by the edges eij, j = 1, . . . , vi.
The discrete analogue of the directional derivative on a 2-manifoldM as the edge deriva-
tive of u at a vertex Xi ∈ V along an edge ei,j ∈ E is defined by the following difference
operator du(Xi, Xj)

∂u

∂ei,j
≈ du(Xi, Xj) := w(Xi, Xj)(u(Xj)− u(Xi)) (4.2)

where w : V × V → R+ is a symmetric measure defined between points Xi and Xj and
w(Xi, Xj) = 0 if (Xi, Xj) /∈ E.

Hence, the intrinsic (weighted) gradient operator ∇wu(Xi) of a function u evaluated at
vertex Xi is a vector in the tangent space TXi

M, whose magnitude can be approximated
as follows

∥∇wu(Xi)∥2
2 =

∑
j∈N(Xi)

w(Xi, Xj)2(u(Xj)− u(Xi))2. (4.3)

In the partitioning model that we will introduce in Chapter 6, we need a suitable
proposal for the weights in (4.3). To that aim, taking into account the geometry of M ,
the corresponding weights can be defined as

wij := w(Xi, Xj) = 1
|eij|

. (4.4)

Alternatively, we can focus on a natural property that the boundaries should corre-
spond to strong affinity changes on the function values between adjacent regions. Towards
that aim the weights can be chosen as boundary detecting functions

w(Xi, Xj) = e−∥f(Xi)−f(Xj)∥2
2/2σ (4.5)

where f represents the observed data, i.e. a shape describing function. The parameter
σ ∈ (0, 1] in (4.5) controls how much the similarities of two local neighbours are penalized.
Smaller values of σ preserve smaller differences in the function f .

2) Laplace-Beltrami Operator

Probably the most popular and wildly used discretization of the Laplace-Beltrami
operator is the cotangent formula [82, 98] that has been derived using the mixed Finite
Elements/Volumes method. In the following we briefly sketch how the formula is obtained

4.1 Discrete Differential Operators 29

[17]. Considering the Barycentric local averaging region Vi to vertex Xi, the cells joints
midpoints of adjacent edges eij , eik and the barycentre of adjacent triangles τ in N△(Xi).

Integrating the Laplace-Beltrami Operator of a function u over this region Vi and
applying the divergence theorem we can write∫

Vi

∆LBu(X) dVi =
∫
Vi

div∇u(X) dVi =
∫
∂Vi

∇u(X) · n(X) ds (4.6)

where n(u) denotes the normal vector to the boundary of Vi. For the barycentric cell-
region Vi, (4.6) can be splitted into sum of integrals over all triangles τj in N△(Xi). Thus,
considering the evaluation of (4.6) on a triangle τ = (Xi, Xj, Xk), we can approximate it
as ∫

∂Vi∩τ
∇u(X) · n(X) ds = 1

2∇u(X) · e⊥
jk (4.7)

where 1
2e

⊥
jk represents the counter-clockwise rotation of ejk that approximate the normal

n(X) orthogonal to midpoints-edge
(
Xi+Xj

2 , Xi+Xk

2

)
. The gradient ∇u(X) is constant

over τ an can be expressed as

∇u(X) = (uj − ui)
e⊥
ik

2A(τ) + (uk − ui)
e⊥
ij

2A(τ) (4.8)

where e⊥
ik

2A(τ) and e⊥
ij

2A(τ) come from the derivatives of linear basis functions for barycentric
interpolation over τ ; and A(τ) stands for the area of τ . Plugging the gradient formula in
(4.7) we obtain

∫
∂Vi∩τ

∇u(X) · n(X) ds = (uj − ui)
e⊥
ik · e⊥

jk

4A(τ) + (uk − ui)
e⊥
ij · e⊥

kj

4A(τ) . (4.9)

Denoting the angles at Xj and Xk as γj, γk, the triangle area can be expressed as

A(τ) = 1
2 sin γj|eij| |ekj| =

1
2 sin γk|eik| |ejk| .

Following the same notation, cos γj and cos γk can be computed as

cos γj = ekj · eij
|ekj| |eij|

, cos γk = eik · ejk
|eik| |ejk|

.

Plugging these expressions into (4.9) we obtain
∫
∂Vi∩τ

∇u(X) · n(X) ds = 1
2 (cot γk(uj − ui) + cot γj(uk − ui)) , (4.10)

30 Spatial Discretization

thus, each triangle contributes to difference of u at Xi w.r.t. two different vertices in its
neighbourhood. Thus, labelling γj and δj the opposite angles to edge eij in the triangle
tuple connected by it, we can write the approximation to LBO as sum of differences
along eij

∆LBu(Xi) := 1
2|N△(Xi)|

∑
j∈N(Xi)

1
2(cot γj + cot δj)(uj − ui) , (4.11)

and applied to the mesh coordinates

∆LBXi := L(Xi) = 1
2|N△(Xi)|

∑
j∈N(Xi)

1
2(cot γj + cot δj)(Xj −Xi) . (4.12)

The expression (4.12) can be rewritten also in terms of normalized weighted formula

L(Xi) = 1
2o

∑
j∈N(Xi)

ωij (Xj −Xi) , (4.13)

ωij = 1
2(cot γj + cot δj) , o = |N△(Xi)| , (4.14)

with the cotangent weights ωij and the normalization term o.
In matrix notation, the operator ∆LB for a triangle mesh M , may be realized by

D−1L, where L ∈ Rn×n is a symmetric, positive semi-definite, sparse matrix (weight
matrix) defined as

L(i, j) :=

ωij = 1

2(cot γj + cot δj) j ∈ N(Xi)
−∑k∈N(Xi) ωik i = j

0 otherwise

(4.15)

and D is a lumped mass matrix defined as D = diag{|N△(X1)|, · · · , |N△(Xn)|} , which
relates to the area/volume around the vertices of the discretized manifold.

Popular and simpler choice for the weights and the normalization term in (4.14) in
formula (4.13) is the following

ωij = 1
∥Xi −Xj∥

, o =
∑

j∈N(Xi)
∥Xi −Xj∥ , (4.16)

which gives rise to the umbrella discretization of the Laplace-Beltrami operator.

4.1 Discrete Differential Operators 31

3) Weighted p-Laplacian

The p-Laplacian of a function u on a connected, oriented Riemannian manifold without
boundary M is defined by

∆pu := div(|∇u|p−2∇u) . (4.17)

It is the Euler-Lagrange operator associated with the functional∫
M
|∇u|p, p ∈ (1,∞) .

In the following proposition we report the relation between the weighted continuous
p-Laplacian operator and its discretization through the weighted directional derivatives
defined in (4.2).

Proposition 1 Given a set of points V = {Xi}ni=1 on a 2-manifold M, the nonlinear
operator Lwp of a twice differentiable function u defined as:

Lwp u(Xi) = 1
2

∑
j∈N(Xi)

γwp (Xi, Xj)(u(Xj)− u(Xi)), (4.18)

γwp (Xi, Xj) = w(Xi, Xj)2(|∇u(Xj)|p−2 + |∇u(Xi)|p−2), (4.19)

represents the discrete approximation of the weighted p-Laplacian operator :

∆w
p u := ∇w · (|∇wu|p−2∇wu) (4.20)

where ∇w is the weighted gradient of u on M.

Proof. Let b(u) := |∇u|p−2, and bi be the evaluation of b(u) at Xi ∈ V , by applying
(4.2), the discretization of the weighted p-Laplacian operator (4.20) is given by

Lwp u(Xi) =
∑
j

wij(bjdu(Xj, Xi)− bidu(Xi, Xj))

=
∑
j

w2
ij(bj (u(Xi)− u(Xj))− bi(u(Xj)− u(Xi)))

=
∑
j

w2
ij(bi + bj)(u(Xi)− u(Xj)). (4.21)

Replacing (4.19) in (4.21) we get (4.18).

32 Spatial Discretization

The p-Laplacian is a non-linear operator, with the exception of the special case when
p = 2, where it reduces to the regular Laplacian operator ∆2f = div(∇f), while for
p = 1, we get ∆1f = ∇ · (∇f

|∇f |), which is the mean curvature operator.

4) Mean Curvature and Normals

The mean curvature H of a surface M is an extrinsic measure of curvature that comes
from differential geometry and that locally describes the curvature of an embedded
surface in R3.

The most straightforward estimation of the mean curvature measure H and normal
N at X is obtained by exploiting the well-known relation

∆LBX = −2HN, (4.22)

which relates the Laplace-Beltrami differential operator to the mean curvature vector
HN when ∆LB is applied to the coordinate function X of a surface.

The mean curvature field H(Xi) at a vertex Xi, that is used for the solution of the
shape partitioning problem, for example in (5.11), is then obtained by constructing the
local neighbourhood N(Xi), and taking norm of the value evaluated by (4.13) for suitable
choice of the weights (4.12),(4.16) based on the input type. The corresponding outward
normal vector Ni is obtained by normalizing the value evaluated by (4.13).

Alternatively, the vertex normals can be also computed as spatial averages of normal
vectors in a local one-ring triangle neighbourhood as follows

Ni = 1
o

∑
j∈N△(Xi)

Nτj

A(τj)
, o =

∑
j∈N△(Xi)

A(τj), (4.23)

where Nτj
is the normal vector to the triangle τj.

4.2 Quad-based Finite Volumes Spatial Discretiza-
tion

In the previous section we describe the discretization of a triangular mesh approximation
to a 2-manifold M embedded in R3. The formulas to evaluate the normals and some
differential operators defined on the surface assumed the mesh to be a graph structure
what leads to very fast and effective discrete approximations of the reported operators.

4.2 Quad-based Finite Volumes Spatial Discretization 33

In what follows, we introduce the Finite Volumes Method to the spatial discretization
of a surface that is used to discretize the quad-based surface PDE evolution model in
Chapter 7.

Since we are dealing with a quad mesh M := (V,Q) where Q is the set of quads, we can
define the quad 1-ring neighbourhood as N�(Xi) = {Qj ∈ Q; j = 1, . . . ,mi , Xi ∈ Qj}
where mi defines the number of quads surrounding (sharing) the vertex Xi.

The Finite Volumes Method assumes a general, continuous surface M to be approxi-
mated by the union of so-called control volumes Vi, i = 1, . . . , n built around each vertex
Xi and the function values at Xi are assumed to be constant over Vi. In case of an
evolving surface, the control volume Vi naturally changes with the evolving vertex.

Let us introduce the local vertex and quad indexing in barycentric control volume Vi
around vertex Xi as illustrated in Figure 4.2 for mi = 5.

Fig. 4.2 Finite volume Vi (shaded grey area) with local indices of its representative points
for the case mi = 5.

The local vertex indices in a quad Qj are denoted as xkj , k ∈ {0, . . . , 3} satisfying
x0
j = Xi and j index refers to the neighbouring quad.

Therefore, the barycentric finite volume Vi around vertex Xi consists of mi quarter-
quads of the neighbouring quads Qj as illustrated in Fig. 4.2. The boundary of Vi in one

34 Spatial Discretization

quarter-quad is described by vertices rkj as follows

r0
j = x0

j

r1
j =

(
x0
j + x1

j

)
/2

r2
j =

(
x0
j + x1

j + x2
j + x3

j

)
/4

r3
j =

(
x0
j + x3

j

)
/2 .

This method aims to approximate the solution of an evolution PDE model in terms of
integrals over the control volumes Vi, unlike the Finite Differences Method. In particular,
we do not approximate directly the before-mentioned operators, but rather their integrals
over the finite volume, which is e.g. in case of the Laplace-Beltrami operator further
transformed, to sum of integrals over the boundary of Vi. Therefore, we excuse ourselves
to postpone the approximation formulas of the appropriate operators integrated over Vi
in Section 7.4.2 together with the rest of the numerical scheme for the model.

Chapter 5

Shape Analysis

In this chapter, we introduce the shape-describing single- and multi-channel functions
that will drive the variational partitioning models described in details in Chapter 6.

In Section 5.1 we propose an alternative approach to the computation of the Shape
Diameter Function [108] in order to measure the thickness of a solid closed object.

Section 5.2 describes a new proposal for an affinity matrix whose eigen-decomposition
is used on the human-based partitioning described in Section 6.1. Finally in Section 5.3
we propose the Lp Compressed Modes basis as the alternative to the eigen-decomposition
of the affinity matrix.

5.1 Meshless approach to SDF computation by par-
ticles flow

In the original proposal [108] the basic operation in the SDF computation is a ray-mesh
intersection. Given a point on a mesh, several rays inside a cone centred around the
inward-normal direction are sent towards the opposite side of the mesh. The intersected
points are filtered to remove false intersections and finally their ray-lengths are summed
as weighted contributions to the final SDF value of that point. An octree built around
the mesh is used as a spatial structure for the intersection search. In [64] the authors
introduced an optimization to the original algorithm proposed in [108]. The SDF values,
computed only for a small number of randomly distributed faces, were propagated over
the mesh by using Poisson-based interpolation. The robustness of the original proposal
in [108] is further improved in [102] by introducing an adaptive ray casting strategy.

In this section we propose a new approach to approximate SDF values for a point
cloud representing the boundary of a closed 2-manifold. Unlike the original proposal,

36 Shape Analysis

our strategy is mesh-less and relies on a particle flow of the point cloud representing the
boundary of a closed 2-manifold and a simple collision test. We can assume that the
cloud of points is noisy-free; in case of noisy data a fairing procedure can be preliminarily
applied [85]. The normals to these particles set are then approximated, and used to drive
the particle evolution towards the inward-normal direction. At each time step a simple
collision test is evaluated to eventually stop the particle flow, the distance covered by
the stopped particle represents its SDF value.

Having an algorithm that computes the shape diameter analysis on a set of points
without requiring global connectivity information is of fundamental importance since it
makes it independent from the type of representation adopted by the geometric model,
i.e. parametric form, B-rep, mesh or even solid model. The only requirement that the
model must satisfy is that its boundary is evaluable at a given point set to provide the
input point cloud.

Figure 5.1 shows the steps of our proposal: from left to right: the initial ant data set,
the associated voxel grid data structure, the resulting SDF which can be used to define a
thickness-oriented partitioning.

Fig. 5.1 From left to right: data set, initial voxel grid, resulting SDF.

Let us assume that the motion of a particle Xi in a particle cloud V is driven by the
following flow

∂xi
∂t

= −Ni , x(0) = Xi , (5.1)

where the unknown is the position in space of the particle, xi(t), at the time t, Ni is
the outward unit normal at Xi that remains constant during the whole evolution, and
t ∈ [0, Tmax) is the particle lifetime. From a mathematical point of view the unknown is
a single variable vector-valued function in space: xi : R→ R3.

Evolution prescribed in (5.1) causes the motion of the particle in the inward-normal
direction, towards the inner part of the object.

The flow of a particle xi is stopped as soon as it first collides with another particle xj
which was moving towards the opposite direction. Therefore the lifetime of xi and of its
antipodal surface point xj is the same Tmax. For example, points on a sphere will evolve
towards the center of it and will stop their evolution at the same time Tmax.

5.1 Meshless approach to SDF computation by particles flow 37

-Ni

-N j

x j

xi

Ni -N j

α

Fig. 5.2 Collision test (5.2) for two particles xi and xj.

The lifetime Tmax is established by the following collision test, illustrated in Fig. 5.2.
Two evolving particles xi and xj collide if their trajectories intersect and they have

the same, but opposite, velocity direction under a certain tolerance α, that is:

] (Ni,−Nj) ≤ α . (5.2)

The angle value α allows for a cone of admissible directions that, relaxing the ideal case
where Ni = −Nj, better fits the spatial discretization of the surface.

When the particle xi (and xj) stops its flow, at Tmax, a scalar function value fSDF (·),
fSDF : V → R+, is computed as the distance between Xi and Xj, with Xi, Xj ∈ V , and
associated both to the particle Xi and Xj.

The particle flow (5.1) is simply discretized in time using forward Euler explicit
scheme

x
(t)
i = x

(t−1)
i − dtNi . (5.3)

The algorithm for shape diameter analysis of a set of points V is described in Algorithm
1: SDF_Flow.

The normals {Ni}ni=1 to the particle set V are approximated according to the type of
data set, using (4.13) with (4.16) for point clouds, and (4.13) with (4.14), or (4.23) for
meshes.

In order to make the SDF computation object independent, a preliminary minimal
uniform scale is applied to V to fit the vertices inside the Euclidean space [0, 1]3, and a
uniform voxel grid of [0, 1]3 is built with voxel size dh computed according to the point
cloud density. Assuming a unitary velocity, the time step dt in (5.3) is then chosen to be
approximately equal to the voxel size dh.

From the voxel grid we extract the envelope E of the set of voxels containing the
object. E consists of non-empty voxels that include points in V , together with empty

38 Shape Analysis

Algorithm 1 SDF Flow

Input: data V
Output: fSDF (V), SDF values of V
Parameter: cone angle α

Preliminary Process:
· compute normals {Ni}ni=1
· compute uniform voxel grid of [0, 1]3
· compute the envelope E
· set V 0 = V
· set t = 0
while |V t| ≠ ∅
· V ∗ ← move V t according to (5.3)
· assign V ∗ to the voxel grid
· t = t+ 1
· V t = Collision_Detect(E , V ∗, α)

end

voxels which are inside the object. Since we suppose to deal with a set of points V on a
water-tight surface, a water-tight envelope is obtained by choosing dh ≥ hV , where hV is
the fill distance defined in (4.1); for the reported experiments we fixed dh = 2hV .

The core of the algorithm SDF_Flow is simply based on a cycle which evolves, for
each time step t, the set of the alive particles in V , which is denoted by V t. The dimension
of this set decreases in time and it is updated by the function Collision_Detect()
detailed below.

Algorithm 2 Collision Detection

function: Collision_Detect(E , V ∗, α)
· update envelope E for V ∗

for each non-empty voxel vi ∈ E
for every xj ∈ vi
· S = Valid_Neigh(xj, vi)
if (SDF_assignment(xj,S, α))
· update V ∗

end
end

5.1 Meshless approach to SDF computation by particles flow 39

In the function Collision_Detect(), described in Algorithm 2, first the envelope
E is updated by labelling as non-empty the voxels that contain V ∗. Then, for each
non-empty voxel vi ∈ E , we check for potential collisions between particles located in E .
In particular, the SDF_assignment() function checks if there are colliding particles for
xj first inside the voxel vi itself and then in a small voxel neighbourhood S.

The latter check is required to enforce the robustness of the SDF_Flow in Algorithm 1
since we are dealing with time and space discretization.

In the time-continuous case, two particles moving in the perfect opposite directions,
but in the same trajectory, are guaranteed to collide in a certain voxel. However, due to
the time discretization assumed, our ideal evolving particles could skip across the voxel
where they were supposed to collide.

Moreover, due to the spatial discretization of the surface boundary of an object,
given a particle xi evolving in its normal direction is not guaranteed the existence of its
antipodal surface particle xj on the perfect opposite side.

Therefore, in order to avoid both the swapping problem and the non-uniformity of
the data set V the investigation for potential collisions is enlarged farther than the 1-ring
voxel neighbourhood, towards a limited set of neighbourhood voxels S detected by the
function Valid_Neigh().

The Valid_Neigh() function thus returns the set S ⊂ E of neighbourhood voxels,
which contain potentially colliding particles, that belong to the cone centred at Ni with
angle β inside the 2-ring voxel neighbourhood.

vi
x j

-N j

β

Fig. 5.3 Voxel-grid scheme for a particle xj which moves towards direction −Nj and
whose collision-detection check is enlarged to the the set S (yellow shaded area and voxel
vi) which consists of the 2-ring voxels belonging to the cone width β.

In the synthetic two-dimensional example, depicted in Fig. 5.3, the set of admissible
voxels S is yellow coloured and it consists of the voxel vi and the voxels inside the 2-voxel

40 Shape Analysis

rings of vi which lie in the β cone centred around the inward-normal direction of xj.
From our numerical experience, the number of parameters required can be limited by
setting β = α without any significant impact on the performance. The choice of the
parameter α will be discussed in Section 5.1.1.

Finally, the function SDF_assignment() looks for a possible matching between the
input particle xj and a particle xk in the set of voxels S ⊂ E .

From those particles which satisfies the collision test (5.2), we select the particle xk
that has minimal normals angle deviation with respect to Nj, that is

αk = arg min
x∗∈S

] (Nj,−N∗) . (5.4)

Then the fSDF value associated to Xj is computed as the distance between the two
particles Xj and Xk in V

fSDF (Xj) = ∥Xj −Xk∥2 . (5.5)

In case xk is alive, then also its associated initial particle Xk has to be set with the
same SDF value, that is fSDF (Xk) = fSDF (Xj), and both the particles xj, xk are removed
from V t since they have reached their lifespan.

When the user-choice of α turns out to be not adequate to the data set V , an evolving
particle xj can outflow the envelope E at any time step t, i.e. it moves through the object
without collision. In this case the particle is removed from V t and labelled as outliers.
Finally, an SDF value fSDF (Xj) is assigned to each outliers particle Xj, computed as
the SDF average of its non-outliers neighbourhood particles Xk, k ∈ N(Xj).

In the proposition below we give sufficient conditions for the theoretical convergence
of Algorithm 1.

Proposition 2 Let V be a data set of points in R3 representing the boundary of a 2D
manifold M, and hV represents its fill distance. Then, setting the voxel size dh > hV ,
Algorithm 1 assigns an estimated SDF value fSDF (Xj) to each particle Xj ∈ V with
analytical shape diameter value f ∗ with respect to M, satisfying one of two assumptions:

• If] (Ni,−Nj) = 0, then

fSDF (Xj) = fSDF (Xi) = f ∗, Xi ∈ V.

5.1 Meshless approach to SDF computation by particles flow 41

• If] (Ni,−Nj) < α, then

|fSDF (Xj)− f ∗| ≤ fSDF −
[
fSDF cos(α)±

√
h2
V − fSDF sin(α)

]
. (5.6)

Xi

X j

α

hV

hV
l1

l2

fSDF

f
*

f
*

Fig. 5.4 Approximation error when the antipodal point for Xj is not a vertex of V :
rounded red points represent particles in V , and squared blue points represent possible
antipodal points on the 2-manifold, where l1 = fSDF sin(α) and l2 = fSDF cos(α).

The proof follows straightforward from Fig. 5.4. According to Proposition 2, Algo-
rithm 1 converges to the exact SDF value if there exist two particles Xj, Xi in the perfect
opposite direction, otherwise it will assign at Xj, Xi an estimated SDF value, where the
approximation error is limited by (5.6).

In our experience, summarized in the numerical section 5.1.1, we can assume that a
suitable configuration of the dh voxel size and α parameter, always leads to convergence.
If V was entirely contained in a single voxel, a collision between particle would be always
captured by enlarging α since we assumed that the 2-manifold is closed. However, the
larger the voxel dimension, the worse is the computational accuracy of Algorithm 1. A
good compromise is obtained by automatically setting dh related to the fill distance hV
of V , and let the parameter α be in a suitable interval introduced in Section 5.1.1.

5.1.1 SDF: Examples

In this section we report the evaluations of the proposed method. We first analyse in
Example 1 the performance of Algorithm 1 for computing SDF in terms of accuracy and
efficiency; in Example 2 we compare the proposed method with the ray-trace based SDF
algorithm by Shapira et al. [108].

We tested the proposed algorithms on a collection of point clouds and meshes
downloaded from the data repository website http://segeval.cs.princeton.edu, [31].

42 Shape Analysis

Table 5.1 Data sets and timing results for SDF computation by Algorithm 1.

Data set Vertices Outliers Time Data set Vertices Outliers Time
|V | (%) (s) |V | (%) (s)

ant 7038 0.34 1.054 mech_2 10400 0.49 0.965
armadillo 25193 0.42 1.924 mech_3 1512 3.31 0.096
bird_1 6475 6.52 0.258 mech_4 14872 0.85 1.223
bird_2 8946 6.23 0.461 mech_5 14956 0.87 1.536
blocks 6146 7.31 0.587 octopus_1 7251 0.87 1.640
camel 9757 1.99 0.578 octopus_2 1010 0.40 0.184
chair 10121 0.10 1.042 octopus_3 243 30.45 0.041
cup 15037 0.84 1.491 octopus_4 1343 16.08 0.166
dolphin 7573 0.96 0.213 plane 7470 2.60 0.591
fish 6656 0.53 0.990 pliers 3906 1.02 0.482
giraffe 9239 1.34 0.357 sphere 16386 0.00 0.864
glasses 7407 0.65 0.349 table 14587 0.61 0.694
hand 6607 0.73 0.451 teddy 9548 2.79 1.267
horse 7268 1.37 0.419 torus 7200 1.47 1.626
human_1 9508 0.01 0.346 vase_1 14859 1.10 0.764
human_2 15385 0.00 0.331 vase_2 14476 0.66 0.761
mech_1 8759 1.96 0.567 wolf 4712 1.25 0.256

5.1 Meshless approach to SDF computation by particles flow 43

The chosen dataset represents geometric models with different characteristics in terms
of details, "thickness", and level of refinement, and presents a medium dense vertex
distribution. Data sets information is given in the second and sixth column of Table 5.1.

In the reported figures, the SDF values are visualized using false colours superimposed
onto the object. In particular, since the fSDF is a positive scalar function defined on the
object domain, we made use of the HSV colour model such that the hue value fSDF (Xi)
at the vertex Xi is assigned linearly to the interval (min(fSDF (V)), max(fSDF (V))). In
Fig. 5.9 where we compare our SDF results with the ones obtained using the original
algorithm by Shapira et al. [108], we depict screenshots of the application downloaded
from the author’s website. This application uses rendering and lighting procedures
slightly different from ours specified in Section 6.4.1. Nevertheless the results are easily
comparable.

To evaluate the accuracy of our algorithm, we introduce a local measure of accuracy
with respect to the so-called "ground-truth", given by the relative error vector

err(xi) = fSDF (xi)− fSDF∗ (xi)
fSDF∗ (xi)

, i = 1, · · · , N (5.7)

where fSDF and fSDF∗ denote the approximated and ground-truth values, respectively,
evaluated at xi.

Then the global accuracy is measured by the following norms defined for the vector
err = [err(1), . . . , err(N)]T ∈ RN :

• the weighted Euclidean L2-norm

L2(err) =
(

1
N

N∑
i=1

(
err(i)

)2
)1

2
, (5.8)

• the L∞-norm
L∞(err) = max

i

⏐⏐⏐err(i)
⏐⏐⏐ . (5.9)

Example 1 – Efficiency and accuracy of the SDF flow

Algorithm 1 for the SDF computation operates with a user-chosen input parameter α
representing the width of the cone at the particle direction, which affects the output
results in terms of accuracy and amount of outliers. When the α value is large, the
number of outliers is approaching to 0, but the collision test (5.2) can result positive also

44 Shape Analysis

Fig. 5.5 Example 1: SDF results obtained by applying Algorithm 1 to several data sets.
The results are sorted by appearance in Table 5.1.

5.1 Meshless approach to SDF computation by particles flow 45

for couple of particles that naturally should not collide each other. Decreasing α, both
the precision and the number of outliers increase. The substantial experimentation done
allowed us to determine an interval for optimal angle values α ∈ [π6 ,

2π
5].

For all the examples reported the number of neighbourhood voxel rings is 2.
The efficiency of our algorithm for SDF approximation has been evaluated by applying

Algorithm 1 to several data sets. In Table 5.1 we report the performance results for the
data sets shown in Fig.5.6, Fig. 5.7, Fig. 5.9 and Fig. 5.5. The third and seventh column
in Table 5.1 reports the percentage of outlier particles for each data set, that is particles
which lifetimes have been ended prematurely since their trajectories went out from the
object. In the fourth and eighth column the timing results are shown in seconds for an
optimal configuration of the parameter α. We observe that the computational time is
affected by the shape, density and dimension of the input particle cloud. For dense, but
relatively thin point clouds, for example cup, the computational times are comparable
with rather sparse and relatively thick point clouds, for example teddy. Algorithm 1
turns out to be particularly fast when the input point cloud has a lot of thin features (in
animals category – the legs, tentacles, wings); in this case, a large part of the moving
particles from V t reaches its lifespan in a few time steps, thus saving computational time
in the Collision_Detect function.

The robustness of Algorithm 1 with respect to the density of the data set has been
evaluated by applying Algorithm 1 to decreasing point clouds of the same object. We
report the results for the input point clouds octopus_1, octopus_2, and octopus_3
illustrated in Fig. 5.6 (top row) which presents a decreasing density of particles from
left to right. This example allows us to demonstrate the capacity of our algorithm
to obtain accurate results even in case of poorly dense input data set V , preserving
the shape diameter features of the represented object. SDF qualitative results are
illustrated in Fig.5.6 (bottom row). This robustness is attributed to the right tuning of
the parameters in Algorithm 1. In particular, the decreasing density causes enlargement
of the separation and the fill distances (4.1) that naturally leads to enlargement of the
voxel size h, the threshold α in the collision test (5.2) and the β, what allows more
admissible neighbourhood voxels. We remark that since our algorithm is point-wise
based and the resulting SDF value estimation is computed as a distance between two
points, the accuracy error naturally increases for decreasing mesh density. Setting as
ground truth the highest density point cloud represented on the left of Fig.5.6, we can
evaluate the loss of accuracy in terms of the metrics defined in (5.8) and (5.9) for the two
down-sampled point clouds decimated up to 14% and 3% and illustrated in Fig.5.6 centre
and right, respectively. The global accuracy results for fSDF are reported in Table 5.2.

46 Shape Analysis

Table 5.2 Example 1: global accuracy measures with respect to the octopus_1 as
ground-truth.

Data set L2 L∞
octopus_2 0.32964 0.22472
octopus_3 0.76988 0.19654

Fig. 5.6 Example 1: three different initial point clouds (top) with decreasing density,
resulting in comparable results (bottom). From left to right: octopus_1, octopus_2,
octopus_3.

Example 2 – Comparisons with the Ray Tracing approach.

To provide a comparison to state-of-the-art SDF algorithms, we evaluate Algorithm 1
with the SDF algorithm based on ray tracing, introduced in [108], and implemented in
the free software downloadable from Lior Shapira’s website
http://www.liors.net/shape-diameter-function. The input parameters required by
the original proposal are mainly the number of cones, the number of rays per cone and
the cone separation. We denote by Ray Tracing Basic (RT-Basic) the settings: 1 cone
with 15 rays and separation 1, and by Ray Tracing Best (RT-Best) the tuned parameter
setting which provided the best result. In order to maintain the correspondence among
the methods the colour function option has been chosen as the mapping to the interval
[min fSDF ,max fSDF].

In Table 5.3 we report the comparison in terms of computational time in seconds
for a few meshes. The performance of Algorithm 1 is always better with respect to the
basic setting (RT-Basic) and outperforms the best setting (RT-Best) of the ray tracing
algorithm.

5.1 Meshless approach to SDF computation by particles flow 47

To allow for a visual inspection of the performance, we report the SDF computed
maps in Figure 5.9. The visual results produced by the faster RT-Basic, Figure 5.9(second
row), present several failures. For the mesh cup, false red spots appear on the outer side
of the object (large fSDF) although there are no correspondence in the inner part of it.
In the mech_2 SDF result, the RT approaches were not able to detect the difference in
volume between the top and the middle part which is yellow-coloured in our result, see
Figure 5.9 (first row). The pliers result also presents false red spots on the handlers
even if the thickness is uniform. For the plane result, where the wings are joined to the
rest of the body, the diameter analysis should produce values definitely smaller than
those on the tip of the nose. However, all but two inaccuracies were repressed by tuning
the parameters in the ray-tracing approach, Figure 5.9(third row), thus obtaining visual
results similar to those produced by Algorithm 1 and shown in Figure 5.9(first row). For
the mech_2 mesh, the appropriate result has not been obtained, even when the RT-Best
was applied, while the shape analysis failed to produce the correct SDF map for the
wings and the tip in the plane mesh.

Compared with the timing results shown in Table 1 in [108] and the performance
obtained by the RT approaches in Table 5.3, we noticed a significant improvement
of performance, according to the data set dimensions. Certainly we can optimize the
performance of both the approaches by exploiting GPU computational power or applying
greedy strategies like for example the ASDF approach proposed in [64] or the MeshLab
implementation [33] of the ray tracing approach based on [108]. We would like to stress
again that Algorithm 1 works on cloud of points while the RT approaches require input
meshes.

We finally investigate the global accuracy of the two methods when applied to three
test objects, namely blocks, sphere and torus, depicted in Figure 5.7, which are
characterized by a known shape diameter. The object blocks is composed of three blocks
with the same rectangular base 0.2× 0.4, and heights 0.2, 0.6 and 1, respectively. The
second object is a sphere with diameter 1, while the torus object has larger radius
R = 0.4 and smaller radius r = 0.1.

The histograms in Figure 5.8 illustrate the exact distributions of thickness for the
three objects in the left column, and the errors between the exact and the computed SDF
in the remaining two columns for our algorithm and the RT-based approach, respectively
in the middle and right columns. The error histograms have been computed as absolute
difference of the histogram bins between the ground truth and the estimated values.
A quantitative evaluation of the accuracy errors produced by the two algorithms are
summarized in Table 5.4. We can observe that Algorithm 1 always outperformed the RT-

48 Shape Analysis

Fig. 5.7 Example 2: test objects used in accuracy comparison.

Table 5.3 Example 2: time comparison in seconds between Algorithm 1 and the ray
tracing algorithm in [108].

Data set Alg. 1 (s) RT-Basic (s) RT-Best (s)
cup 1.491 3.373 12.579
mech_2 0.965 10.807 10.807
plane 0.591 2.005 14.977
pliers 0.482 2.958 8.564
octopus_4 0.166 0.482 1.673
blocks 0.587 2.938 2.938
sphere 0.864 12.328 12.328
torus 1.626 3.130 3.130

based algorithm. This can be due to the fact that the RT-based algorithm systematically
averages multiple lengths inside a cone, and this overestimates the diameter. The timing
results for the three test objects are reported in Table 5.3.

Table 5.4 Example 2: global accuracy comparison.

Alg. 1 RT-Best
Data set L2 L∞ L2 L∞
blocks 2.414×10−2 0.399 8.309×10−2 0.526
sphere 4.99 ×10−7 2×10−6 1.917×10−4 10−3

torus 1.057×10−3 1.093×10−3 3.943×10−2 0.1

5.2 Affinity Matrix 49

0. 0.2 0.4 0.6 1. 1.1
0.0

0.2

0.4

0.6

0.8

1.0

Thickness Ground-Truth

N
or
m
al
iz
ed

H
is
to
gr
am

0. 0.2 0.4 0.6 1. 1.1
0.0

0.2

0.4

0.6

0.8

1.0

Thickness estimation error

N
or
m
al
iz
ed

H
is
to
gr
am

0. 0.2 0.4 0.6 1. 1.1
0.0

0.2

0.4

0.6

0.8

1.0

Thickness estimation error

N
or
m
al
iz
ed

H
is
to
gr
am

blocks mesh

0.999 0.9993 0.9996 1. 1.0001
0.0

0.2

0.4

0.6

0.8

1.0

Thickness Ground-Truth

N
or
m
al
iz
ed

H
is
to
gr
am

0.999 0.9993 0.9996 1. 1.0001
0.0

0.2

0.4

0.6

0.8

1.0

Thickness estimation error

N
or
m
al
iz
ed

H
is
to
gr
am

0.999 0.9993 0.9996 1. 1.0001
0.0

0.2

0.4

0.6

0.8

1.0

Thickness estimation error

N
or
m
al
iz
ed

H
is
to
gr
am

sphere mesh

0.1 0.15 0.2
0.0

0.2

0.4

0.6

0.8

1.0

Thickness Ground-Truth

N
or
m
al
iz
ed

H
is
to
gr
am

0.1 0.15 0.2
0.0

0.2

0.4

0.6

0.8

1.0

Thickness estimation error

N
or
m
al
iz
ed

H
is
to
gr
am

0.1 0.15 0.2
0.0

0.2

0.4

0.6

0.8

1.0

Thickness estimation error

N
or
m
al
iz
ed

H
is
to
gr
am

torus mesh

Fig. 5.8 Example 2: quantitative evaluation: exact shape diameter (left), differences
between the exact and the computed fSDF (X) values by Algorithm 1 (centre), and
between the exact and the computed fSDF (X) values by RT-algorithm in [108] (right).

5.2 Affinity Matrix

In this section, we describe the graph matrix which plays the role of the affinity matrix
that will be used for human perception segmentation [79].

In general, decomposition methods based on spectral analysis emphasize mostly the
concavity attribute, being able to partition even shallow concavities. The spectral analysis
method uses the eigenvalues of properly defined matrices based on the connectivity of
the graph in order to partition a mesh. Liu and Zhang [78] use spectral analysis on the
dual graph of the mesh. They define an affinity matrix using both geodesic distances
and angular distances as proposed by the fuzzy clustering method in [63]. This type of
matrix has been used successfully for clustering since it groups elements having high
affinity, see for example [130].

The affinity matrix associated to mesh M should encode mesh structural information
which reflects how vertices are grouped in accordance with human perception.

50 Shape Analysis

Fig. 5.9 Example 2: qualitative comparison between Algorithm 1 and the original ray
tracing approach [108]: (Top) SDF results of Algorithm 1, (Middle) SDF results obtained
with RT-Basic settings, (Bottom) SDF results with RT-Best settings. The associated
computational timings are reported in Table 5.3.

Taking into account the curvature as shape information, we want to determine a
perceptual partition of M such that the edges between different parts have very low
weights (vertices in different clusters are dissimilar from each other), and the edges
belonging to the same part have high weights (vertices within the same cluster are similar
to each other). At this aim we define the affinity matrix L ∈ Rn×n:

Li,j =

−wij, i ̸= j and eij ∈ E∑
j∈N(Xi) wij, i = j

0 otherwise
, (5.10)

with the following similarity non-negative weights:

wij := |N△(Xj)|
#N(Xi)

e−∥H(Xi) −H(Xj)∥2
2/(2σ2) (5.11)

where the parameter σ ∈ (0, 1] in (5.11) controls the width of the local neighbourhoods,
H(Xi) represents the mean curvature at vertex Xi and the normalization terms represent
the area of triangle neighbourhood divided by its cardinality.

The spectral decomposition of L, defined in the following, provides a set of (n− 1)
non trivial, smooth, shape intrinsic isometric-invariant maps. We refer the reader to
[118] for details.

5.2 Affinity Matrix 51

Proposition 3 The matrix L ∈ Rn×n defined in (5.10)-(5.11) associated to a connected
mesh M of n vertices, satisfies the following properties:

1) L is symmetric and positive semi-definite;

2) L = U ΛUT , Λ = diag(λi), 0 = λ0 < λ1 < . . . < λn ;

3) λi , ∀i are real eigenvalues, UT U = In with In the identity matrix of order n,
U = {v0, v1, . . . , vn} form an orthogonal basis of Rn ;

4) If f = ∑n
i=1 ⟨f, vi⟩ vi, the k-term approximation of f is given by

fk =
k∑
i=1
⟨f, vi⟩ vi .

The first k eigenvectors associating to the smallest nonzero eigenvalues, correspond
to smooth and slowly varying functions, while the last one show more rapid oscillations.
Property 4) defines the truncated spectral approximation of the L matrix, that considers
the contribution of the first k eigenpairs related to the smallest eigenvalues which hold
for identifying the main shape features at different scale forming a signature for shape
characterization.

In case of eigen-decomposition-based mesh partitioning the shape describing function
used to detect salient shape parts is a vector function f defined as the truncated spectral
coordinates of a vertex Xi and denoted by

f(Xi) = (v1(Xi), v2(Xi), . . . , vd(Xi)) , d ≤ k , (5.12)

where each vj obtained by the spectral decomposition of L in (5.10)-(5.11) is normalized
in the range [−1, 1].

The number k, which represents the number of computed eigenpairs, should be chosen
according to the shape resolution. In Fig. 5.10 the first k = 6 eigenfunctions of the
affinity matrix (5.10) corresponding to the first six non-zero eigenvalues are illustrated
for the horse_2, the glasses and the chair meshes, visualized in false colours in the
range [blue,red]. In the case of glasses mesh, one can observe that the third and fourth
eigenfunctions yet somehow localize by the extremal function values the separate lenses
and the temples’ curved endings, however, values of the last two eigenfunctions already
oscillate too much, thus, do not provide a meaningful description of the salient shape
parts anymore.

52 Shape Analysis

Fig. 5.10 The smallest k = 6 eigenfunctions of the affinity matrix (5.10)-(5.11) for
horse_2, glasses and chair meshes.

The multi-channel function f in the form (5.12) which is a vector function defined
for each vertex Xi of the mesh, can be assumed as a multi-channel input function for the
segmentation algorithm. However, we are not limited to spectral information, and many
other shape properties can be analogously exploited as multi-channel input function f .

Properties of the Laplacian spectrum have been widely investigated in shape analysis
and applied for several applications in surface processing, such as shape segmentation,
matching and retrieval, see [100],[74]. The choice of the Laplacian matrix influences the
spectral segmentation results as documented, for example, in [130], where instead of the
more common cotangent based Laplacian proposed in [82, 98], the Laplacian matrix of
the dual graph (triangle-based) is considered, weighted by the dihedral angles.

5.3 Compact Support LpCMs as Localized Shape
Descriptors

In Section 5.2, we described the basis generated by the eigenfunctions of the Affinity
matrix. These provide a spectral coordinates of the vertices, thus, jointly create a dense,
multi-dimensional characteristic of the salient parts of the object.

In recent years, the basis generated by the eigenfunctions of Laplace-Beltrami Operator
(LBO), called Manifold Harmonic Basis (MHB) has been proposed in [118] and commonly
used for multi-resolution shape approximation in analogy to Fourier analysis.

5.3 Compact Support LpCMs as Localized Shape Descriptors 53

It is well known that the eigenfunctions of the Laplace Beltrami operator, called
Manifold Harmonics (MH), define a function basis. In particular, for a smooth manifold
M embedded in R3 the Laplace-Beltrami operator induces a set of eigenfunctions {φk}
and associated eigenvalues {λk} determined by

−∆φk = λkφk k ∈ N, λk ∈ R . (5.13)

The self-adjointness of ∆ implies that the eigenvalues are real and that the eigenfunctions
are orthogonal with respect to the L2-inner product: < f, g >=

∫
M f g.

One major drawback of this basis is that, similarly to the Fourier spectrum, the
MHs are dense and have global spatial support. This means that the functions do
not give intuitive insight on the features of the manifold, thus reducing their use in
practical shape processing applications [74]. It is also well known that using a reduced
number of eigenfunctions corresponding to the smallest eigenvalues λ, the MHs allow
to approximate the shape of the manifold in an improved manner as the number of
eigenfunctions increases.

However, in the shape partitioning context, rather than a multi-resolution represen-
tation of the shape, which is the peculiarity of the MHB on manifolds, in this section,
the focus is on identifying the observable features of the manifold which represent for
example protrusions, ridges, details in general localized in small regions.

Hence, in the partitioning context, a more suitable alternative to the MHB is repre-
sented by the Compressed Manifold Basis (CMB), introduced in [88], which is character-
ized by compact support quasi-eigenfunctions of the LBO obtained by imposing sparsity
constraints.

Motivated by the advantages in terms of control on the compact support obtained
by using the L1 norm to force the sparsity of the solution discussed in [92] and [88], we
devised to replace the L1 norm by a more effective sparsity-inducing Lp norm term, with
0 < p ≤ 1, which stronger enforces the locality of the resulting basis functions. The set
of functions Ψ = {ψk}Nk=1, that we will call Lp Compressed Modes (LpCMs), is computed
by solving the following variational model

min
Ψ

N∑
k=1

(
1
µ
∥ψk∥pp −

1
2 < ψk,∆ψk >

)
s.t. < ψj, ψk >= δjk , (5.14)

where δjk is the Kronecker delta, and µ > 0 is a penalty parameter. They form an
orthonormal basis for the L2(Ω) space, where Ω is the domain in consideration, and they
represent a set of quasi-eigenfunctions of the Laplace-Beltrami operator.

54 Shape Analysis

The second term in the objective function of (5.14) is the fidelity term which represents
the accuracy of the shape approximation provided by the set of functions Ψ, while the
first term, so-called penalty term, forces the sparsity in the functions Ψ thus imposing
spatially sparse solutions. We remark that at the aim to construct a basis which is sparse
but also localized in space it is necessary to further demonstrate that the functions Ψ
determined by solving (5.14) have compact support. This aspect will be proved in this
section.

The penalty parameter µ controls the compromise between the two aspects. It is well
known that the sparsity is better induced by the Lp norm for 0 < p < 1, rather than the
L1 norm. For p = 1 model (5.14) reduces to the proposal in [92], where the sparsity is
forced only by acting on the µ value to increase the contribution of the penalty term,
thus decreasing the shape approximation guaranteed by the fidelity term.

The parameter p plays a crucial role since it allows to force the sparsity while
maintaining the approximation accuracy without excessively stressing the penalty via
the µ value. The accuracy is fundamental to localize the support of the functions in
specific local features of the shape such as protrusions and ridges.

(a) Supports of LpCM Basis, p=1, µ = 100;

(b) Supports of LpCM Basis, p = 0.8, µ = 1000;

Fig. 5.11 Partitioning of the 2-manifold hand using L1CM basis (a) and LpCM basis (b).

Some evidence of the benefit obtained by the sparsity-inducing proposal, is shown
in Fig.5.11 where we try to answer the following question: Can we identify the most
salient parts of the manifold hand using only six compressed modes? Fig.5.11 compares
the supports of the compressed modes determined as solution of the variational problem
(5.14) with p = 1 (Fig.5.11(a)) and p = 0.8 (Fig.5.11 (b)) where the µ parameter has
been chosen, for each p value, to provide the most natural salient part identification. An
automatic strategy for the choice of the optimal µ parameter will be also discussed in
this work. The supports of the six quasi-eigenfunctions are colored in red and we can
observe that using p < 1 strengthens the sparsity, while if p = 1 no µ value has allowed
to correctly identify all the fingers.

5.3 Compact Support LpCMs as Localized Shape Descriptors 55

Background on the Compressed Modes

In the preliminary work [92] the authors show how to produce a basis of localized functions
{ψk}Nk=1 in Rd, called Compressed Modes (CMs), by solving the following variational
problem

min
{ψ1,ψ2,..,ψN }

N∑
k=1

(
1
µ
∥ψk∥1 + ⟨ψk, Hψk⟩

)
s.t. < ψj, ψk >= δjk , (5.15)

where H = −1
2∆ + V (x) is the Hamiltonian operator corresponding to potential V (x),

the L1 norm is defined as ∥f∥1 =
∫

Ω |f |dx and ⟨f, g⟩ =
∫

Ω f
∗gdx Ω ⊂ Rd. Here the L1

norm is a penalty term used to achieve spatial sparsity. The orthonormality constraints
in (5.15), which enforce the orthonormality of the basis functions, lead to a non-convex
variational problem, with many local minimizers.

A theoretical analysis of the CMs, provided in [7], allows for finding the minimizer of
the variational formulation of the Schrodinger equation, showing the spatial localization
property of CMs, and establishing an upper bound on the volume of their support.
Consistency results for the CMs were proved in [6].

In [88] the variational problem (5.15) in Rd domains has been extended to deal
with Laplace-Beltrami eigenfunctions on 2-manifolds discretized by three-dimensional
meshes. These new basis functions, named Compressed Manifold Modes (CMM), form
the Compressed Manifold Basis (CMB) and define an alternative to the classical MHB,
proposed in [118].

5.3.1 The sparsity-inducing variational model for LpCMs

Let Ω = B(0, R) ⊂ Rd denote the d-dimensional ball of radius R centered at the origin.
Relation (5.14), can be rewritten as:

min
Ψ

N∑
k=1

(
1
µ

∫
Ω
|ψk|p dx−

1
2

∫
Ω
ψk∆ψkdx

)
s.t.

∫
Ω
ψj ψk dx = δjk , (5.16)

where we denoted the Lp norm of a function by ∥f∥p = (
∫

Ω |f |pdx)1/p.
Before proceeding with the solution of the variational model (5.16) we demonstrate

in the following two important properties of the Lp compressed functions such as local
support and completeness, which also hold for the CMs determined by solving (5.15).

56 Shape Analysis

On the support of the LpCMs

In the following we establish an asymptotic upper bound on the volume of the support
of the LpCMs in terms of the penalty parameter µ and the sparsity parameter p. At
this aim, we first reformulate (5.16) by using integration by parts and imposing zero
boundary conditions on Ω. It follows that the first N compressed modes {ψi}Ni=1 solve
the following constrained optimization problem:

min
Ψ

N∑
i=1

(
1
µ

∫
Ω
|ψi|p dx+ 1

2

∫
Ω
|∇ψi|2 dx

)
s.t.

∫
Ω
ψjψk dx = δjk . (5.17)

We first introduce the following result on the volume support of the first compressed
mode.

Proposition 4 ∀x ∈ Ω, any 0 < p < 1, and µ sufficiently small, we have

∫
Ω

(
1
µ
|ψ1|p + 1

2 |∇ψ1|2
)
dx ≤ m(Ω)

1
p

−1µ− 4
4+d (5.18)

where m(Ω) is the finite measure of the domain Ω ⊂ Rd.

Proof. From the relation between Lp norm and Lq norm, with 0 < p < q ≤ ∞

∥f∥p ≤ m(Ω)
1
p

− 1
q ∥f∥q , (5.19)

for q = 1 and 0 < p < 1, it follows that

∫
Ω

(
1
µ
|ψ1|p + 1

2 |∇ψ1|2 dx
)
≤ m(Ω)

1
p

−1 ·
∫

Ω

(
1
µ
|ψ1|+

1
2 |∇ψ1|2

)
dx. (5.20)

By using Proposition 3.4 of [7], namely

∫
Ω

(
1
µ
|ψ1|+

1
2 |∇ψ1|2

)
dx = C1µ

− 4
4+d ,

where C1 is some fixed constant depending on d, we easily obtain the bound in (5.18).

Theorem 1 There exist µ0, such that for µ < µ0 the corresponding Lp compressed modes
{ψi}Ni=1 satisfy

|supp(ψi)| ≤ Cµ− 8
4+d

+1m(Ω)
1

p(1−p) −2 (5.21)

where C depends on N and p.

5.3 Compact Support LpCMs as Localized Shape Descriptors 57

The proof is postponed to the Appendix.

The result in Theorem 1 is fundamental for the construction of a compact support
LpCM basis and it will represent the key aspect for the shape partitioning method based
on the LpCMs that will be described in Section 6.2.

An example demonstrating the essence of Theorem 1 is shown in Figure 5.12. In each
row three LpCM functions are illustrated obtained for a particular µ value, and fixed
N and p values. Since the upper bound given in Theorem 1 depends on µ, p, N , for
increasing values of µ, as we expected, we notice an enlargement of the compact support
of each function.

Fig. 5.12 Three LpCMs generated for the teddy_2 mesh for three different µ values,
row-wise µ = {250, 160, 50} .

Completeness of the LpCMs

We now investigate a completeness result on the LpCMs and its effect on shape ap-
proximation. In particular, we prove that, for a fixed µ value in (5.16), under some
unitary transformations, the LpCM functions {ψi}Ni=1 approximate the eigenfunctions of
the Laplacian operator in an improved manner as N increases.

58 Shape Analysis

Let Φ = {φi}Mi=1 be the set of orthonormal eigenfunctions of −1
2∆ corresponding

to the eigenvalues {λi}Mi=1, defined by (5.13) where the eigenvalues are arranged in
non-decreasing order.

The following result of completeness for the LpCMs holds.

Theorem 2 Given fixed parameters µ and p in (5.16), for a fixed integer M < N , the
first N functions LpCMs {ψi}Ni=1 up to an unitary transformation, satisfy

lim
N→∞

∥φi − ψi∥2
2 = 0, i = 1, . . . ,M. (5.22)

Proof. The proof follows from [129], where the authors demonstrate the result
in the case of L1-norm, but it still holds if the L1 norm term is replaced by any
functional bounded by L2 norm. In fact, for the relation (5.19) between Lp and Lq norms,
0 < p < q ≤ ∞, if we set q = 2, it follows that Lp-norm, 0 < p < 2, is bounded by
L2-norm.

The completeness result confirms that using the LpCM orthogonal basis, analogously
to the Φ basis, we can reconstruct any function defined on the shape, up to an arbitrary
degree of precision. However, for a small number N of functions, the approximated
reconstructions show significant differences.

By the way of illustration, let us consider the geometric reconstruction of the 2-
manifold horse. The shape approximation process, described for MHs in [118], also holds
for LpCMs. The reconstruction obtained by using all the N eigenfunctions of the LBO,
where N = 868, is shown in Fig. 5.13 (top). In the second and third row of Fig. 5.13 we
show, respectively, the shape reconstructions obtained using the basis MHB computed
by solving (5.13), and the proposed LpCM basis obtained by (5.16), formulated in the
2-manifold context which will be discussed in the following sections. For a fixed value
of the dimension N in the range N = 8, 15, 30, the reconstruction obtained by MHB is
smoother but less representative of the underlying shape, while the LpCM approximation
looks like a more stylized shape, roughly a skeleton of the shape. Moreover, while the
MHB approximations for increasing dimensions tend to refine the basic shape, the LpCM
basis enriches the skeleton shape with smaller features while maintaining the structure
of the shape. This can be observed in the horse reconstructions in Fig. 5.13 (bottom)
where the horse’s legs and ears are well represented only using the LpCM bases.

5.3 Compact Support LpCMs as Localized Shape Descriptors 59

Fig. 5.13 Reconstruction of the horse shape (top) using MH (middle row) and LpCM
(bottom row) bases for increasing space dimension N ; from left to right N = 8, N = 15,
and N = 30.

5.3.2 Discretization of the variational model

We are interested in the application of model (5.14) to compute the Lp Compressed
Modes induced by the LBO on a manifold M approximated by mesh M .

By applying the discretization D−1L (4.15) for the LBO on M , and arranging the
discretized LpCMs in columns of a matrix Ψ = [ψ1, . . . , ψN], with Ψ ∈ Rn×N , the
constrained minimization problem (5.16) on M reads as follows

Ψ∗ = arg min
Ψ

1
µ
∥Ψ∥pp + Tr

(
ΨTLΨ

)
s.t. ΨTDΨ = I, (5.23)

where Tr(·) denotes the trace operator, and ∥Ψ∥pp = ∑
i,j di|Ψi,j|p, with di diagonal

elements of the matrix D. In [21] the authors propose to approximate discrete norms, in
particular the L1 norm, as a weighted sum in the vertex neighbourhood

∥Ψ∥pp =
∑
i,j

|Ψi,j|pw(Xi) ,

where the given weights w(Ψi,·) can be set apart from the uniform choice w(Ψi,·) = 1 as
the area around associated vertex Xi or polyhedra volumes determined by linear basis

60 Shape Analysis

functions bi(X) defined over every triangle τ ∈ T as

w(Ψi,·) = |N△(Xi)| , (5.24)

w(Ψi,·) =
∑

τ∈N△(Xi)

∫
τ
bi(X) · sign(Ψ̂(X)) (5.25)

where the piecewise-linear hat functions bi(X) are defined as

bi(X) =

1 X = Xi

0 X ∈M\N(Xi)
linear on N(Xi)

, (5.26)

and Ψ̂(X) ≈ ∑n
i=1 Ψi,·bi(X). We follow the area-weights option.

A discussion on the existence of a minimizer for a constrained variational problem
relies on conditions on the associated Lagrangian and on the constraints. In particular,
the orthogonality constraints in problem (5.23) are bounded above by quadratic functions.
The Lagrangian function of (5.23) is defined as

J (Ψ,Λ) = 1
µ
∥Ψ∥pp + Tr

(
ΨTLΨ

)
− Tr

(
Λ(ΨTDΨ− I)

)
(5.27)

where Λ is the matrix of Lagrangian multipliers. The function (5.27) is proper, lower
semi-continuous, bounded from below and coercive. If Ψ is a local minimizer of (5.23)
then Ψ satisfies the first-order optimality conditions

DΨJ (Ψ,Λ) = 1
µ
ν∗ + (2L− 2ΛD)Ψ = 0 (5.28)

where ν∗ ∈ ∂Ψ
[
∥Ψ∥pp

]
(Ψ∗) represents the subdifferential (with respect to Ψ, calculated

at Ψ∗), defined in (A.1), and we used results from [104] for trace derivative.

The above-described optimization problem allows us to determine the Lp Compressed
Modes for given dimension N and given regularization parameter µ. Two sets of LpCM
basis generated from the meshes wolf and fawn are shown in Fig. 5.14. The change
of the compact support of ψ1 ∈ Ψ, in case of bird mesh, for different values of µ is
demonstrated in Figure 5.15.

However, the numerical method to obtain a basis that covers the whole mesh M ,
either just for given N or for given µ, will be described together with the partitioning
algorithm in Section 6.2.

5.3 Compact Support LpCMs as Localized Shape Descriptors 61

Fig. 5.14 Example of two sets of LpCM basis Ψ generated for the wolf and the fawn
meshes.

Fig. 5.15 LpCM ψ1 of Ψ generated for 4 different µ values of bird mesh. From left to
right: enlarging of the support obtained by increasing the parameter µ for a fixed number
of basis functions.

The rest of this chapter will be devoted to the numerical solution of the optimization
problem (5.23) by an ADMM-based strategy.

5.3.3 Applying ADMM to the proposed model

In this section, we illustrate in detail the ADMM-based iterative algorithm used to
numerically solve the proposed model (5.23). Two different splitting methods for solving
problem (5.23) have been proposed in [92] and [88]. In [92] the authors solve the
minimization problem by the splitting orthogonality constraint (SOC) method introduced
in [65], while in [88] an ADMM approach is introduced that improves the empirical
convergence performance of the former. Our approach follows the ADMM strategy, and
mainly differs from [88] in the proximal map sub-problem.

First, we replace the orthogonality constraint in (5.23) using an indicator function

ι(Ψ) =
 0 if ΨTDΨ = I

∞ otherwise .

62 Shape Analysis

Then problem (5.23) can be rewritten as:

Ψ∗ = arg min
Ψ

1
µ
∥Ψ∥pp + Tr(ΨTLΨ) + ι(Ψ) . (5.29)

We can resort to the variable splitting technique for the orthogonality constraint and
introduce two new auxiliary matrices, E, S ∈ Rn×N , the problem (5.29) is then rewritten
as

min
Ψ,S,E

1
µ
∥S∥pp + Tr(ETLE) + ι(Ψ) s.t. Ψ = S , Ψ = E . (5.30)

To solve problem (5.30), we define the augmented Lagrangian functional

L(Ψ, S, E;UE, US;µ) = 1
µ
∥S∥pp + Tr(ETLE) + ι(Ψ)

− ⟨US,Ψ− S ⟩ + ρ

2 ∥Ψ− S∥
2
F

− ⟨UE,Ψ− E ⟩ + ρ

2 ∥Ψ− E∥
2
F (5.31)

where ρ > 0 is scalar penalty parameter and US ∈ Rn×N , UE ∈ Rn×N are the matrices of
Lagrange multipliers associated with the linear constraints Ψ = S and Ψ = E in (5.30),
respectively.

We then consider the following saddle-point problem:

Find (Ψ∗, S∗, E∗;U∗
S, U

∗
E) ∈ Rn×N× Rn×N× Rn×N× Rn×N× Rn×N

s.t. L (Ψ∗, S∗, E∗;UE, US;µ) ≤ L (Ψ∗, S∗, E∗;U∗
E, U

∗
S;µ) ≤ L (Ψ, S, E;U∗

E, U
∗
S;µ)

∀ (Ψ, S, E;UE, US) ∈ Rn×N× Rn×N× Rn×N× Rn×N× Rn×N , (5.32)

with the augmented Lagrangian functional L defined in (5.31).
In the following we present the ADMM-based iterative algorithm used to compute a

saddle-point solution of (5.31)–(5.32) which provides a minimizer of problem (5.23).
Given the previously computed (or initialized for k = 0) matrices S(k), E(k), U (k)

S and
U

(k)
E , the k-th iteration of the proposed ADMM-based iterative scheme applied to the

solution of the saddle-point problem (5.31)–(5.32) reads as follows:

5.3 Compact Support LpCMs as Localized Shape Descriptors 63

Ψ(k+1) ← arg min
Ψ∈Rn×N

L(Ψ, S(k), E(k);U (k)
S , U

(k)
E) (5.33)

S(k+1) ← arg min
S∈Rn×N

L(Ψ(k+1), S, E(k);U (k)
S , U

(k)
E) (5.34)

E(k+1) ← arg min
E∈Rn×N

L(Ψ(k+1), S(k+1), E;U (k)
S , U

(k)
E) (5.35)

U
(k+1)
S ← U

(k)
S − ρ

(
Ψ(k+1) − S(k+1)

)
(5.36)

U
(k+1)
E ← U

(k)
E − ρ

(
Ψ(k+1) − E(k+1)

)
. (5.37)

In the following we show in detail how to solve the three minimization sub-problems
(5.33)–(5.35) for the primal variables Ψ, S and E, respectively, while the ADMM dual
variable updates (5.36)–(5.37) admit closed-form solutions.

Solution of subproblem (5.33) for Ψ

We observe that the subproblem (5.33) can be rewritten as:

Ψ(k+1)← arg min
Ψ

ρ

2∥Ψ− (S + 1
ρ
US)∥2

F + ρ

2∥Ψ− (E + 1
ρ
UE)∥2

F + ι(Ψ) . (5.38)

If we omit the constant terms, problem (5.38) is equivalent to the following

Ψ(k+1)← arg min
Ψ
ρ∥Ψ− Y ∥2

F s.t. ΨTDΨ = I (5.39)

where Y = 1
2(S + 1

ρ
Us + E + 1

ρ
UE) .

Theorem 3 The costrained quadratic problem (5.39), assuming Y has full rank, has the
closed-form solution

Ψ(k+1) = Y V Σ−1/2V T (5.40)

where V ∈ RN×N is a orthogonal matrix and Σ is a diagonal matrix satisfying the SVD
factorization Y TDY = V ΣV T .

Proof. Setting
Ψ = D− 1

2 Φ , (5.41)

then the constraint in (5.39) is equivalent to ΦTΦ = I, and a solution of (5.39) can be
obtained by solving:

min
Φ
ρ∥D− 1

2 Φ− Y ∥2
F s.t. ΦTΦ = I . (5.42)

64 Shape Analysis

A closed-form solution of the minimization problem (5.42) can be derived by considering
the Lagrangian of the constrained problem (5.42)

L(Φ,Λ) = ρ∥D− 1
2 Φ− Y ∥2

F + Tr(Λ(ΦTΦ− I)) (5.43)

where Λ is the matrix of Lagrangian multipliers, and its first-order optimality conditions
which read as

∂L
∂Φ = 2ρD− 1

2 (D− 1
2 Φ− Y) + Φ(Λ + ΛT) = 0

ΦTΦ = I

. (5.44)

Multiplying by D the first eq. in (5.44) we obtain: 2ρ(Φ−D 1
2Y) +DΦ(Λ + ΛT) = 0

ΦTΦ = I
, (5.45)

from which it follows that

D
1
2Y = Φ(I + D̂(Λ + ΛT)) (5.46)

where D̂ = 1
2ρD, and then,

Φ = D
1
2Y (I + D̂(Λ + ΛT))−1 . (5.47)

We set Z = D
1
2Y , by recalling the second relation of (5.44) and using (5.46), it

follows
ZTZ = (I + D̂(Λ + ΛT))T (I + D̂(Λ + ΛT)) . (5.48)

Since ZTZ ∈ RN×N , with N << n, is symmetric and semi-definite positive, following
[65], we apply the Singular Value Decomposition (SVD), namely ZTZ = V ΣV T .
Then I + D̂(Λ + ΛT) = ±V Σ 1

2V T are two square roots of ZTZ. The principal square
root

(I + D̂(Λ + ΛT)) = V Σ 1
2V T (5.49)

is the one we desired. If ZTZ is full rank, then V Σ 1
2V T is invertible. Thus, relation

(5.47) can be rewritten as:
Φ = D

1
2Y V Σ− 1

2V T

5.3 Compact Support LpCMs as Localized Shape Descriptors 65

and by (5.41) it follows that

Ψ(k+1) = D− 1
2D

1
2Y V Σ− 1

2V T ,

thus (5.40) holds.
Remark. The problem (5.42) is known as orthogonal Procrustes problem. Following
[47] a solution Φ of (5.42) reads as

Φ = Ũ Ṽ T , (5.50)

computed by applying the SVD to the matrix B = (D− 1
2)TY , thus obtaining B = ŨΣ̃Ṽ T .

Since the SVD computation of an m × n matrix takes time that is proportional to
O(km2n+ k′n3) with k and k′ constants, the computational cost for computing the SVD
of the n×N matrix B is O(n2N +N3), while in the proposed solution, as shown, we
computed the SVD of a matrix ZTZ of dimensions N ×N , with a cost of O(2N3). Due
to the fact that n >> N , we conclude that the proposed minimization proved in Theorem
3 is much more computational efficient than the use of the decomposition given in (5.50).

Solution of subproblem (5.34) for S

Given Ψ(k+1), E(k), U
(k)
S ,and U (k)

E , and recalling the definition of the augmented Lagrangian
functional in (5.31), the minimization sub-problem for S in (5.34) can be rewritten as
follows:

S(k+1)← arg min
S

1
µ
∥S∥pp + ρ

2∥Ψ− (S + 1
ρ
US)∥2

F . (5.51)

We can use the Generalized Iterated Shrinkage (GISA) strategy for Non-convex Sparse
Coding proposed in [133], where the authors extended the popular soft-thresholding
operator to lp-norm, or its generalization given in [69]. Rewriting component-wise Eq.
(5.51), the minimization problem is equivalent to the following n×N independent scalar
problems:

s
(k+1)
i,j ← arg min

si,j∈R

{
f(si,j) = di

ρµ
|si,j|p + 1

2(si,j − qi,j)2
}
,

i = 1, . . . , n ,
j = 1, . . . , N

(5.52)

66 Shape Analysis

where qi,j = ψi,j − 1
ρ
(US)i,j. Following Theorem 1 in [133] each of the optimization

problems (5.52) has a unique minimum given by

proxρµf (qi,j) =
 0 if |qi,j| ≤ ŝ

sign(qi,j) s∗ if |qi,j| > ŝ
(5.53)

where the thresholding value is

ŝ =
(

2di
ρµ

(1− p)
)1/(2−p)

+ di
ρµ
p

(
2di
ρµ

(1− p)
)(p−1)/(2−p)

and s∗ is the unique solution of the following nonlinear equation:

si,j − qi,j + p
di
ρµ

(si,j)p−1 = 0 , (5.54)

that can be easily solved by a few iterations of an iterative zero-finding algorithm.

Solution of subproblem (5.35) for E

Given Ψ(k+1), S(k+1), U
(k)
S , and U

(k)
E , the minimization problem of the augmented La-

grangian functional in (5.31) with respect to E in (5.35) can be rewritten as follows:

E(k+1)← arg min
E
Tr(ETLE) + ρ

2∥Ψ− (E + 1
ρ
UE)∥2

F . (5.55)

To solve minimization problem (5.55), we consider the optimality conditions, namely

2LE + ρ(Ψ− (E + 1
ρ
UE)) = 0 ,

which reduce to the solution of N linear systems for E in the following form

(ρI − 2L)E = ρ(Ψ− 1
ρ
UE) . (5.56)

The solution of the optimization problem (5.23) via the above-described ADMM-based
strategy will provide the set of vectors {ψi}Ni=1 representing discretization of the N quasi
eigen-functions LpCM obtained from a mesh M .

Chapter 6

Shape Partitioning

Shape partitioning enables the decomposition of arbitrary topology objects into smaller
and more manageable pieces called partitions. In particular we are interested in Manifold
Partitioning, since the boundaries of tangible physical objects can be mathematically
defined by two-dimensional manifolds embedded into three-dimensional Euclidean space.

Let us introduce the following formulation of the shape partitioning problem.

Definition 1 (Manifold Partitioning) Given a compact 2-manifold M, find the par-
tition into N sub-manifolds defined by the pairs of topological spaces {(Uk, ∂Uk)}Nk=1, with
boundary ∂Uk, such that all of the following conditions hold:

P1) Uk, k = 1, . . . , N, is a non-empty connected sub-manifold;

P2)
N⋃
k=1

Uk =M

P3) The intersection of any two distinct sub-manifolds Ui, Uj in M is equal to a simple
curve:

Ui ∩ Uj = ∂Ui ∩ ∂Uj =1-manifold.

The sub-manifolds {Uk}Nk=1 are said to coverM and provide the so-called segmentation,
or partitioning, of the object represented by M.

Many shape processing applications rely on a more stringent characterization of
partitioning which requires a global parametrization of the manifold. However, smooth
global parameterization does not always exist or is easy to find. Only the simplest 2-
manifolds indeed can be adequately parameterized. In general, a topology decomposition

68 Shape Partitioning

of the manifold is required to describe it as a a collection of parameterized surfaces
(charts).

We briefly review some useful definitions.
A chart for a 2-manifold M is a homeomorphism ϕ from a subset U of M to a

subset of the two-dimensional Euclidean space. The chart is traditionally recorded as the
ordered pair (U,ϕ). A collection {(Uk, ϕk)} of charts on M such that

⋃
Uk =M forms

an atlas for M.
When a manifold is constructed from multiple overlapping charts, the regions where

they overlap carry information essential for understanding the global structure. In this
context, as specified by P3) in Definition 1, the overlap is reduced to boundary curves
shared by two adjacent patches.

A patch-based partitioning can be then defined as follows.

Definition 2 (Patch-Based Manifold Partitioning) Given a compact 2-manifold
M, find the partition into N sub-manifolds {(Uk, ∂Uk)}Nk=1 such that conditions P1) -
P3) hold, together with the following

P4) Uk is a 0-genus sub-manifold that defines a chart.

P5) Uk has at most two boundaries.

Given a chart decomposition of a triangle mesh, each chart can be parameterized on
a planar domain (e.g., a circle or a rectangle) using different methods, whose selection
depends on its genus and number of boundary components. More precisely, a disk-like
charts (i.e., 0-genus patches with one boundary component) are parameterized using the
barycentric coordinates method [43]; while a 0-genus chart with more than one boundary
component, or more generally charts with an arbitrary genus, are converted to disk-like
regions by cutting them along cut-graphs and then embedded on the plane using the
barycentric coordinates method [96],[110].

For approximation purposes and in order to reduce the parameterization distortion,
it is preferable to work with disk-like patches.

In [95] a topology-based decomposition of the shape is computed and used to segment
the shape into primitives, which define a chart decomposition of the mesh. The charts
considered in [95] are all 0-genus but can present more than one boundary components.
In contrast, in this work we restrict the chart Uk to be a disk-like patch bounded by one
or two closed curves. The latter requires a simple cut between the two boundaries to
avoid internal holes in the planar parameterization.

6.1 Sparsity-Inducing Non-Convex Variational Shape Partitioning 69

Once the proposed patch-based manifold partitioning is built, we can associate a
parameterization ϕk to each sub-manifold Uk. However, we omit the construction of a
parameterization, as discussing these details goes beyond the scope of this work.

6.1 Sparsity-Inducing Non-Convex Variational Shape
Partitioning

In this section we introduce the partitioning framework which exploits global or local
shape information represented by a generic vector function f : Ω → Rd, d ≥ 1 at the
points V to infer a decomposition of the surface M in salient parts. In Section 6.4.2
we present segmentation results for a well-known single-channel (scalar) function f , the
Shape Diameter Function, which measures the thickness property of an object, as well
as results for a vector function defined in (5.12) (multi-channel) derived from spectral
decomposition which better reflects the human perception of shape decomposition. In
the latter case d is thus the number of considered eigenvectors of the affinity matrix L in
(5.10).

Our proposal, as well as the variational mesh decomposition introduced in [130], are
based on the relaxation of Mumford-Shah variational model (2.10) proposed by Nikolova
et al. (2.11) in [27], introduced in Chapter 2.

However, model (2.11) used in [130] works well only if the intensity function f is
homogeneous in each region. When this is not the case, that is in the presence of
inhomogeneities inside the regions to be segmented, then variational model (2.12) for
piecewise-smooth partitioning behaves better. For image segmentation, authors in [22]
introduced a convex relaxation where the boundary information is extracted from the
total variation term.

Our goal is to develop an object partitioning framework that has the following
properties:

• work on multi-channel (vector-valued) functions characterizing arbitrary object
features;

• exploit an ad hoc sparsity-inducing regularizer for minimizing the total length of
the boundaries while preserving their geometric features (corner, flat, etc.);

• utilize a two-step procedure such that Step 1 is independent on the number K of
segments required; no need to solve the whole problem again for different K values;

• work both for homogeneous and piecewise smooth function f over each channel;

70 Shape Partitioning

• detect portion of objects whose boundaries are characterized by significant changes
both in f , and in the local curvature.

To that aim, in the following, we present a strategy for the partitioning of meshes
based on a new variant of the Mumford-Shah models (2.9) and (2.10) where we adopt an
Lp-norm approximation of the total length of the boundaries.

Let f = (f1, . . . , fd) be a given vector-valued function with channels fi : Ω→ R, i =
1, .., d, and u = (u1, . . . , ud) be a vector function on Ω, eventually non-smooth, named
the partition function. Unlike for the colour image segmentation process where all image
channels participate jointly in driving the segmentation process [111], here we apply
the variants of the Mumford-Shah models (2.9) and (2.10) to each channel ui of u, for
i = 1, . . . , d. In particular, in the first step, each channel ui is separately computed by
minimizing the piecewise smooth partitioning functional:

min
ui
{Js(ui)} (6.1)

Js(ui) := 1
2

∫
Ω
|fi − ui|2 dΩ+α

p

∫
Ω
φ (∥∇ui∥) dΩ + β

2

∫
Ω
|∇ui|2 dΩ, (6.2)

or the piecewise constant partitioning functional:

min
ui
{Jc(ui)} (6.3)

Jc(ui) := 1
2

∫
Ω
|fi − ui|2 dΩ + α

p

∫
Ω
φ (∥∇ui∥) dΩ, (6.4)

where φ(t) := |t|p, is the penalty function with p ∈ (0, 2], sparsity-inducing for p < 1, and
β := β(x), β : Ω→ [0, 1] is an adaptive function which approaches to zero at the high
curvature points of Ω. The models (6.1) and (6.3) represent an adaptation of (2.12).

In the second step, we apply a multi-channel clusterization procedure to the vector
function u to finalize the object partitioning. The number of parts K (phases) is only
required in this second step, so users can choose or change it without the need of solving
the previous stage again.

The Lp penalty term is introduced in (6.2) and (6.4) to better control the length of
the boundaries and substantially improves upon the L1 norm results. In particular, for
p = 1 the penalty term in (6.2) and (6.4) corresponds to the Total Variation (TV) term
which have been used in [130] to measure the length of the boundaries.

6.1 Sparsity-Inducing Non-Convex Variational Shape Partitioning 71

(a) SDF partitioning (b) p = 0.2 (c) p = 0.8 (d) p = 1.0
ground truth

Fig. 6.1 Effect of the Lp regularizer wrt the L1 regularizer for the SDF partitioning of
the blocks_2 mesh.

The benefit of using p < 1 is illustrated in Fig. 6.1 for the segmentation of a mesh
composed of variable size boxes (Fig.6.1 (a)). Since the thickness property is used as
criteria for partitioning, from the top view, the expected results are four boxes which are
shown in Fig.6.1 (a). The true thicknesses (heights) were used as thresholds. The top
row of Fig.6.1(b), (c), and (d), shows the results obtained from the proposed variational
model for different p, which are used in Step 2 to produce the simple partitions, according
to the given thresholds, which represent the true heights. In the bottom row, we plot
the partition boundaries, obtained as iso-contours of u∗ in the top row, according to the
thresholds. For the choice p < 1 in (6.4) our model preserves the sharp boundary shape,
as illustrated in Fig.6.1 (b) and (c), while for p = 1 the boundaries shrink and the small
features disappear as illustrated in Fig.6.1 (d). In particular for p approaching to zero
the boundary shape improves and the original intensities are preserved.

This behaviour is justified from the fact that the well-known TV regularizer is defined
as the continuous L1 norm, p = 1, which inevitably curtails originally salient boundaries
to penalize their magnitudes. In particular, as discussed in [112], the TV of a feature
is directly proportional to its boundary size, so that one way of minimizing the TV of
that feature would be to reduce its boundary size, in particular by smoothing corners.
Moreover, the change in intensity due to TV regularization is inversely proportional to
the scale of the feature, so that very small-scaled features are removed.

In order to make the model independent from the scale of the feature to segment,
we could use the L0 measure of the discrete gradient explicitly defined as ∥∇u ∥0 :=
#{x | ∥∇u∥2 ̸= 0}, where # is the counting operator, which outputs how many times u
changes its value. We propose to approximate the L0 measure of the gradient with the
non-smooth non-convex and non-Lipschitz regularization term, Lp quasi-norm, φ(t) = |t|p,

72 Shape Partitioning

with 0 < p < 1, which has recently been proposed in image processing and compressed
sensing since it promotes gradient-sparser solutions or sparser solutions, substantially
improving upon the L1 norm results [69].
This choice may lead to a challenging computation problem since it requires non-convex
(when p < 1), non-smooth minimization which, involving many minima, can get stuck in
shallow local minima. However, in Section 6.1.1, we show how to efficiently solve these
optimization problems.

6.1.1 Discretization of the SMCMR model

In this section we focus on the numerical solution of the Sparsity-inducing Multi-Channel
Multiple Region (SMCMR) models. Finite dimensional approximate solutions to the
shape partitioning problems (6.2) and (6.4) read respectively as the minimizations of the
following functions

Js(ui) := 1
2∥ui − fi∥

2
2 + α

p

n∑
j=1

φ (∥(∇wui)j∥2) + β

2

n∑
j=1
∥(∇wui)j∥2

2 , (6.5)

Jc(ui) := 1
2∥ui − fi∥

2
2 + α

p

n∑
j=1

φ (∥(∇wui)j∥2) , (6.6)

where fi ∈ Rn is a vector of values associated to the set of vertices V , and ui ∈ Rn

represents the discretization of the ith component of the partition function u to be
estimated. The discrete operator (∇wu(v)) denotes the discretization of the weighted
local variation of the function u at vertex v given in (4.2) and (4.3).
The regularization terms in (6.5) and (6.6) encode a prior knowledge on the local variation
of the partition function, expressed as (4.3).

The classical gradient descent method for the numerical integration of the optimization
problems (6.1) and (6.3) would involved the p-Laplacian flow that follows from Lemma
1 and is for example used in [84] for polygonal mesh simplification. However, while its
numerical implementation could be straightforward, because of stability constraints, the
gradient descent has rather undesirable asymptotic convergence properties which can
make it very inefficient.

In the rest of this section we propose a fast iterative method to approximate faithfully
the minimizer of (6.5) and (6.6) which represent the discretized versions of (6.1) and
(6.3), for p ∈ (0, 2]. The method presents a global minimum for 1 ≤ p ≤ 2, while when
p < 1, (6.5) and (6.6) are non-convex, and a global optimal solution is not insured. The

6.1 Sparsity-Inducing Non-Convex Variational Shape Partitioning 73

proposed iterative method has been implemented and evaluated as described in Section
6.1.2.

In what follows we focus on the minimization of Js in (6.5), since the functional Jc
in (6.6) can be seen as a special case of Js when β = 0. However, since Jc is non-smooth,
in our unified treatment of the two optimal problems, we will adapt a proximal forward
backward (PFB) strategy for non-smooth optimization.

We first split the objective function into two terms, h : Ω→ R and g : Ω→ R where
h(u) is differentiable but g(u) may not be differentiable (in case Jc in (6.6) is applied),
then (6.5) reads as

Js(ui) = 1
2∥ui − fi∥

2
2

h(u)

+ α

p

n∑
j=1

φ (∥(∇wui)j∥2) + β

2

n∑
j=1
∥(∇wui)j∥2

2
g(u)

.

In the following for simplicity of notations we drop the subscripts i.
The optimization problem minimize h(u) + g(u), is then solved by applying an

iterative PFB-based scheme [20], where each iteration step k is given by

v(k) := u(k−1) − λk∇h(u(k−1)) (6.7)

u(k) := arg min
u

{
g(u) + 1

2λk
∥u− v(k)∥2

2

}
(6.8)

:= (I + λk∂ [g] (u(k)))−1v(k) (6.9)
:= proxλkg(v(k)) (6.10)

where ∂x[φ](x∗) denotes the sub-differential with respect to x of the function φ calculated
at x∗, and when φ is differentiable, we have ∂x[φ](x∗) = {∇φ(x∗)} for all x∗. The explicit
updating (6.7) represents the forward step, whereas the evaluation of the proximity
operator (6.10) represents the implicit backward step which leads to the following system
of equations:

(I + λk(βLw2 + αLwp))u(k) = (1− λk)u(k−1) + λk f (6.11)

where I denotes the identity matrix of order n, and Lwp denotes the discretization of the
weighted p-Laplacian operator given in (4.3). The presence in Lwp of the (diffusivity)
coefficient γwp (Xi, Xj) defined in (4.19) makes it highly non-linear and for arbitrary p

even non-differentiable. Solvers like the Newton’s method which converges rapidly near a
minimizer provided the objective functional depends smoothly on the solution, does not
work satisfactorily on it or eventually fail. Therefore, we introduce a gradient linearization

74 Shape Partitioning

technique for the non-linear equations (6.11), resulting in the lagged diffusivity fixed point
algorithm [121] based on the following idea.

In order to solve the equation ∇J(x̂) = 0, we write

∇J(x) = L(x)x− z

where z is independent of x. Then at each iteration k, one finds x(k+1) by solving the
linear problem:

L(x(k))x(k+1) = z . (6.12)

A connection between the gradient linearization approach, the lagged diffusivity fixed
point iterations and the half quadratic minimization has been investigated in [90] where
it is shown that the methods construct exactly the same sequence of iterates x(k+1).

Setting u0 = f and following (6.12), the backward iteration (6.11), is then replaced
by the following linear system:

(I + λk(βLw2 + αLwp (u(k−1))))u(k) = (1− λk)u(k−1) + λk f (6.13)

where the non-linear (diffusion) operator Lwp has been linearized by Lwp (u(k−1)) applied
on a function u(k).

The coefficient matrix of the linear system is positive definite, symmetric, and the
linear system (6.13) is solvable, and the unique solution is the approximate solution of
(6.10). The linear convergence of the of the Lagged Diffusivity Fixed Point Method for
p = 1 is discussed in [28].

The backward iteration (6.13) can be further simplified using (4.18) thus obtaining n
independent linear equations for each vertex Xℓ ∈ V :

u(k)(Xℓ) =
(1− λk)u(k−1) + λk (f +∑

j(αγ
(k−1)
ℓj + βwℓj)u(k−1)(Xj))

1 + λk
∑
j(αγ

(k−1)
ℓj + βwℓj)

(6.14)

where we omitted the γ dependence on w and p notation to improve readability. Since
for each vertex Xℓ, at each iteration k, the solution of the linear system (6.13) is reduced
to an explicit solution of a linear diffusion equation, whose diffusivity depends on the
previous iterate u(k−1), the overall computational cost for the solution of this problem is
linear in the number of vertices.

For all p ∈ [1,∞) if the algorithm converges, then it converges to the solution of the
minimized function u in (6.5). However, when p < 1 (non-convex case) if the algorithm

6.1 Sparsity-Inducing Non-Convex Variational Shape Partitioning 75

converges to some function u the latter is not guaranteed to be the global minimum of
the minimized function (6.5).

To finalize the partitioning algorithm, we need a suitable proposal for the weights in
(4.3). Towards this aim we remark that a natural property that a genuine partitioning
algorithm should satisfy is that the boundaries should correspond to strong affinity
changes on the function values between adjacent regions. Therefore the weights are
chosen to be boundary detecting functions (4.5) defined as

w(Xℓ, Xj) = e−∥f(Xℓ)−f(Xj)∥2
2/σ . (6.15)

The parameter σ ∈ (0, 1] in (6.15) controls how much the similarities of two local
neighbours are penalized. Smaller values of σ preserve smaller differences in the function
f .

By using (6.15) we get a good measurement of similarity, which penalizes in (4.18)-
(4.19) the spatial clusterization flow of the vertices with different features.

6.1.2 Algorithm SMCMR

To summarize previous results, in Algorithm 3 we report the main steps of the proposed
algorithm for mesh decomposition based on the variational formulations (6.5) and (6.6).

The partitioning algorithm consists of two steps; the first, for each i-th channel
i = 1, . . . , d, computes the minimizer ui by the PFB-based iterative scheme described in
Section 6.1.1. In particular, the partition function ui is obtained by iterating (6.14) with
weights given in (6.15) for each vertex Xj ∈ V , until the relative change of ui is below
a fixed small tolerance ϵ. The step sizes λk can be found by a line search, that is their
values are chosen in each iteration, however we followed a strategy to set λ0 = 10 at the
beginning, and at each iteration λk is updated by factor 0.9.

STEP 2 is an automatic thresholding/clusterization procedure, and we could follow
the classical K-means algorithm, with the K-means++ algorithm for cluster centre initial-
ization [81, 2]. However, the K-means method is strongly sensitive to the initialization of
cluster centres due to its non-convexity. In particular, it favours the centroids as far away
as possible from each other, while for the proposed segmentation model, two salient parts
of the object can have centroids not too far away. Therefore, instead of using K-means++
initialization, we can set the cluster centroids ci, i = 1, . . . , K simply by assigning to
each ci the value of u∗ at a point in each salient part. Then the clusterization is achieved

76 Shape Partitioning

Algorithm 3 SMCMR segmentation

Input: mesh data Ω, f ∈ Rd, K number of parts
Output: classification vector Label ∈ Rn

Parameters: · penalty p , tolerance ϵ
· length regularizer α > 0
· smooth regularizer β > 0
· similarity coefficient σ > 0 for w in (6.15)

STEP 1: Compute u∗ ∈ Rd through PFB Iterations

· PFB Initialization: u(0) = f,

for i = 1, . . . d do:
· k := 1, λ0 = 10,
repeat
· FS: v

(k)
i := (1− λk−1)u(k−1)

i + λk−1 fi

· BS: compute u
(k)
i by (6.14)

· Update: λk := 0.9λk−1 , k = k + 1
until ∥u(k)

i − u
(k−1)
i ∥2 < ϵ

end for
· u∗ = u(k)

STEP 2: Segmentation of the mesh into K parts, using u∗

· Label(Xi) = J , J ∈ {1, . . . , K} , ∀Xi ∈ V by (6.16).

6.2 Localized Shape Descriptors in Non-Convex Shape Partitioning 77

in only one iteration by labelling each vertex as

Label(Xi) = arg min
j=1,...,K

||u∗(Xi)− cj||2 , (6.16)

without updating the cluster centroids, as it is instead required in the K-means algorithm.
The simple procedure mentioned above, in case of a single-channel function used,

coincides with thresholding.
The output of Step 2 in Algorithm 3 is a manifold partitioning of Ω, according to

Definition 1.

6.2 Localized Shape Descriptors in Non-Convex Shape
Partitioning

In Section 5.3.3 we described an optimization method to compute a basis of N functions
LpCMs induced by the LBO of a manifold M represented by a mesh M with n vertices.
Each LpCM has compact support: it is non-zero only in a confined region of the domain,
and the size of the compact support can be controlled by µ and p.

Relying on this result, in this section we propose a unified framework to perform both
mesh segmentation and patch-based partitioning. The proposed method carries out two
approaches, one completely unsupervised, namely the number of segments is determined
automatically, and the other supervised, by performing a segmentation into a given
number of parts. We refer the reader to [115] for unsupervised state-of-the-art methods,
and to [10, 62] for supervised competitors. The unsupervised numerical algorithm to
partition a mesh iteratively increases the support of N functions LpCMs, with N << n,
until their supports cover the entire mesh without overlapping. The set of vertices in
the support of ψi defines a sub-mesh. A partitioning of M is defined as the union of the
N sub-meshes ψi, i = 1, . . . , N .

The algorithm consists of three main steps illustrated in Algorithm 4, which takes as
input the initial mesh M , the number of partitions N or the initial µ value, and returns
a set of sub-meshes S. As concerning mesh segmentations, given in Def. 1, the set S is
directly the output of Step 2, while for patch-based partitioning a further step (Step 3)
is required to suitably refine the partition S according to Def. 2.

In Step 1 an iterative process is applied to generate a basis {ψi}Ni=1 by solving (5.23)
with the ADMM procedure described in Sec. 5.3.3. This task can be realized following

78 Shape Partitioning

Algorithm 4 LpCM Mesh Partitioning

Input: mesh M , µ or N
Output: patch set S = {Sk}Nk=1

Parameters: tolerance ϵ = 0.01

STEP 1: Compute Ψ ∈ Rn×N

STEP 1a (given µ):
· set uncovered = true, N = 1
while (uncovered) do:
· N ← N + 1
· Compute {ψi}Ni=1 by solving (5.23)
· set uncovered = (∃Xj : ψi(Xj) = 0 ∀i)

end while

STEP 1b (given N):
· set uncovered = true, µ = 2
while (uncovered) do:
· update µ← 4µ
· Compute {ψi}Ni=1 by solving (5.23)
· set uncovered = (∃Xj : ψi(Xj) = 0 ∀i)

end while

STEP 2: Region Growing

for k = 1, . . . N do:
· set seeds sk according to (6.17),
· set initial buffer bk ← N△(sk)

while bk ̸= {⊘} do:
if (||ψk(τ)| − max

i=1,..,N
|ψi(τ)|| ≤ ϵ)

· add τ in Sk

· update bk by inserting N△(τ)
end if
· update bk by removing τ

end while
end for

STEP 3: Refinement for Patch-Based Manifold Partitioning

6.2 Localized Shape Descriptors in Non-Convex Shape Partitioning 79

two different approaches, named Step 1a and Step 1b, that terminate when all the vertices
V are in the support of at least one LpCM.

In Step 1a the parameter µ in (5.23) is assigned. Starting from the construction of a
small set of functions LpCMs, the space dimension is enlarged at each iteration by adding
a new function ψi until any vertex of M is covered by at least one function in Ψ. Starting
from a small dimension space, Step 1a ends up with a space of dimension N spanned
by the LpCMs. In this approach the final number of partitions N is unpredictable in
advance.

Alternatively, Step 1b overcomes the problem to identify an a priori value for µ and
requires instead a fixed number for N . At each iteration, N basis functions LpCM are
built by solving (5.23) with a given µ. If there exists a vertex of M not covered by any
function in {ψi}Ni=1, then µ is increased, thus causing an enlargement of the function
supports. The solution of (5.23) is then re-iterated with the new value for µ.

Once the N functions discretized in Ψ ∈ Rn×N are determined by either Step 1a or
Step 1b, the whole set of vertices V is covered but many regions can be over-covered by
more LpCMs. Mesh partitioning satisfying Def. 1 is then carried out in Step 2. At this
aim, N initial seeds (s1, . . . , sN) are selected as the LpCM extrema, as follows

sk = arg max
i=1,..,n

|ψk(Xi)| k = 1, . . . , N . (6.17)

Then a region growing strategy is applied which consists of a buffer of adjacent
neighbours of a given element set, and a loop in which the buffer and the element set are
updated according to some decision rule. Starting from the initial buffer bk = N△(sk), k =
1, . . . , N, we examine each triangle τ ∈ bk to decide if it will be added to Sk which is the
set of triangles associated with the function ψk. We denote by ψk(τ) the value obtained
interpolating ψk on its vertices.

There are two cases that may occur when an unassigned triangle τ is considered:

• In the first case, τ is covered by one support, i.e. ψk(τ) ̸= 0 and ψi(τ) = 0 ∀i ̸= k.
We remove τ from bk and assign it to Sk. Then the buffer bk is updated by adding
the τ ’s neighbours N△(τ).

• The second case occurs when the supports of at least two basis functions overlap,
i.e. ψk(τ) ̸= 0 and ∃ i ̸= k : ψi(τ) ̸= 0 . This case locates over the bands of
overlapped supporting functions. If the difference from the extrema is under a
certain threshold ϵ, which reads as⏐⏐⏐⏐|ψk(τ)| − max

i=1,...,N
|ψi(τ)|

⏐⏐⏐⏐ ≤ ϵ , (6.18)

80 Shape Partitioning

then τ is added to Sk and bk is updated accordingly, as in the previous case.
Otherwise, τ will be assigned to a different set and the only action taken in this
case will be to remove τ from bk.

We notice that condition (6.18) is trivially satisfied in the first case.
A better understanding of condition (6.18) is provided in Fig. 6.2. The region growing

step has been applied to partition the horse mesh into N = 6 parts; the partitioning
results of Step 2 are illustrated in Fig. 6.16.

Fig. 6.2 LpCMs plotted over the magenta curve on the horse_2 mesh. Over the curve
only ψ3 and ψ6 are non-zero, and the red box shows the band where the supports overlap.

Along the magenta coloured curve depicted on the mesh (Fig. 6.2, left), from the
horse’s head to its bottom, we plot the values of the LpCMs (Fig. 6.2, right). Only the
two functions ψ3 and ψ6 of Ψ are non-zero. For the sake of clarity we plot also ψ4, which
localizes rear-left leg of the horse mesh and over the line evaluates zero. The red box
locates the band of overlapping. When the functions values, e.g. ψ3 and ψ6, are too
close (below ϵ), even in case of some minor numerical perturbation, a corresponding set
of successive triangles may tend to over-leap in the cluster assignment. However, the
condition (6.18) satisfyingly overcomes this practice issue.

Step 2 ends when the buffers are empty, i.e. all the triangles of M have been assigned
to S.

An a posteriori procedure approximates the boundaries of the sub-meshes {Sk}Nk=1

by smooth spline curves.
Step 3 of Algorithm 4 is applied to finalize the Patch-Based Manifold Partitioning

following Definition 2. The refinement is required only for a few patches {Sk}N̄k=1, N̄ < N ,
with genus greater than zero, and for 0-genus patches with more than two closed-loop
boundaries. The refinement is an adaptive process that consists in the re-iteration of
Step 1 and Step 2 for every patch Sk that needs to be further subdivided, by imposing
the initial number of partitions N = 2.

6.3 Convex Non-Convex approach in Segmentation over Surfaces 81

6.3 Convex Non-Convex approach in Segmentation
over Surfaces

In this section we introduce a new framework for segmentation of manifolds based
on scalar-valued features which exploits global or local shape information represented
by a generic real-valued function f : M → R defined on a 2-manifold M, to infer a
decomposition of M in salient parts.

The basic step in the proposed framework is represented by the solution of the
following variation of the Mumford-Shah variational model:

minu J (u;λ, η, a) ,

J (u;λ, η, a) := λ

2

∫
M

(u− f)2 dM+η2

∫
M
|∇wu|2 dM+

∫
M
φ (|∇wu|; a) dM ,

(6.19)

where λ > 0, η ≥ 0 are regularization parameters, ∇wu is the intrinsic (Riemannian)
gradient defined on M and dM is the manifolds element measure, while | · | is the
Riemannian norm, u :M→ R represents the manifold-valued partition function, and
φ(· ; a) : [0,+∞)→ R is a parametrized, non-convex penalty function with parameter
a ≥ 0, which controls the degree of non-convexity and will be referred to as the concavity
parameter. The functional is composed by the sum of smooth convex (quadratic) terms
and a non-smooth non-convex regularization term designed for penalizing simultaneously
the non-smoothness of the inner regions and the length of the segmented boundaries.
Thus the functional J in (6.19) is non-smooth and can be convex or non-convex depending
on the parameters λ, η and a. We are interested in solving the segmentation problem
via construction and then optimization of the CNC functional J in (6.19). From the
seminal works in [13], and [89] for CNC image denoising, very interesting developments
have been presented by Selesnik and others for different purposes, see [30, 68, 70, 67] for
more details. The attractiveness of such CNC approach resides in its ability to promote
sparsity more strongly than it is possible by using only convex terms while at the same
time maintaining convexity of the total optimization problem, so that well-known reliable
convex minimization approaches can be used to compute the (unique) solution.

A first contribution of this section is the derivation of conditions that ensure the
functional J in problem (6.19) is convex – despite the regularization term being non-
convex. The inclusion of the manifold’s geometry is done by characterizing the convexity
parameter a locally. Therefore the model (6.19) has a unique global minimizer. In
this section, we propose a three-stage variational segmentation method inspired by the
piecewise smoothing proposal in [22] which is a convex variant of the classical Mumford-

82 Shape Partitioning

Shah model. In the first stage an approximate solution u∗ to the optimization problem
(6.19) is computed. Once u∗ is obtained, then in the second stage the segmentation is
done by thresholding u∗ into different parts. The thresholds can be given by the users or
can be obtained automatically using any clustering methods, such as for example the
K-means algorithm. As discussed in [22], this allows for a K-phase segmentation (K ≥ 2)
by choosing (K − 1) thresholds after u∗ is computed in the first stage. In contrast, many
multiphase methods require K to be given in advance which implies that if K changes,
the minimization problem has to be solved again. Finally, a contour track phase is
computed to extract boundary curves delimiting the segmented regions on the manifold.

6.3.1 Non-convex penalty functions

In this section we characterize the non-convex penalty functions φ(· ; a) used in (6.19). We
denote the sets of non-negative and positive real numbers as R+ := { t ∈ R : t ≥ 0} and
R∗

+ :={ t ∈ R : t > 0}, respectively. Analogously to [30, 68, 70], we consider parametrized
penalty functions φ(t; a) : R+ → R+ such that for any value of the parameter a ∈ R+

the following assumptions are satisfied:

A1) φ(t; a) ∈ C2(R+) (φ twice continuously differentiable in t on R+)

A2) φ′(t; a)> 0 ∀ t ∈ R+ (φ strictly increasing in t on R+)

A3) φ′′(t; a) ≤ 0 ∀ t ∈ R+ (φ concave in t on R+)

A4) φ(0; a) = 0, φ′(0+; a) = 1, (φ, φ′, φ′′ normalization)
inft∈R+ φ

′′(t; a) = φ′′(0+; a) = −a .

We notice that the popular Lp quasi-norm with 0 < p < 1, namely φ(t; p) = |t|p, satisfies
assumptions A1)–A3) but not assumption A4), since φ′(0+; p) = +∞, φ′′(0+; p) = −∞.
Thus, such penalty function does not allow for applying the CNC strategy that asks for
assumption A4) as mandatory.

We remark that a represents a scalar indicator of the “degree of concavity” of the
penalty function φ, thus justifying the name concavity parameter. Moreover, we set
φ(t; 0) := t, such that the L1-norm penalty is recovered as a special case of φ(·; a) when
a→ 0+. We refer to [70, 30] for a detailed discussion on commonly used penalty functions
satisfying assumptions A1)–A4) above, such as

φlog(t; a) = log(1 + at)
a

, φrat(t; a) = t

1 + at/2 , φatan(t; a) =
atan

(
1+2at√

3

)
− π

6

a
√

3/2
. (6.20)

6.3 Convex Non-Convex approach in Segmentation over Surfaces 83

In Figure 6.3 we show the plots of these penalty functions, for three different values
a ∈ {0.2, 2, 4} of the concavity parameter together with the plot of the absolute value |t|.

■■

◆◆▲▲
▼▼

◆◆▲▲
▼▼

■ abs ◆ ϕlog ▲ ϕrat ▼ ϕatan

-5 0 5

2

4

6

8

◆◆

▲▲

▼▼

-2 -1 0 1 2 3

0.5

1.0

1.5

2.0

◆◆

▲▲
▼▼

-2 -1 0 1 2 3

0.5

1.0

1.5

2.0

Fig. 6.3 Plots of the penalty functions φlog(t; a), φrat(t; a), φatan(t; a) defined in (6.20),
for different values of the concavity parameter a: a = 0.2 (left), a = 2 (center), a = 4
(right); in comparison to the absolute value function.

6.3.2 Convexity Analysis

In this section we seek for a sufficient condition on the parameters λ > 0, η, a ≥ 0, such
that the objective functional J (· ;λ, η, a) in (6.19) is strictly convex.

Using the discretization of an embedded manifold M in R3 specified in Chapter 4,
we can rewrite J in (6.19) in discrete vector-indexed form as

J (u;λ, η, a) =
n∑
i=1

λ

2 (ui − fi)2 +
n∑
i=1

η

2

[∑
j∈Ni

w2
ij (uj − ui)2

]

+
n∑
i=1

φ

√∑
j∈Ni

w2
ij (uj − ui)2 ; ai

 , (6.21)

where the discretization scheme (4.2)-(4.4) has been used in (6.21). In view of the
convexity conditions that will be derived, the convexity parameter a in (6.19) is locally
defined as ai in (6.21) for each vertex Xi, to take into account the manifold’s geometry.

In the following, we give two lemmas which allow us to reduce convexity analysis
from the original functional J (· ;λ, η, a) of n variables to easier functions fv(· ;λ, η, a)
and gv(· ;λ, η, a) of v + 1 and v variables, respectively. Then in Theorem 4 we finally
give sufficient conditions for strict convexity of J in (6.21).

84 Shape Partitioning

Lemma 1 Let fv(· ;λ, η, a) : Rv+1→ R be the function defined by

fv(x0, x1, . . . , xv;λ, η, a) := λ

2

v∑
j=0

1
vj + 1 x

2
j + η

2

v∑
j=1

w2
0j (xj − x0)2

+ φ

√ v∑
j=1

w2
0j (xj − x0)2 ; a

 . (6.22)

Then, the functional J (· ;λ, η, a) : Rn → R defined in (6.21) is strictly convex if all the
functions fvi

(· ;λ, η, ai) : Rvi+1 → R, i = 1, . . . , n, are strictly convex.

Proof. The functional J in (6.21) can be rewritten in the following equivalent form:

J (u;λ, η, a) = A(u) +
n∑
i=1

fvi
(ui, uNi(1), . . . , uNi(vi);λ, η, ai) (6.23)

where A(u) is an affine function of u and the function fv is defined in (6.22). We remark
that the generic i-th term of the last two sums in (6.21) involves vi + 1 different vertices
and that, globally, the last two sums involve the generic i-th vertex vi + 1 times. Since
the affine function A(u) does not affect convexity, we can conclude that the functional
J in (6.23) - or, equivalently, in (6.21) - is strictly convex if all the functions fvi

in (6.23)
are strictly convex.

Lemma 2 The function fv(· ;λ, η, a) : Rv+1 → R defined in (6.22) is strictly convex if
the function gv(· ;λ, η, a) : Rv → R defined by

gv(y1, . . . , yv;λ, η, a) = 1
2

(
η + λ

κ

)
v∑
j=1

y2
j + φ

√ v∑
j=1

y2
j ; a

 (6.24)

is strictly convex, where
κ = (1 + ṽ)λ1 , (6.25)

with ṽ := maxj vj, and λ1 is the largest eigenvalue of matrix Q ∈ R(v+1)×(v+1) defined as

Q =

∑
w2
i −w2

1 −w2
2 −w2

3 · · · −w2
v

−w2
1 w2

1 0 0 · · · 0
−w2

2 0 w2
2 0 · · · 0

−w2
3 0 0 w2

3 · · · 0
... 0
−w2

v 0 0 0 0 w2
v

(6.26)

6.3 Convex Non-Convex approach in Segmentation over Surfaces 85

where (w1, w2, . . . , wv)T ∈ Rv are the weights defined in (4.4) associated with a generic
vertex in V of valence v.

The proof is provided in the Appendix.

Theorem 4 Let the function φ(· ; a) : R+ → R satisfy assumptions A1)–A4) in Section
6.3.1. Then, a sufficient condition for functional J (· ;λ, η, a) in (6.21) to be strictly
convex is that the parameters (λ, η, a) satisfy:

ai < η + λ

κi
⇐⇒ ai = τc

(
η + λ

κi

)
, τc ∈ [0, 1) , (6.27)

for every i ∈ {1, . . . , n}, with κi defined in (6.25).

Proof. Based on Lemmas 1–2, the functional J (· ;λ, η, a) is strictly convex if all
the functions gvi

, i ∈ {1, . . . , n}, defined in (6.24) are strictly convex. Then, based on
Proposition 2 in [30], the statement (6.27) follows.

We conclude by highlighting some properties of functional J in (6.21).

Definition 3 Let Z : Rn → R be a (not necessarily smooth) function. Then, Z is said
to be µ-strongly convex iff there exists a constant µ > 0, called the modulus of strong
convexity of Z, such that function Z(x)− µ

2 ∥x∥
2
2 is convex.

Proposition 5 Let φ(· ; a) : R+ → R be a penalty function as defined in (6.20) and let
the parameters (λ, η, a) satisfy condition (6.27). Then, the functional J (· ;λ, η, a) in
(6.21) is proper, continuous, bounded from below by zero, coercive and µ-strongly convex
with µ equal to

µ = λ + min
i=1,...,n

{κi(η − ai)} . (6.28)

Remark: Note that µ is not necessarily maximal.

The proof is provided in the Appendix.

6.3.3 Applying ADMM to the proposed CNC model

In this section, we illustrate the ADMM-based iterative algorithm used to compute
minimizers of our discrete objective functional J in (6.21) in case that parameters λ, η, a
satisfy condition (6.27), such that J is strictly convex.

Let us first introduce sparse matrix representations of the discrete gradient and
divergence operators to speed up the computations. In particular, the discrete gradient

86 Shape Partitioning

operator is represented by the matrix M ∈ R(v̂n)×n, M =
(
MT

1 ,M
T
2 , . . . ,M

T
v̂

)T
, where v̂

denotes the maximum valence in Ω and each sub-matrix Mj ∈ Rn×n, j = 1, . . . , v̂, repre-
sents the linear operator which simultaneously computes the j-th directional derivative
at all vertices, that is

(Mj)ik =

wiz for k = z

−wiz for k = i

0 otherwise
, z = Ni(j) . (6.29)

At the i-th row of Mj , corresponding to the j-th directional derivative at the i-th vertex,
the only non-zero elements are the one on the main diagonal and the one corresponding to
the j-th neighbour of the i-th vertex. Thus, each sub-matrix Mj has exactly 2n non-zero
elements. In addition, we have MTM =

(
MT

1 M1 +MT
2 M2 + . . .+MT

v̂ Mv̂

)
. To proceed

with ADMM on triangular mesh surfaces, we introduce the auxiliary variable t ∈ Rv̂n,
and reformulate problem (6.21) in the equivalent form:

{u∗, t∗} ← arg min
u,t

 λ

2 ∥u− f∥
2
2 +

n∑
i=1

[
η

2 ∥ti∥
2
2 + φ

(
∥ti∥2; ai

)] (6.30)

subject to : t = Mu , (6.31)

where ti :=
(
(M1u)i, (M2u)i, . . . , (Mvi

u)i
)T
∈ Rvi represents the discrete gradient of u

at vertex Xi. To solve problem (6.30)–(6.31), we define the augmented Lagrangian
functional

L(u, t; ρ;λ, η, a) = λ

2 ∥u− f∥
2
2 +

n∑
i=1

[
η

2 ∥ti∥
2
2 + φ

(
∥ti∥2; ai

)]

− ⟨ ρ, t−Mu ⟩ + β

2 ∥t−Mu∥2
2 (6.32)

where β > 0 is a scalar penalty parameter and ρ ∈ Rv̂n is the vector of Lagrange
multipliers associated with the linear constraint t = Mu in (6.31). We then consider the
following saddle-point problem:

Find (u∗, t∗; ρ∗) ∈ Rn× Rv̂n× Rv̂n

s.t. L (u∗, t∗; ρ;λ, η, a) ≤ L (u∗, t∗; ρ∗;λ, η, a) ≤ L (u, t; ρ∗;λ, η, a)
∀ (u, t; ρ) ∈ Rn× Rv̂n× Rv̂n . (6.33)

6.3 Convex Non-Convex approach in Segmentation over Surfaces 87

Given the previously computed (or initialized for k = 0) vectors u(k) and ρ(k), the
k-th iteration of the proposed ADMM-based iterative scheme applied to the solution of
the saddle-point problem (6.32)–(6.33) reads as follows:

t(k+1) ← arg min
t∈Rv̂n

L(u(k), t; ρ(k);λ, η, a) (6.34)

u(k+1) ← arg min
u∈Rn

L(u, t(k+1); ρ(k);λ, η, a) (6.35)

ρ(k+1) ← ρ(k) − β
(
t(k+1) −Mu(k+1)

)
. (6.36)

In the following we show in detail how to solve the two minimization sub-problems (6.34)
and (6.35) for the primal variables t and u, respectively.

Although the minimization sub-problems are all strictly convex and admit a unique
solution, convergence of the overall ADMM algorithm is clearly not guaranteed.

Solving the sub-problem for t

The minimization sub-problem for t in (6.34) can be rewritten as follows:

t(k+1) ← arg min
t∈Rv̂n

{
n∑
i=1

[
η

2 ∥ti∥
2
2 + φ

(
∥ti∥2; ai

)]
+ β

2
 t− r(k+1)

2

2

}
(6.37)

where constant terms have been omitted and where the vector r(k+1) ∈ Rv̂n is constant
with respect to the optimization variable t and is given by:

r(k+1) = Mu(k) + 1
β
ρ(k) . (6.38)

The minimization problem in (6.37) rewritten in component-wise (vertex-by-vertex) form,
is equivalent to the following n independent lower dimensional problems:

t
(k+1)
i ← arg min

ti∈Rvi

{
φ
(
∥ti∥2; ai

)
+ η

2 ∥ti∥
2
2 + β

2
 ti − r(k+1)

i

2

2

}
, (6.39)

with i = 1, . . . , n, r(k+1)
i :=

(
Mu(k)

)
i
+
(
ρ(k)

)
i
/ β and

(
Mu(k)

)
i
,
(
ρ(k)

)
i
∈ Rvi denote

the discrete gradient and the associated vector of Lagrange multipliers at vertex Xi,
respectively, with valence vi.

Since we are imposing that condition (6.27) is satisfied, such that the original functional
J (u;λ, η, a) in (6.19) is strictly convex, we aim at avoiding non-convexity of the ADMM
sub-problems (6.39). In the first part of Proposition 6 below, we give necessary and
sufficient conditions for strict convexity of the cost functions in (6.39). In particular,

88 Shape Partitioning

based on (6.41)–(6.42), we can state that the problems in (6.39) are strictly convex if
and only if the following conditions hold:

β > max
i=1,...,n

ai − η . (6.40)

In case conditions in (6.40) are satisfied, the unique solutions of the strictly convex
problems in (6.39) can be obtained by the soft-thresholding operator defined in (6.44)–
(6.45). We remark that the nonlinear equation in (6.45) can be solved up to a sufficient
accuracy by very few steps of the iterative Newton method.

Proposition 6 Let η, a ≥ 0, β > 0 and r ∈ Rv be given constants, and let φ(· ; a) :
R+ → R be a function satisfying assumptions A1)–A4) in Section 2. Then, the function

θ(x) := φ (∥x∥2; a) + η

2 ∥x∥
2
2 + β

2 ∥x− r∥
2
2 , x ∈ Rv , (6.41)

is strictly convex if and only if the following condition holds:

β > a − η . (6.42)

Moreover, in case that (6.42) holds, the strictly convex minimization problem

arg min
x∈Rv

θ(x) (6.43)

admits the unique solution x∗ ∈ Rv given by the following shrinkage operator:

x∗ = ξ∗r , with ξ∗ ∈ [0, 1[, and (6.44)

a) ξ∗ = 0 if ∥r∥2 ≤
1
β

b) ξ∗ ∈]0, 1[unique solution of :

φ′ (∥r∥2 ξ; a) + ∥r∥2
(
(η + β)ξ − β

)
= 0 otherwise.

(6.45)

The proof is provided in the Appendix.

6.4 Experiments on the Partitioning Algorithms 89

Solving the sub-problem for u

The minimization sub-problem for u in (6.35) can be rewritten as follows:

u(k+1) ← arg min
u∈Rn

{
λ

2 ∥u− f∥
2
2 +

⟨
ρ(k),Mu

⟩
+ β

2 ∥t
(k+1) −Mu∥2

2

}
(6.46)

where constants have been omitted. The quadratic minimization problem (6.46) has
first-order optimality conditions which lead to the following linear system:(

I + β

λ
MTM

)
u = f + β

λ
MT

(
t(k+1) − 1

β
ρ(k)

)
. (6.47)

Since the product MTM is symmetric and the ratio β
λ

is positive, the n× n coefficient
matrix of the linear system (6.47) is symmetric semi pos. def. and highly sparse. Hence,
(6.47) admits a unique solution obtained very efficiently by the iterative (preconditioned)
conjugate gradient method.

6.4 Experiments on the Partitioning Algorithms

6.4.1 Data Set and Hardware Specifications

We tested the proposed algorithms on a collection of point clouds and meshes downloaded
from the data repository website http://segeval.cs.princeton.edu, [31]. The chosen
dataset represents geometric models with different characteristics in terms of details,
"thickness", and level of refinement, and presents a medium dense vertex distribution. In
general, the benchmark [31] contains irregular triangulated meshes which can be divided
into few categories representing living things (human (+ hand), mammals, birds, insect
(ant), fishes (+ octopus)), daily objects (bust, cup, glasses, chair, table, teddy bear, vase)
and engineering-oriented objects (air planes, bearings, mechanical object and pliers).
In Table 6.1 we report the data sets we have used in this work, listing the number of
vertices and triangles respectively in the second and third column of 6.1. We have used
also additional meshes or synthetic data for which we knew the ground truths. These
are also reported in the third column of Table 6.1.

In the reported figures the SDF values are visualized using false colours superim-
posed onto the object. In particular, we made use of the HSV colour model and of the
colour transfer function offered by software ParaView (http://www.paraview.org/).
The hue value u(Xi) at the vertex Xi is assigned linearly to the interval (min(f(V)),

90 Shape Partitioning

Table 6.1 Data sets.

Data set |V | |T |

ant 7038 14072
armadillo 25193 50382
bird_1 6475 12946
bird_2 8946 17888
bust 25467 50930
camel 9757 19510
chair 10121 20242
cup 15037 30074
cup_2 15127 30254
dolphin 7573 15142
fawn 3911 7818
fish 6656 13308
fish_2 5121 10238
giraffe 9239 18474
glasses 7407 14810
hand 6607 13210
horse 7268 14532

Data set |V | |T |

horse_2 8078 16152
human_1 9508 19012
human_2 15385 30766
mech_1 8759 17514
mech_2 10400 20796
mech_3 1512 3020
mech_4 14872 29764
mech_5 14956 29924
octopus_1 7251 14498
octopus_2 1010 2016
octopus_3 243 482
octopus_4 1343 2682
octopus_5 5944 11888
plane 7470 14936
pliers 3906 7808
pliers_2 5110 10216
table 14587 29170

Data set |V | |T |

teddy 9548 19092
teddy_2 12831 25658
vase_1 14859 29734
vase_2 14476 28952
vase_3 10637 21274
wolf 4712 9420

blocks 6146 12288
blocks_2 105990 208896
ellipsoid 16386 32768
fertility 19994 40000
hand_im 26422 52840
horse_im 129218 258432
plate 85709 171356
sphere 16386 32768
torus 7200 14400
vase_im 52028 104056

max(f(V))). The software ParaView, and its VTK reader, was also used to visualize
and to produce all figures reported in this work and has been taken from our published
work [58, 59, 56, 55]. The only exception is illustrated in Fig. 5.9 where we compare
our SDF results with the ones obtained using original algorithm by Shapira et al. [108].
Figure 5.9 depicts screenshots of the application downloaded from the author’s web-
site http://www.liors.net/shape-diameter-function; and Figures 6.14, 6.15 depict
figures taken from [130]. The applications use slightly different rendering and lighting
procedures, nevertheless, the results are easily comparable.

The performance has been evaluated by experimental tests run on Intel®Core™i7-
4720HQ Quad-Core 2.6 GHz machine, with 12 GB/RAM and Nvidia GeForce GTX
860M graphics card in a Windows OS. The codes were executed without any additional
machine support, e.g. parallelization, GPU support, register usage.

The code for results presented in Sections 5.1.1 and 6.4.2 was written in C++
language using EIGEN mathematical library. In the latter case, to compute the solutions
of the large sparse eigenproblems required for multi-channel segmentation, we used
the wrapper EIGEN/Spectra (http://yixuan.cos.name/spectra/) which provides an
efficient implementation of the Arnoldi method. For a more pleasing visualization, in a

6.4 Experiments on the Partitioning Algorithms 91

final stage of the object partitioning we could expect the smoothing of the boundaries
between parts. However, in the preliminary computations this process is sometimes
omitted so as not to distort the raw results obtained from the application of the variational
partitioning model.

The other algorithms related to the results presented in Section 6.4.3 and 6.4.4 are
written in Matlab, also executed without any additional machine support.

6.4.2 Experimental results of SMCMR Framework

In this section we describe the experimental results which demonstrate the performance
of our segmentation approach, described in Section 6.1 and summarized in Algorithm 3
(SMCMR), both in case of single channel input function, f ∈ R, in regime of piecewise
constant segmentation, and in case of multi-channel piecewise smooth segmentation.

In the examples illustrated in this section, we did not apply any post-process (smooth-
ing, etc.) to the boundaries between the segmented parts in order to not alter the results
computed by the application of the variational partitioning model.

Single-channel partitioning based on SDF

(a) (b) (c)

Fig. 6.4 Effect of the parameter p on the STEP 1 in Algorithm 3. (a) p = 2, (b) p = 1,
(c) p = 0.8.

In this example we aim to decompose the surface boundary of an object into meaningful
parts using the shape diameter values as shape attribute to distinguish the salient parts.

92 Shape Partitioning

Table 6.2 Timing results for single-channel (SDF) partitioning in seconds: the compu-
tational time of one iteration (Iter), and total computational time using the tolerances
ϵ = 10−2 and ϵ = 10−4.

Data set |V | Iter ϵ = 10−2 ϵ = 10−4

ant 7038 0.008 0.025 1.832
armadillo 25193 0.048 0.209 12.718
blocks 6146 0.008 0.015 0.328
bird_2 8946 0.014 0.090 4.258
camel 9757 0.013 0.049 2.793
dolphin 7573 0.011 0.040 4.174
mech_2 10400 0.012 0.022 0.389
mech_3 1512 0.002 0.004 0.086
octopus_1 7251 0.009 0.029 1.740
octopus_3 243 0.001 0.002 0.029
pliers 3906 0.004 0.014 1.025
wolf 4712 0.006 0.017 1.645

Therefore we expect the solution to be composed of homogeneous regions surrounded by
closed contours which separates parts with significative different thicknesses. We applied
Algorithm 3, with β = 0 and the input data f ∈ R which was the SDF map computed
by the dynamic algorithm described in Section 5.1. The result is a piecewise constant
approximation of the given SDF initial data enforcing sparsity in the gradient magnitude
of the solution. The model data of the mesh samples from the data repository reported
for this single-channel partitioning example are illustrated in Table 6.2.

The decomposition results strongly depend on the parameter p which forces the
sparsity in the gradient of the solution u∗. The effects of the parameter p can be observed,
for the ant and mech_1 data sets, in Fig. 6.4 where the colours (from red (large) to blue
(small)) indicate the value of the solution u∗ from STEP 1 of Algorithm 3. In this
experiment, we fixed the value of α = 1 to highlight the effect of parameter p, however,
similar results can be obtained for different α values. When p > 1 the solution of the
optimization process behaves like a smoothing flow, as illustrated in Fig. 6.4(a), thus
destroying the boundaries between parts. This effect is easily justified in terms of the
p-Laplacian operator which, for p = 2, turns to the classical Laplace-Beltrami operator
∆2. For the choice of p > 1, the tuning of α parameter does not help to improve the
result. When p ≤ 1, as shown in Fig. 6.4(b) and (c), the regularization term induces the
sparsity of the u∗ function leading to cleaner, straightforward partitioning clues for the
underlying object.

6.4 Experiments on the Partitioning Algorithms 93

Fig. 6.5 Examples of single-channel partitioning based on SDF into patches with similar
thickness.

In Fig. 6.5 a sample set of objects partitioned into patches of different thickness
is shown. The results were obtained by applying Algorithm 3 with d = 1, p = 0.8,
tolerance ϵ = 10−4 and α = 1. At the bottom right of each object we report the value
of K, which in this type of partitioning associates to the number of clusters having
similar thickness. The associated computational times are reported in Table 6.2: for
one iteration k (third column), the total time required by STEP 1 with ϵ = 10−4 and
ϵ = 10−2 are reported in the fourth and fifth columns, respectively. Although we used
the more stringent ϵ tolerance in the shown examples in Fig. 6.5, we noticed that for
many input shapes the results for ϵ ≤ 10−2 are very favourable, too. It is also worth
noting that it is not necessary to require large scale models to generate good results. In
fact our algorithm generates acceptable segmentation results independently from the
resolution of the meshes, as illustrated for the two octopus meshes in Fig. 6.5 (last row –
left) which present different resolutions.

Multi-channel partitioning based on spectral analysis

For the spectral partitioning, which aims to simulate the human being decomposition,
the eigen-decomposition of the affinity matrix described in Section 5.2 is preliminary
applied, obtaining 15 non-constant eigenvectors for each object in the repository data set.
The affinity matrix weights (5.11) were computed using σ = 0.5 for every object. The

94 Shape Partitioning

(a) (b) (c)

Fig. 6.6 Multi-channel partitioning of the pliers_2 mesh into K parts: K = 3 (a),
K = 4 (b), K = 5 (c)

.

dimension d of the multi-channel function f used as input of the Algorithm SMCMR
can be less or equal to the number of eigenvectors, that is d ≤ 15. The usual choice is to
take the first d significant(well shape-describing) ones. Our choice is showed in the third
column of Table 6.3. Finally, the peculiarity of our algorithm allows us to consider a
number of partitions K independent on d. An example of this benefit is illustrated in
Fig. 6.6. First STEP 1 of Algorithm 3 is applied using d = 3 channels, by considering
the first three eigenfunctions among the 15 computed ones. Then STEP 2 is recomputed
for K = 3 (Fig. 6.6 (a)), K = 4 (Fig. 6.6 (b)), and K = 5 (Fig. 6.6 (c)).

Fig. 6.7 Examples of multi-channel partitioning into patches simulating human being
segmentation.

The effectiveness of the proposed Algorithm 3 to partition the surface patches is
shown in Figure 6.7 for a selected set of objects from the repository. At the bottom right
of each object, we report the K value – number of partitions produced. Details on the
model sizes (|V |), the number of channels considered (d), and the computational times
for these objects are reported in Table 6.3. In particular with Spectra we denote the

6.4 Experiments on the Partitioning Algorithms 95

Table 6.3 Timing results for multi-channel partitioning in seconds: the computational
time for the eigen-decomposition (Spectra) and the overall computational time (Time)
for the (d)-channel Algorithm 3.

Data set |V | d Spectra (s) Time (s)
ant 7038 8 0.406 5.015
bust 25467 2 3.639 5.156
chair 14372 5 1.247 6.787
cup_2 15127 2 9.999 2.256
glasses 7407 2 0.455 0.593
horse_2 8078 6 0.451 5.084
octopus_5 5944 8 0.310 4.856
pliers_2 5110 3 0.293 1.654
vase 10637 3 0.591 3.235

timing for eigen-decomposition to compute the first 15 non-constant eigenvectors, while
with Time we report the overall computational time for running the d-channel Algorithm
SMCMR in seconds.

H Our FP NC RC RW KM SD
0.00

0.05

0.10

0.15

0.20

RAND INDEX

H Our FP NC RC RW KM SD
0.000

0.005

0.010

0.015

0.020

RAND INDEX - STANDARD DEVIATION

Fig. 6.8 Averaged dissimilarity (1 − RI) for the comparison of Algorithm 3 ("Our")
with other methods. Left: comparison w.r.t the human-generated segmentation. Right:
standard deviation from the average. The lower the better.

We compared the results of Algorithm 3 with other popular segmentation methods
and with the human-generated segmentation, both provided by the benchmark in [31].
Namely, the methods considered are: fitting primitives ("FP"), normalized cuts ("NC"),
randomized cuts ("RC"), random walks ("RW"), K-means ("KM"), shape diameter function
("SD").

For the choice of a unifying comparison measure, we considered the Rand Index
metric, denoted by RI, which measures the likelihood that a pair of faces are either in

96 Shape Partitioning

the same segment in two segmentations, or in different segments in both segmentations.
If we denote S1 and S2 as two segmentations, s1

i and s2
i as the segment IDs of face i in

S1 and S2, and M as the number of faces in the polygonal mesh, Cij = 1 iff s1
i = s1

j and
Pij = 1 iff s2

i = s2
j , then we can define Rand Index as:

RI(S1, S2) =
(
M

2

)−1 ∑
i,j,i<j

[CijPij + (1− Cij) (1− Pij)] .

This measure reflects similarity between two segmentations, i.e. CijPij = 1 indicated that
faces i and j have the same ID in both segmentations, and (1− Cij) (1− Pij) indicates
that faces i and j have different IDs in the segmentations being compared.

As well as in [31], we report in Fig. 6.8 the estimates 1 − RI to show rather
dissimilarities from the human-based segmentation averaging the results for each object
in the repository data set. Therefore, the lower bars represent better results. The chart
presented was computed as the average over RI for each segmentation method mentioned
w.r.t. the human segmentation. In Fig. 6.8 the bar labelled "H" was computed as the
average of the human-generated segmentations, in order to track the dissimilarities over
human-produced results. We also report in Fig. 6.8 (right) the standard deviation from
the average. We can conclude that Algorithm 3 is quite consistent comparing to the
other methods and the human-generated segmentations.

6.4.3 Experimental Results of Partitioning Driven by Lp Com-
pressed Modes

In this section we describe the experimental results which demonstrate the performance of
Algorithm 4 (LpCM Mesh Partitioning). In particular, we first evaluate the performance
of Step 1 for the computation of the Lp Compressed Modes Ψ ∈ Rn×N , then we illustrate
the results of Step 2 and Step 3 for part-/patch-based partitioning, respectively.

In the examples illustrated we applied a post-process smoothing to the boundaries
between the segmented parts {Sk}Nk=1 by projecting the boundary vertices onto the cubic
spline obtained by least-squares approximation.

STEP 1: Computing the LpCMs

The two strategies Step 1a and Step 1b in Algorithm 4, described in section 6.2,
generate the basis functions Ψ.

In all the experiments we used a randomized matrix as initial iterate Ψ(0) for the
ADMM computation of (5.23), and we terminated the ADMM iterations as soon as the

6.4 Experiments on the Partitioning Algorithms 97

relative change between two successive iterates satisfies

errΨ = ∥Ψ
(k) −Ψ(k−1)∥F
∥Ψ(k−1)∥F

< 10−3. (6.48)

As already observed in [88], where the L1 penalty term is used, different runs converge
to the same set of basis functions, although their ordering might be different. In our
experiments the p values were tested in the range [0.5, 0.8]. However, since small p values
affect mainly the efficiency, we decided to set the sparsity parameter p = 0.8 for all the
examples reported in this section.

Figure 6.9 illustrates how Step 1a works when the parameter value µ is fixed, µ = 300.
At the first iteration, only two initial quasi-eigenfunctions are computed with the given
µ. The control of the local support volume resulted in localizing two legs of the horse
mesh, leaving the rest uncovered (highlighted in magenta at the end of the first row). In
the second iteration (second row), the space dimension is enlarged (N = 3), resulting in
optimization of Ψn×3. The support of the third function ψ3 shrinks the uncovered area
under the head and neck, leaving just two legs and part of the horse’s body uncovered.
The algorithm terminates after five iterations, enlarging the space up to six functions
ψ1, . . . , ψ6 and leaving no more vertices of M uncovered. The result of the last iteration is
depicted in the bottom row of Figure 6.9. Notice that over iterations, the corresponding
functions describing the same parts of the mesh retain their order in the set Ψ. This, in
general, does hold, but the order may change when re-running the whole algorithm due
to the randomized initialization of Ψ.

Step 1b iteratively recomputes a given number N of basis functions increasing the
value of the µ parameter, thus enlarging the local support at each iteration, until all the
vertices of M are covered by at least one function ψ.

In Figure 6.10 we show the enlargement of the support of ψ5 ∈ Ψ for increasing values
of µ and a fixed basis dimension N = 5. The initial µ = 8 is increased by a factor 4 at
each iteration. From left to right, the result is shown for µ = 8, µ = 32, µ = 128 and
µ = 512.

In order to further demonstrate how the LpCMs localize the details much better
than the Laplacian eigenvectors, we consider a synthetic example of an ellipsoid with
a growing bump. The ellipsoid’s principal semi-axes are {2.5, 1.5, 1.5} long and it was
approximated by triangulated mesh of |V | = 16386 vertices and |T | = 32768 triangles.
In the top row of Fig. 6.11 we report the first five non-constant eigenvectors of LBO
corresponding to the first five non-zero eigenvalues obtained by solving the generalized
eigenvalue problem (5.13). The eigenvectors present global support and neither the first

98 Shape Partitioning

Fig. 6.9 LpCMs generated at each iteration of Step 1a in Algorithm 4, on the horse_2
mesh.

Fig. 6.10 LpCM ψ5 of Ψ generated for 4 iterations of Step 1b in Algorithm 4, on the
horse_2 mesh. From left to right: enlarging of the support obtained by increasing the
parameter µ for a fixed number of basis functions.

five nor the rest of the eigenvectors, which are not illustrated here for space constraints,
are able to localize the bump. In the bottom rows of Fig. 6.11 we show the first five
LpCMs for p = 0.8 and µ = 125, for different bump dimensions. In the first and last and
row of Fig. 6.11 the bump dimensions correspond. The compact support LpCMs which
localize the bumps are highlighted in red boxes.

We conclude this example presenting an empirical investigation on the numerical
convergence of the proposed ADMM-based minimization scheme.

In our formulation (5.23), we deal with a non-convex orthogonality constraint and
non-convex penalty term, i.e. the sparsity-inducing Lp norm. Therefore, the convergence
to an optimal solution in the global sense is not guaranteed and we assume that the
algorithm converges to at least a local minima, which is still a sufficient result for our
application.

At that aim, we investigated the empirical convergence via the relative change of
the primal variables, and, following [18], the squared primal residual norm ∥r∥2

2 which,

6.4 Experiments on the Partitioning Algorithms 99

Fig. 6.11 Comparison of the first five MHB functions and LpCMs in case of an ellipsoid
with a bump. Top row: first 5 non-constant eigenvectors of LBO. Bottom rows: first 5
LpCMs for different bump dimensions.

according to our implementation, is defined as

∥r(k)∥2
2 = ∥Ψ(k) − S(k)∥2

F + ∥Ψ(k) − E(k)∥2
F .

By the way of illustration, in Figure 6.12 we report the convergence plots concerning
some models used for these examples. The plots in Fig. 6.12(left) show that the relative
errors errΨ defined in (6.48) on the ADMM iterates Ψ(k) computed by Step 1 in Algorithm
4, converge to some limit, which indeed indicated convergence of the proposed method
(at least to local minimizers), whereas the plots in Fig. 6.12(right) demonstrate that the
primal residual norms ∥r(k)∥2

2 reduce.

100 Shape Partitioning

Fig. 6.12 Relative change of primal variable Ψ, errΨ, (left) and primal residual norm
∥rk∥2

2 (right) in terms of ADMM iterations.

STEP 2: Mesh Segmentation

In Step 2 we apply the region growing algorithm detailed in Section 6.2 to obtain the
partition S = {Sk}Nk=1 which represents a decomposition of the mesh into its salient
parts. Several examples of mesh segmentation are shown in Figure 6.13. The number of
partitions produced (N) is reported on the bottom right of each segmented object.

Details of the datasets are given in Table 6.4. In particular, for each mesh, we report
the number of partitions K (N), the value of µ automatically computed by Step 1b, the
time in seconds to obtain the LpCM basis of dimension N in Step 1b, and the time for
the mesh segmentation procedure in Step 2 of Algorithm 4.

It is worth mentioning that our segmentation procedure is naive compared with many
other spectral segmentation approaches proposed in literature, which are enriched by
many heuristic strategies based on curvature criteria or edge detection, which, however,
can be easily applied also to our basic algorithm. Nevertheless, the obtained results
enhance the good properties of our proposal.

The model fish_2, illustrated in Fig. 6.14, is considered a particularly difficult
challenge since its featured parts (fins, head, tail) are smoothly joined with the rest of
the body thus presenting weak boundary strength but good degree of protrusion. In Fig.
6.14 we show a comparison between our LpCM basis (top left) and the eigenfunctions
computed by the truncated spectral decomposition used in [130] (bottom left). The latter
is considered the state-of-the-art among the variational methods using spectral analysis.

The salient parts are nicely identified by the LpCMs using only N = 8 functions,
mimicking the human driven segmentation shown in Fig. 6.14 (right). In [130] the
authors claim that even for higher space dimensions their method was not able to localize
the salient parts. We notice that in Fig. 6.14 (top row, left) the fish meshes for ψ2 and
ψ8 are visualized upside-down to better show which fins are localized by these supporting
functions.

6.4 Experiments on the Partitioning Algorithms 101

Table 6.4 Performance of the mesh segmentation algorithm 4.

Data set |V | |T | K µ STEP 1 (s) STEP 2 (s)
ant 7038 14072 9 150 9.69 4.79
armadillo 25319 50542 12 140 47.26 13.23
bird 6475 12946 4 300 7.32 4.54
dolphin 7573 15142 7 150 9.40 3.48
fawn 3911 7818 6 150 4.10 2.54
fertility 19994 40000 7 300 26.56 11.57
fish_2 5121 10238 8 130 7.45 2.11
giraffe 9239 18474 13 130 14.55 3.52
glasses 7407 14810 6 150 7.75 3.36
hand 6607 13210 8 150 8.27 3.32
horse_2 8078 16152 6 300 9.59 3.81
octopus_1 7251 14498 9 150 11.14 4.08
plane 7470 14936 7 150 7.54 3.34
pliers_2 5110 10216 6 130 5.21 2.82
teddy 9548 19092 7 130 12.25 4.53
teddy_2 12831 25658 16 30 22.83 4.47
wolf 4712 9420 7 150 5.94 2.45

The spectral segmentation results are shown in Fig. 6.15. The starting seeds (left)
computed by Step 1 of Algorithm 4 are placed correctly, then the region growing
algorithm in Step 2 ends up with the partitioning in Fig. 6.15(middle).

On the right of Fig. 6.15 we report the mesh decomposition shown in [130] which has
been produced with the help of an edge detection strategy introduced in the variational
formulation. A visual insight allows us to observe some defects for both the top fins, on
the cluster boundaries which indeed go through the middle of the fins.

STEP 3: Patch-based Partitioning

The third step of Algorithm 4 refines the partitioning obtained by Step 2 finalizing a
patch-based manifold partitioning, see Def. 2. To this end, first we select from S those
parts Sk which have genus higher than zero and/or more boundaries, and we re-run Step
1 and Step 2 for each of them until every Sk has 0-genus and at most two boundaries.

In Figure 6.16 we illustrate a few examples of patch-based partitioning resulting
from Step 3 (bottom row) in comparison with the mesh partitioning obtained in Step
2 (top row). For all the meshes reported in this figure, just one part (from left to
right yellow/red/magenta/red) was further subdivided. The fertility mesh (left),
characterized by four holes, represents a closed mesh of higher genus. Also in this case,

102 Shape Partitioning

Fig. 6.13 Mesh partitioning into salient parts obtained in Step 2 of the Algorithm 4.

the algorithm was able to both localize salient parts of the mesh and create a satisfying
0-genus patching.

6.4.4 Experimental Results of CNC Segmentation on Surfaces

In this section we describe the experimental results which assess the performance of the
segmentation algorithm proposed in Section 6.3, where in (6.19) we used the φlog penalty
function defined in (6.20). For what concerns the ADMM, the parameter β is chosen
according to condition (6.40), and the ADMM iterations are terminated as soon as the
relative change between two successive iterates satisfies

err := ∥u(k) − u(k−1)∥2 / ∥u(k−1)∥2 < 10−4. (6.49)

Image Segmentation over Surfaces

In our first example, we consider an image function defined on a smooth manifold, a
plane, discretized by a mesh of resolution |V | = 85709 and |T | = 171356. We investigate
the usefulness of the considered model both in the convex, CNC and non-convex regimes.
In particular, the convex case corresponds to the classical TV-L2 model introduced for
image denoising in [103], and is obtained by setting τc = 0 in (6.27), the CNC model
is given for τc = 0.99 thus maximizing the non-convexity of the penalty term while
preserving the overall convexity of the functional J . Finally, for τc = 100 we get a strictly

6.4 Experiments on the Partitioning Algorithms 103

Fig. 6.14 Supports of the eigenfunctions for the fish_2 mesh: LpCMs results (top row)
and human segmentation (top row, right), eigenfunctions of the affinity matrix proposed
in [130] (bottom row).

Fig. 6.15 Segmentation of the fish_2 mesh: seed areas of Step 2(left), mesh segmented
by Step 2 (center), and mesh segmentation using [130].

non-convex model solved by the same ADMM procedure. We set the regularization
parameter η = 0 and the fidelity parameter λ in the range [500, 700]. The input image
textured on the plane was corrupted by an additive white Gaussian noise with standard
deviation σ = 5× 10−2. The results u∗ of the first phase of our segmentation algorithm
are shown in Fig. 6.17 top row, and the associated values along the two lines indicated
by red arrows are illustrated in Fig. 6.17, bottom row. The original intensity values are
plotted in red dashed line. For the convex regime in Fig. 6.17(a) we can observe the
typical behavior of TV-L2 model: corners are smoothed and the contrast is decreased.
The algorithm is stopped after 59 iterations, with a Root Mean Square Error (RMSE)
of 18.88, with respect to the uncorrupted textured image plane. The CNC regime in
Fig. 6.17(b) presents sharper edges and the loss of contrast is decreased. The number

104 Shape Partitioning

Fig. 6.16 Mesh segmentation into salient parts obtained by applying Step 2 of Algorithm
4 (top row); patch-based partitioning into 0-genus patches by applying the refinement in
Step 3 (bottom row).

of iterations needed for convergence was 55 and RMSE=13.20. The non-convex regime
produces the result shown in Fig. 6.17(c), with RMSE=4.19. In this case the algorithm
did not converge to the given threshold within the maximum number of iterations 500.
Results in Fig. 6.17 indicate that higher quality restorations can be achieved by pushing
model (6.19) beyond its convexity limits, however the numerical convergence is affected
by the non-convexity of the functional J .

Thickness-based Segmentation

In the second example, we aim to segment a 2-manifold into K disjoint regions that
are “homogeneous” according to a certain feature, in this context represented by the
thickness map of the object, computed on the mesh by the so-called Shape Diameter
Function (SDF) with the method described in 5.1. The real-valued SDFs are shown in
Fig. 6.18 top. We applied our algorithm in the CNC regime, namely with τc = 0.99,
λ = {50, 100, 30, 100} and η = 10, which produced the partition function. Afterwards,
the simple thresholding is used in order to clusterize the object into K homogeneously
thick parts. The segmented parts, together with the number of partitions K on bottom
right, are shown in Fig. 6.18 bottom, using false colors. We conclude this example
presenting an empirical investigation on the numerical convergence of the proposed
ADMM-based minimization scheme. By the way of illustration, in Fig. 6.19 we report
the convergence plots concerning the ant model. The plots in Fig. 6.19(left column) show
the relative change err defined in (6.49) and the functional values over the iterations in
the CNC regime, whereas the right column of Fig. 6.19 shows the same quantities for the
non-convex regime. The plots reported, and the similar results obtained for the other
2-manifolds, confirm that the numerical convergence in the non-convex regime is slower
than in the CNC regime.

6.4 Experiments on the Partitioning Algorithms 105

(a) (b) (c)

Fig. 6.17 Example 1: (a) Convex regime for τc = 0, (b) CNC regime for τc = 0.99, (c)
Non-convex regime for τc = 100. Boundary contours detected by the third stage of the
segmentation algorithm are over-imposed for three different partitions.

Boundary Tracking

In this example we show how the salient parts are nicely identified by the boundary
tracking in the third phase of the segmentation algorithm. In Fig. 6.20 we show the
segmentation of a real-valued function on the mesh hand_im, |V | = 26422, |T | = 52840;
which has been corrupted by an additive Gaussian noise with σ = 10−2. From left
to right: the input noisy data, the result u∗ of the ADMM algorithm using λ = 200
and η = 4, the boundary curves overimposed to the clusterization of u∗, and a zoomed
detail. The boundaries between the segmented parts (black solid line) is detected and
then smoothed by projecting the boundary vertices onto the cubic spline obtained by
least-squares approximation (white solid line).

Application Examples

We conclude with two additional examples presented in Fig. 6.21. The noisy textured
meshes of horse_im and vase_im (Fig. 6.21 top) represent synthetic examples of a
real-life case – 3D data scanned together with texture. The Gaussian noise was added
with σ = 10−2 and the resulting partitioning function u∗ was obtained from the ADMM
algorithm using λ = {120, 180} respectively and η = 0. In the bottom of Figure 6.21 we

106 Shape Partitioning

Fig. 6.18 Example 2: segmentation results (bottom row) obtained from the input SDF
maps (top row). From left to right: ant |V | = 7038, |T | = 14072; mech_1 |V | = 8759,
|T | = 17514; pliers |V | = 3906, |T | = 7808; mech_2 |V | = 10400, |T | = 20796.

plot the segmentation of u∗ in false colours together with the traced boundary curves
coloured in white.

6.4 Experiments on the Partitioning Algorithms 107

Fig. 6.19 Example 2: top: relative errors over iterations for ant mesh in CNC (left) and
non-convex (right) regimes in logarithmic scale in y-axis. bottom: corresponding values
of J in (6.21) with logarithmic scale of x-axis.

Fig. 6.20 Example 3: noisy textured mesh, result of the ADMM algorithm, segmented
parts in false colours with overimposed boundary curves, detailed zoom.

108 Shape Partitioning

Fig. 6.21 Example 4: noisy textured mesh (top) and its associated segmentations (bottom).

Chapter 7

Application in Surface-Patch
Quadrangulation

(a) M△ (b) ⋃
i
Mi (c) ⋃

i
Si (d) M�

Fig. 7.1 Overview of Algorithm 5, from left to right: Input Mesh M△; Mesh Partitioning;
Topology-Skeleton S; Resulting pure Quadrilateral Mesh M�

In this chapter, we present a novel approach to Surface-Patch Quadrangulation.
Starting from an unstructured triangle mesh M△ approximating a 2-manifold M, we
provide as a result a semi-regular, or valence semi-regular, quad mesh M� representing
the same 2-manifold M. Note that the valence semi-regular mesh generated by the
proposed algorithm can be easily converted in semi-regular one.

The resulting mesh has the following properties:

• Semi-regularity

• Uniform tessellation density

• Well-shaped quads

110 Application in Surface-Patch Quadrangulation

• Minimal number of patches – structural fidelity, thus few extraordinary vertices

• Patches well-representing the salient features of the shape

The overall process consists of three phases summarized in Algorithm 5 Surface-Patch
Quadrangulation [57].

Algorithm 5 Surface-Patch Quadrangulation

Input: Triangular Mesh M△ , Quad edge length h

Output: Pure Quadrilateral Mesh M�

{Mi}Ki=1 ←− Mesh_Partitioning(M△)
{Si}Ki=1 ←− Topology_Skeleton({Mi}Ki=1, h)

M� ←− Skeleton_Evolution({Si}Ki=1, {Mi}Ki=1)

The input to Algorithm 5 is expected to be a pure triangular mesh M△, Fig. 7.1(a),
which is partitioned in Phase 1 into K patches of 0-genus having at most two boundaries,
Fig. 7.1(b). This Phase is further discussed in Section 7.2.

From a given partitioning(patching), in Phase 2, we create a topology-skeleton
structure S of mesh M△, see Fig. 7.1(c). This structure consists of a union of K minimal
surfaces, each discretized by a quad grid according to a given edge length, that match
the boundaries of patches. An exhausting discussion of this procedure is formalized in
Section 7.3.

At last, Phase 3 evolves the topology-skeleton S towards vertices in M△ to create
a pure quadrilateral approximation to the given shape obtaining M� as shown in Fig.
7.1(d). A detailed description of the evolution process is presented in Section 7.4.

7.1 Related Work

There are numerous surface quadrangulation techniques that can be categorized according
to [15] into following classes.
Direct Tri to Quad conversion targets directly the problem of converting triangular
(or polygonal) input mesh into a quadrangular one. Usually, the works utilize local
connectivity operations, e.g. gluing two adjacent triangles into one quad, what makes it
highly input-dependent. In case of even number of triangles in the mesh, the produced
result consists of pure unstructured quad mesh whose quad-shape quality depends on the
input regularity. The state of the art representatives are [114] and the work of Catmull
and Clark [25] which are also implemented in the open source software Meshlab [34]. In

7.1 Related Work 111

[114] the authors propose a tri-to-quad re-meshing as preliminary step to their mesh
simplification algorithm. First they create a quad-dominant mesh by pairwise merging of
adjacent triangles, prioritizing quads with nearly right angles. Next, by series of edge-flip
iterations the remaining triangles are brought together and merged in order to create a
pure quadrangulized mesh.
Voronoi based methods are based on generating a set of vertices on the surface and then
utilizing Centroidal Voronoi Tessellation (CVT) [40] to optimize the sampling quality
measure. Originally, the methods were developed to re-mesh a triangular surface, which
led to enrich anisotropic feature on the vertices [105]. In [73] the authors propose Lp-CVT
as a generalization of L2-CVT [127] for a fully automatic feature-sensitive remeshing. As
the authors declare, after performing interleaved optimization iterations of their objective
function, as done in [117], they obtain a quad-dominant mesh by merging the triangles
in priority order. In Patch Based class of methods the common technique used consists
of constructing a one-to-one mapping of the original surface onto a set of square patches.
Afterwards, the final quadrangulation is obtained by sampling each patch by a regular
grid. Thus, the obtained result is a pure-quad mesh, semi-regular in valence. A few
methods based on multiresolution [42], normal meshes [50] and abstract domains [97]
are designed for triangle meshes, however, the methods can be adapted to quad-based
setting or alternatively, transformed by an approach from the first class of methods.

On the other hand, methods developed in [14, 37, 113] are direct techniques for quad
mesh generation. Authors in [37] take inspiration from the well-known triangle remeshing
technique MAPS [71]. First, they utilize the Catmull-Clark subdivision [25] to get a pure
quad mesh; then they simplify it via a variation of [38] to base domain corresponding to
the input mesh. During the process, the original vertices are mapped to the simplified
domain as well as the base-domain parametrization of the original surface is generated.
Then, the resulting mesh is obtained by sampling the base domain and mapping the
vertices back on the surface. Oppositely, in [14] the authors proceed by normal- and then
spatial-based clustering to create a coarse mesh which they subdivide by Catmull-Clark
iterations. The work [113] introduce application of polycube-maps to meshes in order to
ease texture mapping. This work opened another sub-class of studies and methods based
on polycube mappings both in automatic [77] and user controlled [126] construction,
since the resulting re-sampling has several good properties as few irregular vertices and
well-shaped quads.
The largest class gathers Parametrization based methods. The main idea is to
construct a mapping from the surface embedded in 3D to a domain in 2D in which the
quadrangulation is trivial [16]. There are many approaches concentrating on different

112 Application in Surface-Patch Quadrangulation

targets varying from conformal homology-based and harmonic-based parametrization
[49, 116, 39] to field-guided methods, e.g. using RoSy field [66] and symmetric cross
field [16]. In [93], the authors consider also symmetry of the processed meshes via
RoSy field. Work [39] use the scalar harmonic field generated by eigendecomposition
of Laplace-Beltrami operator computed on the triangular input mesh. They select an
eigenvector corresponding to a higher frequency eigenvalue, which critical points are
used as the input for Morse-Smale complex of that scalar field. The resulting extracted
cells are quadrilateral and trivial to sample. In [53] the authors introduce to the original
proposal a directional control.
At last the Field-guided methods are characterized by explicit control over local
properties of quad elements in the mesh by means of the guiding fields. Traditionally,
the problem of quadrangulation is divided into simpler sub-problems which uses results
from the preceding steps as input for the actual one and can be used independently.
Usually the problem is divided into three steps: Orientation Field Generation, Sizing
Field Generation, and Quad Mesh Synthesis. The state of the art method introduced
in [60] uses the three-step approach to produce both triangulation and quadrangulation
of an input mesh or a pointcloud. In the first step, the Orientation Field Generation,
the authors compute locally approximated smooth RoSy fields. Then they compute
the position field for the new vertices of the mesh and at last they extract a quad
dominant mesh from the position field. In order to obtain a pure quadrilateral mesh,
they perform one iteration of the Catmul-Clark subdivision algorithm. In comparison to
other works in this class of methods, since [60] is using local solutions for the field driving
the quadrangulation, the optimization steps take very short time. On the other hand,
w.r.t. globally optimized methods, the number of singularities (extraordinary vertices) is
higher.

We categorize our work in the Patch Based class of methods.

7.2 Mesh Partitioning

The partitioning of M△ is the decomposition of M△ into K open sub-meshes(patches) Mi

of 0-genus with one or two boundaries such that M△ =
K⋃
i=1

Mi. The algorithm is presented
in Section 6.2. Nevertheless, for the purpose of this chapter we restrict ourselves to the
case when each patch has exactly one boundary.

Each sub-mesh Mi is characterized by a triplet Mi = (Vi, Ti, Bi) where Vi is a set of
vertices, Ti a set of triangles and Bi is a set of ordered lists of boundary vertices in Vi.

7.3 Build of the Topology Skeleton 113

Let us notice that in this settings, M△ can be considered also as a cloud of points
with boundary, however, the triangle information is used in the last Phase 3, the Skeleton
Evolution.

7.3 Build of the Topology Skeleton

The aim is to create from a given mesh partitioning an associated topology-skeleton
S =

K⋃
i=1

Si where each sub-part Si is a surface with boundary curves approximating Bi,
thus matching C0 the boundary of Mi, see Fig. 7.1 (b)− (c). The benefit of S will reveal
later in the surface approximation by quadrilateral mesh.

The overall procedure to this aim consists of the following three main steps:

1. Construction of the boundaries of Si.

2. Discretization of the boundaries of Si into rectangular topology.

3. Construction of S by solving minimal surface PDE model for each Si, i = 1, . . . , K

The result of this constructional step is the skeleton S represented by K patches Si
approximated by K geometrically-regular grids.

7.3.1 Step 1: Construction of the boundaries of Si

The goal of this step is to split the common boundaries Bi, i = 1, . . . , K between
sub-meshes into a set C of pieces Cij and approximate them by spline curves.

The global set C of boundary pieces Cij is defined as

C :=
{
Cij : Cij = Mi

⋂
Mj ∀(i, j)

}
.

The piece Cij, illustrated by dashed red lines in Fig. 7.2, is the common boundary of
exactly two sub-meshes Mi and Mj. We notice that Cij = Cji ,∀(i, j).

We first locate a global set of vertices P ⊂ V (marked in blue in Fig. 7.2) that lie on
the common boundary of at least three patches of M . Formally, each element of P is
defined as Bi

⋂
Bj
⋂
Bk, i ̸= j ̸= k where the triplet {i, j, k} is taken as all the unique

combinations out of {1, . . . , K}. These vertices define the locations for the split of each
Bi, i = 1, . . . , K.

Once the set P is selected, we proceed by looping through each patch boundary Bi

and by splitting it into pieces Cij, which start and end with elements of P , forming the

114 Application in Surface-Patch Quadrangulation

Fig. 7.2 A synthetic scheme of Construction of the Si boundary.

global set C. In case a boundary Bi does not contain any vertex of P , the corresponding
boundary piece Cij ≡ Bi, i.e. the single boundary piece represents the whole boundary
between two patches Mi and Mj.

Finally, we create an index list Ii for each Bi of the references to elements of C such
that Bi = ⋃

j∈Ii

Cij. In Fig. 7.2 we have Ii = (j, k, l).
At last, we represent each boundary piece Cij , by a least square approximating cubic

spline cij(t), t ∈ [0, 1] such that cij(0) = C1
ij and cij(1) = C

#Cij

ij where #Cij stands for
the cardinality of the list Cij, i.e. the spline is clamped at the first and the last point of
Cij.

7.3.2 Step 2: Discretization of the boundaries into rectangular
topology

The goals of this step are the sampling of the boundary of each Si, computation of the
grid resolution that describe the surface Si, and the definition of the quad-side topology
of its boundary.

The flow of the processes in this step can be summarized in three steps:

1. Re-sampling of Bi in terms of bi and resolution settings by applying Principal
Component Analysis (PCA) on bi

2. Classify the patch

7.3 Build of the Topology Skeleton 115

3. Corner Placement.

Re-sampling of Bi and resolution setting for Si

Assuming we know the desired minimal edge length h of each quad in the final M� mesh,
we discretize uniformly the parametric domain [0, 1] of each cij(t) into a number of points
|Cij |
h

, so that to obtain for each Si a list bi of boundary points defined as

bi =
⋃
j∈Ii

{
cij(tk), tk ∈ [0, 1], k = 1, . . . , |Cij|

h

}

where by |Cij| we denote the chord length of a piecewise linear curve computed by

|Cij| =
#Cij−1∑
k=1

∥Ck+1
ij − Ck

ij∥ ,

with Ck
ij the k−th element of the point list Cij.

Once the boundary list Bi is re-sampled into bi by taking into account the edge
length h, we need to split bi into four parts which will correspond to the rectangular-
topology boundary of a quad grid of resolution (mi, ni), representing Si. To that aim,
the PCA is applied to the points bi for each Si, i = 1, . . . , K. This provides us with
the axes W = {w1, w2, w3} of the ellipsoid enclosing bi. The first two vectors w1 and
w2 represent the two main directions of the data set bi, while the ratio between the
two vectors characterizes how much the ellipsoid is stretched. This allows us to detect
the orientation of the rectangular-topology boundary of Si, and the ratio between the
number of uniformly sampled points mi and ni into the two directions.

The resolution (mi, ni) of the quad grid representing Si is then obtained by imposing
the following constraints

2(mi + ni) = #bi
ni
mi

= c
(7.1)

where the first constraint imposes the perimeter of a rectangular domain and the second
constraint imposes the ratio between the two sides to be c = ∥w1∥2

∥w2∥2
.

Classification of the patch Si

Each patch Si, i = 1, . . . , K is classified according to its corresponding patch Mi w.r.t.
its shape as

• M
(1)
i – flat surface

116 Application in Surface-Patch Quadrangulation

• M
(2)
i – protrusion.

In these cases Mi has just one boundary. Examples of the patch types M (1)
i and M

(2)
i

Fig. 7.3 Top: Examples of Mi patches associated to types M (1)
i (a) and M (2)

i (b). Bottom:
A sketch of the two approaches to discretize the domain D according to the patch type.
The boundary is red-coloured.

are illustrated in Fig. 7.3 (top), together with their domains D = [0, 1]2, in Fig. 7.3
(bottom).

Each Si is discretized according to its Mi type. A regular grid discretization of
the domain D forms qi = mi × ni quads for M (1)

i type, see Fig. 7.3 (a) bottom; and
qi = mi × ni + 2ki(mi + ni) quads for type M (2)

i , Fig. 7.3 (b) bottom. Let us notice that
for the protrusion patch in Fig. 7.3 (b), the discretization follows its natural shape much
better.

The classification is done as follows. For each patch Mi we compute the triangulation
area Ai = ∑

j |T ji | that we want to cover by quads of size h × h. Thus, the expected
number of quads in Si for corresponding Mi is given by qei = Ai

h2 .
We compare each qei to the number of quads qi. The classification between M (1)

i and
M

(2)
i is driven by thresholding with δ = mini

qe
i

qi
. Then all the patches Mi for which qi > δ

are classified as M (2)
i with the number of rings in k direction, see Fig.7.3 bottom (b),

such that k is the minimum k for which the relation qi ≤ δ holds; M (1)
i otherwise.

7.3 Build of the Topology Skeleton 117

Corner Placement

Given the resolution settings (mi, ni) and the sampled boundary bi, we can just place two
corners of the rectangular domain while the remaining two will be placed automatically.
From a visual inspection it is more appealing to see the mesh lines following the natural
symmetry of an object, in our case the boundary bi.

Thus, we proceed by reflecting bi along w1 and w2 obtaining b1′
i and b2′

i . The symmetry
index is computed as the minimal distance norm between bi, b1′

i and between bi, b2′
i .

Then, following the direction wk which scores the lower symmetry index, the corners are
placed at distance mi

2 (or ni

2), centred around wk.

An illustrative scheme of these steps is summarized in Figure 7.4. In Fig. 7.4 (1)
a synthetic example of a patch Si and its boundary bi is shown. The boundary set Bi

composed of five pieces Cij is sampled by cij(tk), thus producing the set bi. The PCA
vectors w1 and w2 associated to bi are illustrated in Fig 7.4 (2) and the corner placement
process in Fig. 7.4 (3).

(1) (2) (3)

Fig. 7.4 Illustration of the inner steps in Step 2 described in Section 7.3.2 from left to
right: bi approximation of Bi (1), PCA vectors (2)-(3), and placement of the corners (4).

7.3.3 Step 3: Construction of the topology-skeleton S

In this step we complete the association of the rectangular-topology grid to each Si,
i = 1, . . . , K. In particular, the boundary bi of each Si is already known, thus, the inner
nodes of Si are obtained solving the following boundary value problem with Dirichlet
boundary condition bi: ∆MSi(x) = 0

∂Si(x) = bi .
(7.2)

118 Application in Surface-Patch Quadrangulation

The Laplace operator is discretized using the finite volume scheme described in the
numerical section 7.4.2.

The discretization of (7.2) based on finite volumes leads to the solution of a sparse
system of linear equations LX = b for the inner nodes of Si. The system dimensions for
every Si are given by the patch type, namely (m − 1) × (n − 1) for M1

i and m × n +
2k(m+ n− 2) for M2

i .
This construction guarantees that two neighbouring patches Si and Sj share the same

boundary. Moreover, it allows us to further evolve each Si separately, and to join them
together at the end of the evolution step described in Section 7.4 or, alternatively, to
glue each Si together to form the topology skeleton S and to evolve it as whole.

So far, the constructed topological skeleton discretized by pure quad mesh has at
most #EV = #P + 4K extraordinary vertices in valence, that will not increase any
more during the final evolution step.

7.4 Skeleton Evolution

In this Section we describe the evolution of the topology-skeleton S towards vertices in
M△ to obtain a pure quadrilateral approximation M� to the given shape.

To that aim we will apply Lagrangian type evolution, which sustain the problem
dimension. However, since an unsupervised evolution could lead to intersection of the
evolving vertices, we derive an area-oriented tangential redistribution. Alternatively to
the area-oriented tangential redistribution, which controls the area globally, we can apply
also a local tangential redistribution based on the Laplace operator.

7.4.1 Lagrangian Evolution

Let us consider a family of (open) parametric surfaces S = {x(t, u, v)| (u, v) ∈ [0, 1]2 , t ∈
[t0, tend]} obtained by evolving in time t an initial surface S(t0, ·, ·) = S where S is the
topology skeleton.

The evolution is driven by the following partial differential equation

∂x
∂t

= VN + VT = βN + VT

x(0; ·) = S (7.3)

7.4 Skeleton Evolution 119

where VT is the evolution in tangential direction along the surface defined as

VT(u, v) = α(u, v)xu + λ(u, v)xv , (7.4)

with

xu = ∂x(t, u, v)
∂u

, xv = ∂x(t, u, v)
∂v

, (7.5)

representing the partial derivatives of x(t, u, v), which span the tangent plane; and VN

represents the evolution with speed β in the outward unit normal direction N to the
surface computed as

N = xu × xv

|xu × xv|
, (7.6)

which affects the surface image.
In the continuous settings VT has no impact on the surface image, however, it

has been shown in literature [83] that this kind of splitting of the movement into two
orthogonal directions is very useful especially in case of a Lagrangian-type evolutions.
At a specific time t, the result of (7.3) is a 2-manifold S = x(t, ·, ·) and at the final time
x(tend, ·, ·) = M�, the desired approximation to the given shape M△.

Normal-direction evolution

Our aim is to prescribe the normal-direction evolution VN in (7.3) in such way the
evolving surface will be moving towards the given shape. An intuitive way would be to
set an advection term

VN = −(∇d(x) ·N)N ,

where d(x) represents the signed distance function to the given shape.
In case the distance function is not smooth, to achieve a smooth evolution, we add

additional term depending on the mean curvature of S

VN = HN− (∇d(x) ·N)N

where the mean curvature vector HN can be expressed in terms of Laplace-Beltrami
operator as

HN = ∆xx .

However, if such evolution is not controlled, it can result in a surface poorly approx-
imating the point cloud. In order to control the trade-off between the advection and

120 Application in Surface-Patch Quadrangulation

diffusion term, we introduce two function parameters ϵ(d(x)) and η(d(x)) depending on
the signed distance function d(·) at vertex x

VN = ϵ(d(x))∆xx + η(d(x))N . (7.7)

For ϵ(d(x)) in the diffusion term we would like to obtain stronger smoothing of the
evolution surface in case we are far from M△. Thus we define ϵ(d(x)) as

ϵ(d(x)) = c1

(
1− e− d(x)2

c2

)
(7.8)

where c1 and c2 are parameters controlling the shape of ϵ(·). In Fig. 7.5 we plot the
function ϵ(t) for different values of c2, which controls the width of the function. On the
other hand, parameter c1 controls the amplitude.

Fig. 7.5 Function ϵ(t) with c1 = 1 and different c2.

Using a parameter dependent on the distance function results in an evolution smoothed
by a mean curvature in the points distanced from the point cloud [132].

On the other hand, function η(d(x)) is composed of two parts. The first one represents
the advection itself, which could be insufficient in cases the normal vector N and ∇d(x)
are perpendicular. The second part represents a variation of the so-called ’balloon force’,
which deals with this problem and helps to enlarge the volume of the evolving surface
S(t, ·). The function η(d(x)) is defined as

η(d(x)) = −c3d(x)
(
∇d(x) ·N +

√
∇d(x) · ∇d(x)− (∇d(x) ·N)2

)
(7.9)

where −d(x)∇d(x) ·N is the projection of the distance function gradient onto normal
direction, and the rest in (7.9) is the variation of the balloon force. It is designed in a
way that it vanishes when the normal vector N is pointing in the direction of −∇d(x),
while when these vectors a perpendicular, it is proportional to the distance d(x). The
parameter c3 in some cases helps to correct the advection evolution depending on the

7.4 Skeleton Evolution 121

position of S(t, ·) w.r.t. M△. In case the surface is enclosed by M△ and near to its
border, but −∇d(x) is pointing the opposite direction of the outward unit normal N, that
means even though it seems we are close to M△, our evolving surface S(t, ·) is located
at the opposite side of the given shape. Thus in this case, enlarging c3 ’outperforms’
the advection force and the surface will evolve in direction N, towards the opposite
side of M△. Moreover the sign of the signed distance function sign(d(x)) provides the
information whether S(t, ·) is outside from M△. In this case, the we should shrink the
surface onto M△, thus flipping the sign of the balloon force.

Summarizing, the evolution in the normal direction in (7.3) is driven by (7.7) consisting
of an advection force enriched by the balloon force (7.9) and a smoothing diffusion force
(7.8) controlling the mean curvature flow.

Tangential Redistribution

In this section we provide a theoretical background for the control of the area of the
quads that will be performed in the discrete settings through the control of the finite
volumes areas.

Let us introduce the area-density g of the surface defined as

g = |xu × xv| =

√det
 xu · xu xu · xv

xv · xu xv · xv

 . (7.10)

We are interested in its evolution and the dependence of g on the normal and tangential
evolution of a surface in form (7.3).

This dependence is given in Lemma 3.

Lemma 3 Let x(t, ·) be a smooth parametric surface representing the embedding of an
evolving 2-manifold in R3 in time t which evolution can be expressed as (7.3). Moreover,
let VT = αxu + λxv. Then the local area density g of x(·), evolves as

gt = gHβ + g∇x · (α, λ) (7.11)

where H is the mean curvature scalar field and ∇x · (α, λ) is the surface divergence of
the vector field (α, λ).

122 Application in Surface-Patch Quadrangulation

The proof is postponed in the Appendix, as well as the surface divergence definition, see
formulas (C.3)-(C.4) in the Appendix.

We prescribe a desired evolution of g for asymptotically uniform area density in order
to obtain the immersion of the surface with uniform area density all over it.

If we want the surface area density g to converge to an area density c during the
evolution we want to prescribe the change of g w.r.t. the area of the surface A as(

g

A

)
t

=
(
c

A
− g

A

)
ω (7.12)

where the scalar parameter ω controls the speed of convergence. Let us notice that for
ω = 0, there is no change, thus the density remains preserved as it was at the start of the
evolution. The formula (7.12) allows to manipulate the local density g via the prescribed
value c to be asymptotically reached for t→∞. For the uniform density distribution we
can set c =

∫∫
U
g dudv∫∫

U
dudv , i.e. g will converge to the average of g.

A relation between VT and g is summarized in Theorem 5 in terms of divergence
operator.

Theorem 5 Let x(t, ·) be a smooth parametric surface representing the embedding of an
evolving 2-manifold in R3 in time t, which evolution can be expressed as (7.3). Moreover,
let VT = αxu + λxv. Then the tangential vector field VT, leading to a surface with area
density c, is related to the surface area density g, mean curvature H and the normal
direction evolution speed β as

∇S ·VT = ∇x · (α, λ) = Hβ − 1
A

∫∫
S
Hβ dX +

(
c

g
− 1

)
ω . (7.13)

The integral in (7.13) is related to the surface S, which for a general function f(u, v)
defined on S can be expressed as

∫∫
S
f dX =

∫ 1

0

∫ 1

0
f(u, v)g dudv . (7.14)

Corollary 1 provides a unique solution to the formula in Theorem 5 in terms of
potential field ϕ.

7.4 Skeleton Evolution 123

Corollary 1 Assuming (α, λ) is a gradient vector of a potential field ϕ, the equation
(7.13) attains a unique solution for a potential field problem

∆xϕ = ∇x · ∇xϕ = Hβ − 1
A

∫∫
S
Hβ dX +

(
c

g
− 1

)
ω , (7.15)

if we prescribe the value of ϕ at least in one point x of the surface, or imposing the
Neumann boundary conditions in case of open surface.

7.4.2 Numerical scheme

In this section we derive the numerical scheme to obtain the solution of the model in
(7.3) and the potential field ϕ in (7.15). Due to the presence of non-linear operators in
the equations, we will adapt the semi-implicit scheme in time to linearize the Laplace-
Beltrami operator. For the spatial discretization, we adapt the finite volume approach
for the surface S introduced in Section 4.2.

In the preliminary step, we approximate the distance function d(x) on a voxelized
grid enclosing the input triangulation M△ by the Fast Sweeping Algorithm [131] and
modified it to a signed distance function by a simple flooding algorithm. Let us note that
in case an evolving vertex is localized in the same voxel as a part of M△, we proceed by
computing the true signed distance to M△.

Finite Volume Scheme for the Model

We integrate (7.3) over the finite volume Vi where we replaced (7.7) for VN∫
Vi

∂tx dS =
∫
Vi

ϵ(d(x))∆sx dS +
∫
Vi

η(d(x))N dS +
∫
Vi

VT dS . (7.16)

Assuming the functions ϵ(·) in (7.8) and η(·) in (7.9) obtain a constant values over
the control volume Vi, i.e. ϵi = ϵ(d(x))|Vi

, ηi = η(d(x))|Vi
; and applying the Green’s

theorem we can rewrite (7.16) as∫
Vi

∂tx dS = ϵi

∫
∂Vi

∇sx · ni dS +
∫
Vi

ηiN dS +
∫
Vi

VT dS . (7.17)

The first term on the right hand side of (7.17), using the definition of finite volumes,
can be rewritten as

ϵi

∫
∂Vi

∇sx · ni ds = ϵi
∑

j∈N�(xi)

∫
ej

∇sx · nj ds = ϵi
∑

j∈N�(xi)

∫
ej

∂x
∂nj

ds (7.18)

124 Application in Surface-Patch Quadrangulation

where ej is an edge of the finite volume Vi on a quad Qj, that consists of two edges e1
j

and e3
j , and nj denotes the normal on ej.

Moreover, e1
j and e3

j can be parametrized as

e1
j(ρ) = (r2

j − r1
j)ρ+ r1

j , ρ ∈ (0, 1) ,
e3
j(φ) = (r2

j − r3
j)φ+ r3

j , φ ∈ (0, 1) .

Thus, we can divide each term of the sum (7.18) into sum of integrals along e1
j and

e3
j , j = 1, . . . ,mi as

ϵi

∫
∂Vi

∇sx · n ds = ϵi
∑

j∈N�(xi)

∫
e1

j

∂x
∂n1

j

ds+
∫
e3

j

∂x
∂n3

j

ds . (7.19)

The normal derivatives are approximated using bilinear interpolation and the detailed
formulas are derived in the Appendix. Using the formulas from Appendix, we can
approximate (7.19), thus (7.18) as

ϵi

∫
∂Vi

∇xx · n ds ≈ ϵi
∑

j∈N�(xi)

m(e1
j)

|N1
j |

[
1
4
(
−3x0

j + 3x1
j − x3

j + x2
j

)
−
a1
j

2
(
−x0

j − x1
j + x3

j + x2
j

)]

+
m(e3

j)
|N3

j |

[
1
4
(
−3x0

j − x1
j + 3x3

j + x2
j

)
−
a3
j

2
(
−x0

j + x1
j − x3

j + x2
j

)]
(7.20)

where N1
j , N3

j are defined in (C.12)-(C.13) and m(ekj) = |r2
j − rkj | denotes the Euclidean

measure of edge ekj .
The second term on the right-hand-side of (7.17) can be rewritten as

ηi

∫
Vi

N dS = ηi
∑

j∈N�(xi)

(
r1
j − r0

j

)
×
(
r2
j − r0

j

)
+
(
r2
j − r0

j

)
×
(
r3
j − r0

j

)
, (7.21)

since ηi is considered a constant value on the finite volume Vi.
Finally, the left-hand side term in (7.17) is approximated by means of the forward

finite difference and the mid-point quadrature formula

∫
Vi

∂tx dS = m(Vi)
(

xt+1
i − xti

∆t

)
(7.22)

7.4 Skeleton Evolution 125

where the measure of the finite volume Vi is given by

m(Vi) = 1
2

⏐⏐⏐⏐⏐⏐
∑

j∈N�(xi)

(
r1
j − r0

j

)
×
(
r2
j − r0

j

)
+
(
r2
j − r0

j

)
×
(
r3
j − r0

j

)⏐⏐⏐⏐⏐⏐ .

The third term on the right-hand-side in (7.17) will be discretized in the following Section.

Numerical scheme for the tangential redistribution

We recall that in order to obtain VT , or equivalently the third term on the right-hand-side
in (7.17), we first have to obtain the potential field ϕ in (7.15). Integrating (7.15) over
the finite volume Vi we get

∫
Vi

∆xϕ dS =
∫
Vi

Hβ dS −
∫
Vi

1
A

∫∫
S
Hβ dXdS +

∫
Vi

(
c

g
− 1

)
ω dS . (7.23)

The left-hand-side term in (7.23) leads to the same coefficient matrix as (7.20) for
ϵi = 1.

The first term on the right-hand side in (7.23) can be approximated again utilizing
the relation (C.16) from Normal Derivatives Approximation in the Appendix, since
∆xx = HN. Scalar βi at vertex xi represents the normal direction evolution speed, and
is defined as

βi = ϵiH + ηi .

The second term on the right-hand side in (7.23) represents the mean value of Hβ
along the surface and can be approximated as

∫
Vi

1
A

∫∫
S
Hβ dXdS ≈ m(Vi)

A

n∑
i=1

m(Vi)Hiβi (7.24)

where the area A ≈
n∑
i=1

m(Vi).
Regarding the third term in (7.23), if we want in the discrete setting every finite

volume to have the same area, we would set c = A, however, in our case we want every
quad to have the same area, so c should depend on number of quads which form the
finite volume. The value of c is approximated as

c =
∫∫
U g dudv∫∫
U dudv

≈ A∑n
i |N�(Xi)|

= A∑n
i mi

126 Application in Surface-Patch Quadrangulation

and the value of g is approximated by g ≈ m(Vi)
mi

.
Thus the last term of (7.23) can be approximated as

∫
Vi

(
c

g
− 1

)
ω dS ≈

 A∑n

i
mi

m(Vi)
mi

− 1
ωm(Vi) =

(
Ami∑n
i mi

−m(Vi)
)
ω . (7.25)

Replacing the integral approximations into (7.23), we obtain a sparse linear system
of n equations for the unknown values of potential ϕi, i = 1, ..., n at vertices xi. The
system is solved at every time step t.

Knowing the values of potential ϕ, we now describe how to compute VT as a gradient
of ϕ on a surface that appears in the evolution model (7.3). It can be computed using
the following identity [41]∫

Vi

VT dS =
∫
Vi

∇xϕ dS =
∫
∂Vi

ϕn ds−
∫
Vi

ϕkN dS . (7.26)

The boundary integral on the right hand side is approximated using the bilinear
interpolation∫

∂Vi

ϕn ds =
∑

j∈N�(xi)

∫
e1

j

ϕn1
j ds+

∫
e3

j

ϕn3
j ds

≈
∑

j∈N�(xi)

∫
e1

j

ϕ
N1,t+1
j⏐⏐⏐N1,t
j

⏐⏐⏐ ds+
∫
e3

j

ϕ
N3,t+1
j⏐⏐⏐N3,t
j

⏐⏐⏐ ds

≈
∑

j∈N�(xi)
m(e1

j)
(3

8ϕi + 3
8ϕ

1
j + 1

8ϕ
2
j + 1

8ϕ
3
j

) N1,t+1
j⏐⏐⏐N1,t
j

⏐⏐⏐
+m(e3

j)
(3

8ϕi + 3
8ϕ

2
j + 1

8ϕ
1
j + 1

8ϕ
3
j

) N3,t+1
j⏐⏐⏐N3,t
j

⏐⏐⏐ . (7.27)

7.4 Skeleton Evolution 127

The second integral term is approximated by taking ϕ constant on the finite volume
and by applying the Green’s theorem we obtain

∫
Vi

ϕkN dS = ϕi

∫
Vi

kN dS = ϕi

∫
∂Vi

∂x
∂ni

ds = ϕi

∫
∂Vi

ni ds

≈ ϕi

 ∑
j∈N�(xi)

∫
e1

j

N1,t+1
j

|N1,t
j |

ds+
∫
e3

j

N3,t+1
j

|N3,t
j |

ds

≈ ϕi

 ∑
j∈N�(xi)

m(e1
j)

N1,t+1
j

|N1,t
j |

+m(e3
j)

N3,t+1
j

|N3,t
j |

 . (7.28)

Putting together (7.27) and (7.28), the last term on the right-hand side of (7.17) is
approximated as

∫
Vi

VT dS ≈
∑

j∈N�(xi)
m(e1

j)
(
−5

8ϕi + 3
8ϕ

1
j + 1

8ϕ
2
j + 1

8ϕ
3
j

) N1,t+1
j

|N1,t
j |

+m(e3
j)
(
−5

8ϕi + 3
8ϕ

2
j + 1

8ϕ
1
j + 1

8ϕ
3
j

) N3,t+1
j

|N3,t
j |

. (7.29)

In addition, since the relations (C.12), (C.13) for N1
j and N3

j hold in every time step
t, the vector equation (7.29) can be added implicitly to the system, which is then solved.

In many applications, especially FEA, the requirements on the resulting mesh elements’
shape properties are the uniformity of quad areas, edge lengths and right angles, i.e.
elimination of degenerated quads. The tangential velocity VT aims to uniform the quad
areas, however, in order to satisfy the quad shape requirements, we have to consider
either the edge lengths or the angles in addition to the area-oriented redistribution.

Therefore, we decide to incorporate an additional ad-hoc naive angle-oriented velocity
vT at each Vi that is implicitly added to the linear system for xi in order to create an
evolution preserving both the area and angle distribution of the quads. The velocity vT
is computed as

vT = m(Vi)∑
j∈N�(xi) a

1
j + a3

j

∑
j∈N�(xi)

a1
j(x1

j − x0
j) + a3

j(x3
j − x0

j)

where akj , k ∈ {1, 3} equals

akj =
1 + |ukj | cos u1

j ·u3
j

|u1
j ||u3

j |

|u1
j ||u3

j |
,

128 Application in Surface-Patch Quadrangulation

for ukj = xkj − x0
j being the quad edge vector.

With this choice of weights, vT direction dictates the movement of xi in such way
that obtuse angles at xi are reduced causing enlargement of the acute angles around xi.

Putting together the equations (7.19), (7.21), (7.22) and (7.29), we get coefficients
of the surface evolution linear system approximating solution of (7.3) at time t for the
unknown position vector coordinates xt+1

i . The system matrix is highly sparse, in general
non-symmetric. The solution for xt+1

i is obtained via sparse BiCGSTAB solver.
The evolution is stopped when the following stopping criterion is satisfied

∥d(x)∥∞ ≤ dth

where dth is given threshold on the distance function values from the evolving surface S
to M△.

7.5 Numerical experiments

We preliminary tested our approach on several input meshes. In general, we propose two
approaches to the Skeleton Evolution Phase.

The first proposal ALG_1 evolves each Si separately, imposing Dirichlet boundary
conditions at the common boundaries. This strategy turns out to be useful when specific
parts of the shape have to be modified while maintaining the prescribed boundaries. This
is the case, for example, of boundary representation (BRep) of objects in solid modeling.

The second proposal ALG_2 evolves the Topology-skeleton S as whole. Naturally, in
this case we glue all parts Si together, allowing the common boundaries to be moved,
thus, producing visually appealing results with better vertex distribution around each Si
boundary. Alternatively, the same strategy can be applied post-process to ALG_1.

In every example we combined the global area-oriented (GA) redistribution with the
implicit local angle-oriented one.

For all the experiments we use reported edge length h, we fixed the parameters
c1 = 0.03, c2 = 0.002 for the MCF weighting function ϵ in (7.8). The advection term
parameter c3 in function η in (7.9) was set c3 = 2 and the time step τ = 0.1.

For the redistribution speed ω we chose the following strategy. At the beginning, we
use ω = 1 what results in favouring the local angle-oriented redistribution and after a
few evolution iterations, we increase ω = 10, thus, obtaining a good compromise between
the mesh quad areas and their angles.

7.5 Numerical experiments 129

Table 7.1 Overview on the input triangular meshes and the output quadrangulations.

M△ M�

#Vin #Tin K h #Vout #Qout #EV
dolphin 7573 15142 13 0.040 2880 2878 74

fertility 19994 40000 39 0.025 6266 6272 228
hand 6607 13210 10 0.040 3792 3790 55

horse_2 8078 16152 11 0.030 4124 4122 62
plane 7470 14936 12 0.040 3402 3400 63

pliers 5110 10216 4 0.030 2414 2412 20
teddy 9548 19092 8 0.040 4281 4279 44

teddy_2 1029 2056 8 0.040 2640 2640 44
wolf 4712 9420 17 0.030 9798 9796 91

Informations on the input/output meshes considered in the examples are reported in
Table 7.1. From the second to fourth column we report the number of vertices, triangles
and number of patches K produced in Phase 1 of the input mesh M△, The rest of the
columns give insight on the output mesh M� giving the information about the selected
edge length h, corresponding number of vertices, quads and the number of extraordinary
vertices #EV .

7.5.1 Example 1: Mesh Quadrangulation

In this experiment, we preliminary tested our algorithm on different meshes, investigating
the quality of the result in terms of uniformity and closeness to the input shape M△.
Given as input the desired edge length h, validation of the results has been assessed on
the following measures:

• h̄ – mean edge length of the output mesh

• σh̄ – standard deviation from h̄

• d̄ = 1
n

n∑
i=1
|d(xi)| – the mean value of the distance function in points of M�, because

when xi lies in the same voxel as part of M△, d(xi) is computed as the exact
distance to M△.

• σd̄ – standard deviation from d̄

• Q̄ = 1
nQ

nQ∑
i=1
|Qi| – mean area of the quads

• σQ̄ – standard deviation from Q̄

130 Application in Surface-Patch Quadrangulation

Table 7.2 Statistics of the preliminary results on the edge length, quad size, angle size
and distance function values at mesh vertices.

h h̄ σh̄ Q̄ σQ̄]̄ σ]̄ d̄ d∞

dolphin_ALG1 0.040 3.22e− 02 8.67e− 03 8.78e− 04 3.66e− 05 89.80 22.48 1.33e− 05 6.91e− 04
dolphin_ALG2 0.040 3.22e− 02 8.59e− 03 9.09e− 04 4.13e− 05 89.87 20.04 1.52e− 05 1.16e− 03

fertility_ALG1 0.025 1.40e− 02 3.69e− 03 1.61e− 04 1.01e− 05 89.63 24.68 1.55e− 05 2.89e− 03
fertility_ALG2 0.025 1.45e− 02 4.37e− 03 1.74e− 04 1.14e− 05 89.67 26.27 −1.09e− 05 1.05e− 02

hand_ALG1 0.040 3.10e− 02 7.38e− 03 8.46e− 04 1.83e− 05 89.90 18.31 −2.63e− 05 8.17e− 03
hand_ALG2 0.040 3.02e− 02 7.54e− 03 8.23e− 04 1.71e− 05 89.90 16.50 −2.11e− 05 1.14e− 02

horse_2_ALG1 0.030 2.65e− 02 7.72e− 03 5.92e− 04 2.06e− 05 89.73 20.61 −2.52e− 05 8.51e− 03
horse_2_ALG2 0.030 2.63e− 02 6.80e− 03 6.05e− 04 1.65e− 05 89.73 20.54 −2.78e− 05 6.47e− 03

plane_ALG1 0.040 2.81e− 02 8.24e− 03 6.70e− 04 2.89e− 05 89.86 18.65 2.89e− 05 1.62e− 02
plane_ALG2 0.040 2.88e− 02 1.03e− 02 7.01e− 04 3.59e− 05 89.86 16.82 2.65e− 05 1.57e− 02

pliers_ALG1 0.030 3.01e− 02 1.40e− 02 6.68e− 04 1.79e− 05 89.88 21.63 −1.13e− 05 5.60e− 03
pliers_ALG2 0.030 3.04e− 02 1.43e− 02 6.80e− 04 1.90e− 05 89.90 20.67 −1.07e− 05 7.66e− 03
teddy_ALG1 0.040 3.95e− 02 1.03e− 02 1.33e− 03 4.52e− 05 89.78 23.98 −7.63e− 07 1.17e− 03
teddy_ALG2 0.040 3.97e− 02 1.09e− 02 1.36e− 03 4.36e− 05 89.74 21.83 −1.73e− 04 1.24e− 02
wolf_ALG1 0.030 1.96e− 02 6.03e− 03 3.02e− 04 1.05e− 05 89.75 24.13 −9.75e− 06 7.30e− 03
wolf_ALG2 0.030 1.88e− 02 5.57e− 03 3.04e− 04 9.28e− 06 89.81 19.97 −9.15e− 06 8.60e− 03

•]̄ – mean angle between edges over the mesh in degrees

• σ]̄ – standard deviation from]̄

We created the topology-skeleton S using the reported edge length h an we run both
the proposed algorithms ALG_1 and then ALG_2. In Fig. 7.6 we report sample of the
reconstructed meshes in alphabetical order as listed in Table 7.2. In the first column of
Fig. 7.6 we visualize the input topological skeleton S together with an outline of the
input mesh M△. Each patch Si of S is coloured in a different colour. The middle column
illustrate the output of ALG_1 coloured in false colours in range [blue, red] according
to the quad areas of the mesh. One can notice that sometimes, the boundaries of the
object lead to slightly different mean quad areas among the patches. Nevertheless, in the
third column of Fig. 7.6 that illustrates the output of ALG_2, the reader can appreciate
the uniform colour distribution for the quad areas, which was obtained also thanks to
the movement of the patch boundaries, since all the patches Si were glued together.
Reconstructions of more complicated meshes in terms of level of details and higher genus
are represented by meshes fertility, horse and wolf. From a visual inspection we
can observe that our approach successfully reconstructed the mouth and ears in wolf
mesh as well as a higher-genus mesh fertility.

In addition to the qualitative evaluation illustrated in Fig. 7.6, we report in Table
7.2 indicators of the quad mesh properties.

7.5 Numerical experiments 131

7.5.2 Example 2: Different resolutions

In this experiment, we produced the topology-skeletons Si for teddy mesh using four dif-
ferent resolutions controlled by decreasing mesh size h in the range {0.05, 0.04, 0.025, 0.01}
and we evolved the associated skeletons. Then we have decreased the input M△ mesh
resolution density down to 10%, see teddy_2 in Table 7.1, and repeated the evolutions.
The corresponding results of ALG_2 are reported in Figure 7.7 in the first and last column.
Each resolution result in Fig. 7.7 is accompanied with a detail of the arm together with
the original triangulation coloured in blue. From the reported results we can state that
our algorithm is robust to the input-output mesh resolution, while its smoothness can
be controlled by the parameters in (7.8) relative to the diffusion term in the evolution
model.

132 Application in Surface-Patch Quadrangulation

Fig. 7.6 Example 1: Reconstruction results of different meshes. from left to right: input
skeleton S with outline of M△ in transparent, result of ALG_1, result of ALG_2.

7.5 Numerical experiments 133

teddy teddy_sparse

Fig. 7.7 Example 2: Different resolution results for teddy mesh (left) and its 90%
down-sample (right). From top to bottom the results for chosen parameter h =
{0.05, 0.04, 0.025, 0.1} respectively together with zoom to the reconstructed mesh pro-
duced by ALG_2 with original triangulation over-imposed in blue.

Chapter 8

Conclusions

In this work, we studied problems in the field of Geometry Processing. In particular, we
focused on the 2-manifold partitioning which is rather a complex task. Preliminary to
the object decomposition itself, a shape analysis that drives the variational partitioning
problem is needed.

To that aim, we demonstrated as a simple particle flow can be efficiently used for
the shape diameter analysis of a cloud of points representing the boundary of an object.
Therefore, the proposed algorithm for SDF computation in Section 5.1 represents a
valid alternative to the original ray-tracing-based proposal [108], which requires to be
necessarily applied to meshes. We validated the proposed SDF Flow algorithm both in
terms of accuracy and in terms of efficiency. The quality of the results are comparable to
the ray-tracing based proposals.

Next, we proposed in Section 5.2 a novel definition of the affinity matrix depending on
the mean curvature of the object considered, which eigen-decomposition provides us the
spectral coordinates of the object’s vertices. In particular, the eigenvectors corresponding
to the first few smallest non-zero eigenvalues, represent the slowly-varying functions over
the studied surface, capturing its main features and details.

Moreover, we proposed a sparsity-promoting variational method (Section 5.3) to
produce compressed functions LpCMs, which are quasi-eigenfunctions of the Laplacian
operator. We proved that the generated functions are highly localized in space and the
size of their support depends on the sparsity parameter p and on the penalty parameter µ.
An Augmented Lagrangian method was applied to solve this non-convex non-differentiable
optimization problem, yielding an iterative algorithm with efficient solutions to sub-
problems. Also this compact support basis proves to be very useful for spectral shape
processing.

136 Conclusions

Apart from the latter two methods of shape analysis, which lead to a partitioning
mimicking the human perception; Shape Diameter Function gives rise to the thickness-
based partitioning. The main goal of thickness-based partitioning is to construct a map
of thickness of the object based on the SDF values.

Using the above-mentioned single-/multi-channel functions as a shape attribute, we
presented different proposals for the variational partitioning of an object, represented
by a triangular mesh, into K separated regions. Our work is based on recent advances
in sparsity-inducing penalties that have been successfully applied in image processing
[69]. The multi-channel object partitioning framework in Section 6.1 is based on a
variational formulation where we introduced a novel shape metric, allowing the capture
of more subtle details of the segmented boundaries than the traditional L1 metric. The
sparsity imposed in the variational formulation represents the key aspect for a successful
shape partitioning. In order to deal with function inhomogeneity the functional has
been enriched with a smooth regularizer. Thus the resulting variational models hold
the potential both for piecewise-constant and piecewise-smooth representations of the
partitioning function. We propose a fast iterative algorithm to accurately approximate
the minimizer of the partitioning functional. The mathematical framework is robust and
efficient, however, the Lp norm term in the functional leads to a non-convex optimization
problem which solution can be stalled in local minima.

Therefore, we explored the replacement of the Lp penalty term with another sparsity
inducing, non-convex, but parametric penalty function, so that to control the convexity
of the overall functional and benefit of the convex optimization tools. In particular, we
presented a new variational CNC model in Section 6.3 for multiphase segmentation of
real-valued functions on manifolds, where a non-convex regularization term allows for
penalizing the non-smoothness of the inner segmented parts and preserves the length
of the boundaries. The CNC strategy is generalized for unstructured three dimensional
meshes/graphs, and theoretical local conditions of convexity are derived for the proposed
model where we explicitly used the manifold’s geometry. This result allows to benefit
from the maintenance of the strict (or, better, strong) convexity of the optimization
problem to be solved.

Towards the solutions of the non-convex non-smooth and CNC functionals, we propose
a fast iterative algorithm to accurately approximate the local minimizer of the partitioning
functional as well as an ad hoc iterative ADMM-based algorithm together with a specific
multivariate proximal map to solve the minimization problem.

An advantage of these proposals with respect to other methods is that the solution
of the partitioning optimization problem is independent on the number of partitions K

137

required, which is only exploited in the post-processing second step. However, the decom-
position step is currently implemented as a naive K-means-alike clusterization algorithm
which coincides with thresholding in case of single channel shape attribute. Therefore,
we would like to investigate a more convenient, convex, thresholding formulation.

From the computational point of view, the efficiency can be definitely improved
by CPU/GPU parallelization, and utilization of register-type variables when possible.
In case of the SDF map, exploitation of greedy strategies like for example the ASDF
approach proposed in [64] is in consideration.

The abilities of the proposed algorithms for object partitioning have been shown for the
shape diameter attribute and for spectral decomposition. However, our formulations are
quite general, and other surface attributes can be used instead for a suitable initialization
of the variational problem, thus obtaining a generalized partitioning framework. The
idea of generalized framework point in two directions for the future research:

• Shape Analysis – exploit different shape attributes and their robustness in shape
partitioning.

• Shape Partitioning – study of the partitioning model and its limitations, e.g.
incorporate into the model more sophisticated edge-detection functions based both
on the geometry and function edges, thus, control better the effect of smooth
regularizer for the inner segmented parts.

We concluded this work with a possible application of the shape partitioning in area
of the surface-patch quadrangulation. To that aim, we utilize the 0-genus partitioning
and supervised Lagrangian-type evolution model to approximate the original shape. The
evolution model is robust, however, in order to preserve a uniform quad distribution
among the partitioning patches, we can consider just 0-genus partitions of one boundary.
Consideration of a cylindrical 0-genus patches, produced by a possibly more sophisticated
partitioning method, is left for further investigation. The resulting meshes obtained
by our algorithm can be useful for FEM computations, since we aim for a compromise
between the uniform quad areas and the right angles among the mesh. On the other hand,
a mesh that may be used for CAD purposed leads to a curvature-oriented redistribution
of the points, with strict reduction of the extraordinary vertices.

References

[1] Agathos, A., Pratikakis, I., Perantonis, S., Sapidis, N., and Azariadis, P. (2007). 3d
mesh segmentation methodologies for cad applications. Computer-Aided Design and
Applications, 4(6):827–841.

[2] Arthur, D. and Vassilvitskii, S. (2007). K-means++: The advantages of careful
seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’07, pages 1027–1035, Philadelphia, PA, USA. Society for Industrial
and Applied Mathematics.

[3] Asafi, S., Goren, A., and Cohen-Or, D. (2013). Weak Convex Decomposition by
Lines-of-sight. Computer Graphics Forum.

[4] Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., and Tal, A. (2006).
Mesh segmentation - a comparative study. In Proceedings of the IEEE International
Conference on Shape Modeling and Applications 2006, SMI ’06, pages 7–, Washington,
DC, USA. IEEE Computer Society.

[5] Au, O. K.-C., Zheng, Y., Chen, M., Xu, P., and Tai, C.-L. (2011). Mesh segmentation
with concavity-aware fields. IEEE Transactions on Visualization & Computer Graphics,
18:1125–1134.

[6] Barekat, F. (2014). On the consistency of compressed modes for variational problems
associated with the schrödinger operator. SIAM Journal on Mathematical Analysis,
46(5):3568–3577.

[7] Barekat, F., Caflisch, R., and Osher, S. (2017). On the support of compressed modes.
SIAM J. Math. Analysis, 49(4):2573–2590.

[8] Beck, A. and Teboulle, M. (2009a). A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM J. Img. Sci., 2(1):183–202.

[9] Beck, A. and Teboulle, M. (2009b). Gradient-based algorithms with applications to
signal recovery. Convex optimization in signal processing and communications, pages
42–88.

[10] Benhabiles, H., Lavoué, G., Vandeborre, J.-P., and Daoudi, M. (2011). Learning
boundary edges for 3d-mesh segmentation. Computer Graphics Forum, 30(8):2170–
2182.

[11] Berger, M., Tagliasacchi, A., Seversky, L. M., Alliez, P., Levine, J. A., Sharf, A.,
and Silva, C. (2014). State of the art in surface reconstruction from point clouds.
Eurographics STAR (Proc. of EG’14).

140 References

[12] Bertsekas, D. (1996). Constrained Optimization and Lagrange Multiplier Methods.
Athena scientific series in optimization and neural computation. Athena Scientific.

[13] Blake, A. and Zisserman, A. (1987). Visual Reconstruction. MIT Press, Cambridge,
MA, USA.

[14] Boier-Martin, I., Rushmeier, H., and Jin, J. (2004). Parameterization of triangle
meshes over quadrilateral domains. In Proceedings of the 2004 Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing, SGP ’04, pages 193–203, New York,
NY, USA. ACM.

[15] Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., and Zorin,
D. (2013). Quad-mesh generation and processing: A survey. Comput. Graph. Forum,
32(6):51–76.

[16] Bommes, D., Zimmer, H., and Kobbelt, L. (2009). Mixed-integer quadrangulation.
ACM Trans. Graph., 28(3):77:1–77:10.

[17] Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Levy, B. (2010). Polygon Mesh
Processing. Ak Peters Series. Taylor & Francis.

[18] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed
optimization and statistical learning via the alternating direction method of multipliers.
Found. Trends Mach. Learn., 3(1):1–122.

[19] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University
Press, New York, NY, USA.

[20] Bredies, K. (2009). A forward–backward splitting algorithm for the minimization of
non-smooth convex functionals in banach space. Inverse Problems, 25(1):015005.

[21] Bronstein, A. M., Choukroun, Y., Kimmel, R., and Sela, M. (2016). Consistent
discretization and minimization of the L1 norm on manifolds. CoRR, abs/1609.05434.

[22] Cai, X., Chan, R., and Zeng, T. (2013). A two-stage image segmentation method
using a convex variant of the mumford–shah model and thresholding. SIAM Journal
on Imaging Sciences, 6(1):368–390.

[23] Candès, E. J., Wakin, M. B., and Boyd, S. P. (2008). Enhancing sparsity by
reweighted ℓ1 minimization. Journal of Fourier Analysis and Applications, 14(5):877–
905.

[24] Casciola, G., Lazzaro, D., Montefusco, L. B., and Morigi, S. (2006). Shape preserving
surface reconstruction using locally anisotropic radial basis function interpolants.
Comput. Math. Appl., 51(8):1185–1198.

[25] Catmull, E. and Clark, J. (1998). Seminal graphics. chapter Recursively Generated
B-spline Surfaces on Arbitrary Topological Meshes, pages 183–188. ACM, New York,
NY, USA.

[26] Chambolle, A. and Pock, T. (2011). A first-order primal-dual algorithm for convex
problems with applications to imaging. Journal of Mathematical Imaging and Vision,
40(1):120–145.

References 141

[27] Chan, T. F., Esedoglu, S., and Nikolova, M. (2006). Algorithms for finding global
minimizers of image segmentation and denoising models. Technical report, SIAM
Journal On Applied Mathematics.

[28] Chan, T. F. and Mulet, P. (1999). On the convergence of the lagged diffusivity
fixed point method in total variation image restoration. SIAM J. Numer. Anal.,
36(2):354–367.

[29] Chan, T. F. and Vese, L. A. (2001). Active contours without edges. Trans. Img.
Proc., 10(2):266–277.

[30] Chen, P. Y. and Selesnick, I. W. (2014). Group-sparse signal denoising: Non-
convex regularization, convex optimization. IEEE Transactions on Signal Processing,
62(13):3464–3478.

[31] Chen, X., Golovinskiy, A., and Funkhouser, T. (2009). A benchmark for 3d mesh
segmentation. ACM Trans. Graph., 28(3):73:1–73:12.

[32] Chouzenoux, E., Jezierska, A., Pesquet, J.-C., and Talbot, H. (2013). A majorize-
minimize subspace approach for \ell_2-\ell_0 image regularization. SIAM Journal on
Imaging Sciences, 6(1):563–591.

[33] Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and Ranzuglia,
G. (2008a). MeshLab: an Open-Source Mesh Processing Tool. In Scarano, V.,
Chiara, R. D., and Erra, U., editors, Eurographics Italian Chapter Conference. The
Eurographics Association.

[34] Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and Ranzuglia,
G. (2008b). MeshLab: an Open-Source Mesh Processing Tool. In Scarano, V.,
Chiara, R. D., and Erra, U., editors, Eurographics Italian Chapter Conference. The
Eurographics Association.

[35] Cohen-Steiner, D., Alliez, P., and Desbrun, M. (2004). Variational shape approxi-
mation. ACM Trans. Graph., 23(3):905–914.

[36] Combettes, P. L. and Wajs, V. R. (2005). Signal recovery by proximal forward-
backward splitting. Multiscale Modeling & Simulation, 4(4):1168–1200.

[37] Daniels, J., Silva, C., and Cohen, E. (2009). Semi-regular quadrilateral-only remesh-
ing from simplified base domains. Computer Graphics Forum, 28(5):1427–1435.

[38] Daniels, J., Silva, C. T., Shepherd, J., and Cohen, E. (2008). Quadrilateral mesh
simplification. ACM Trans. Graph., 27(5):148:1–148:9.

[39] Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and Hart, J. C. (2006). Spectral
surface quadrangulation. ACM Trans. Graph., 25(3):1057–1066.

[40] Du, Q., Faber, V., and Gunzburger, M. (1999). Centroidal voronoi tessellations:
Applications and algorithms. SIAM Rev., 41(4):637–676.

[41] Dziuk, G. and Elliott, C. M. (2013). Finite element methods for surface pdes. Acta
Numerica, 22:289–396.

142 References

[42] Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W.
(1995). Multiresolution analysis of arbitrary meshes. In Proceedings of the 22Nd Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’95, pages
173–182, New York, NY, USA. ACM.

[43] Floater, M. S. and Hormann, K. (2005). Surface Parameterization: a Tutorial and
Survey, pages 157–186. Springer Berlin Heidelberg, Berlin, Heidelberg.

[44] Glowinski, R., Osher, S. J., and Yin, W. (2017). Splitting Methods in Communication,
Imaging, Science, and Engineering. Springer Publishing Company, Incorporated, 1st
edition.

[45] Goldstein, T. and Osher, S. (2009). The split bregman method for l1-regularized
problems. SIAM Journal on Imaging Sciences, 2(2):323–343.

[46] Gorodnitsky, I. F. and Rao, B. D. (1992). A new iterative weighted norm minimiza-
tion algorithm and its applications. In [1992] IEEE Sixth SP Workshop on Statistical
Signal and Array Processing, pages 412–415.

[47] Gower, J. and Dijksterhuis, G. (2004). Procrustes Problems. Oxford Statistical
Science Series. OUP Oxford.

[48] Gray, A. (1997). Modern Differential Geometry of Curves and Surfaces with Mathe-
matica. CRC Press, Inc., Boca Raton, FL, USA, 2nd edition.

[49] Gu, X. and Yau, S.-T. (2003). Global conformal surface parameterization. In
Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Pro-
cessing, SGP ’03, pages 127–137, Aire-la-Ville, Switzerland, Switzerland. Eurographics
Association.

[50] Guskov, I., Vidimče, K., Sweldens, W., and Schröder, P. (2000). Normal meshes.
In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’00, pages 95–102, New York, NY, USA. ACM Press/Addison-
Wesley Publishing Co.

[51] Heider, P., Pierre-Pierre, A., Li, R., Mueller, R., and Grimm, C. (2012). Comparing
local shape descriptors. The Visual Computer, 28(9):919–929.

[52] Hesse, R. and Luke, D. R. (2013). Nonconvex notions of regularity and convergence
of fundamental algorithms for feasibility problems. SIAM Journal on Optimization,
23(4):2397–2419.

[53] Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., and Bao, H. (2008). Spec-
tral quadrangulation with orientation and alignment control. ACM Trans. Graph.,
27(5):147:1–147:9.

[54] Hunter, D. R. and Lange, K. (2004). A tutorial on mm algorithms. The American
Statistician, 58(1):30–37.

References 143

[55] Huska, M., Lanza, A., Morigi, S., and Sgallari, F. (2017a). Convex non-convex
segmentation over surfaces. In Lauze, F., Dong, Y., and Dahl, A. B., editors, Scale
Space and Variational Methods in Computer Vision: 6th International Conference,
SSVM 2017, Kolding, Denmark, June 4-8, 2017, Proceedings, pages 348–360, Cham.
Springer International Publishing.

[56] Huska, M., Lazzaro, D., and Morigi, S. (2018). Shape partitioning via lp compressed
modes. to appear in Journal of Mathematical Imaging and Vision.

[57] Huska, M., Medla, M., Mikula, K., and Morigi, S. (2017b). Patch-surface quadran-
gulation. in preparation.

[58] Huska, M. and Morigi, S. (2017a). A meshless strategy for shape diameter analysis.
The Visual Computer, 33(3):303–315.

[59] Huska, M. and Morigi, S. (2017b). Sparsity-inducing variational shape partitioning.
Electronic Transactions on Numerical Analysis journal, 46:36–54.

[60] Jakob, W., Tarini, M., Panozzo, D., and Sorkine-Hornung, O. (2015). Instant
field-aligned meshes. ACM Trans. Graph., 34(6):189:1–189:15.

[61] Kaick, O. V., Fish, N., Kleiman, Y., Asafi, S., and Cohen-OR, D. (2014). Shape
segmentation by approximate convexity analysis. ACM Trans. Graph., 34(1):4:1–4:11.

[62] Kalogerakis, E., Hertzmann, A., and Singh, K. (2010). Learning 3d mesh segmenta-
tion and labeling. ACM Trans. Graph., 29(4):102:1–102:12.

[63] Katz, S. and Tal, A. (2003). Hierarchical mesh decomposition using fuzzy clustering
and cuts. ACM Trans. Graph., 22(3):954–961.

[64] Kovacic, M., Guggeri, F., Marras, S., and Scateni, R. (2010). Fast approximation
of the shape diameter function. In Proceedings Workshop on Computer Graphics,
Computer Vision and Mathematics (GraVisMa), volume 5, pages 65–72.

[65] Lai, R. and Osher, S. (2014). A splitting method for orthogonality constrained
problems. Journal of Scientific Computing, 58(2):431–449.

[66] Lai, Y. K., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S. M., and Gu,
X. (2010). Metric-driven rosy field design and remeshing. IEEE Transactions on
Visualization and Computer Graphics, 16(1):95–108.

[67] Lanza, A., Morigi, S., Selesnick, I., and Sgallari, F. (2017). Nonconvex nonsmooth
optimization via convex—nonconvex majorization—minimization. Numer. Math.,
136(2):343–381.

[68] Lanza, A., Morigi, S., and Sgallari, F. (2015). Convex Image Denoising via Non-
Convex Regularization, pages 666–677. Springer International Publishing, Cham.

[69] Lanza, A., Morigi, S., and Sgallari, F. (2016a). Constrained tvp–ℓ2 model for image
restoration. J. Sci. Comput., 68(1):64–91.

144 References

[70] Lanza, A., Morigi, S., and Sgallari, F. (2016b). Convex image denoising via non-
convex regularization with parameter selection. Journal of Mathematical Imaging and
Vision, 56(2):195–220.

[71] Lee, A. W. F., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. (1998).
Maps: Multiresolution adaptive parameterization of surfaces. In Proceedings of the 25th
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’98, pages 95–104, New York, NY, USA. ACM.

[72] Lellmann, J. and Schnörr, C. (2011). Continuous multiclass labeling approaches and
algorithms. CoRR, abs/1102.5448.

[73] Lévy, B. and Liu, Y. (2010). Lp centroidal voronoi tessellation and its applications.
ACM Trans. Graph., 29(4):119:1–119:11.

[74] Lévy, B. and Zhang, H. R. (2010). Spectral mesh processing. In ACM SIGGRAPH
2010 Courses, SIGGRAPH ’10, pages 8:1–8:312, New York, NY, USA. ACM.

[75] Lewis, A. S., Luke, D. R., and Malick, J. (2009). Local linear convergence for alternat-
ing and averaged nonconvex projections. Foundations of Computational Mathematics,
9(4):485–513.

[76] Lien, J.-M. and Amato, N. M. (2007). Approximate convex decomposition of
polyhedra. In Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling,
SPM ’07, pages 121–131, New York, NY, USA. ACM.

[77] Lin, J., Jin, X., Fan, Z., and Wang, C. C. L. (2008). Automatic polycube-maps. In
Proceedings of the 5th International Conference on Advances in Geometric Modeling
and Processing, GMP’08, pages 3–16, Berlin, Heidelberg. Springer-Verlag.

[78] Liu, R. and Zhang, H. (2004). Segmentation of 3d meshes through spectral clustering.
In Pacific Conference on Computer Graphics and Applications, pages 298–305. IEEE
Computer Society.

[79] Liu, R. and Zhang, H. (2007). Mesh segmentation via spectral embedding and
contour analysis. Computer Graphics Forum, 26(3):385–394.

[80] Lu, Z. (2012). Iterative Reweighted Minimization Methods for l_p Regularized
Unconstrained Nonlinear Programming. ArXiv e-prints.

[81] MacKay, D. J. C. (2002). Information Theory, Inference & Learning Algorithms.
Cambridge University Press, New York, NY, USA.

[82] Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. (2003). Discrete Differential-
Geometry Operators for Triangulated 2-Manifolds, pages 35–57. Springer Berlin
Heidelberg, Berlin, Heidelberg.

[83] Mikula, K., Remešíková, M., Sarkoci, P., and Ševčovič, D. (2014). Manifold evolution
with tangential redistribution of points. SIAM Journal on Scientific Computing,
36(4):A1384–A1414.

References 145

[84] Morigi, S. and Rucci, M. (2014). Multilevel mesh simplification. The Visual
Computer, 30(5):479–492.

[85] Morigi, S., Rucci, M., and Sgallari, F. (2011). Nonlocal surface fairing. In Scale
Space and Variational Methods in Computer Vision - Third International Conference,
SSVM 2011, Ein-Gedi, Israel, May 29 - June 2, 2011, Revised Selected Papers, pages
38–49.

[86] Mumford, D. and Shah, J. (1989). Optimal approximations by piecewise smooth func-
tions and associated variational problems. Comm. on Pure and Applied Mathematics,
42(5):577–685.

[87] Nesterov, Y. (1983). A method of solving a convex programming problem with
convergence rate O(1/sqr(k)). Soviet Mathematics Doklady, 27:372–376.

[88] Neumann, T., Varanasi, K., Theobalt, C., Magnor, M., and Wacker, M. (2014).
Compressed manifold modes for mesh processing. Comput. Graph. Forum, 33(5):35–44.

[89] Nikolova, M. (1998). Estimation of binary images by minimizing convex criteria.
In Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat.
No.98CB36269), volume 2, pages 108–112 vol.2.

[90] Nikolova, M. and Chan, R. H. (2007). The equivalence of half-quadratic minimization
and the gradient linearization iteration. IEEE Trans. Image Processing, 16(6):1623–
1627.

[91] Nikolova, M., Ng, M. K., and Tam, C. (2010). Fast nonconvex nonsmooth minimiza-
tion methods for image restoration and reconstruction. IEEE Trans. Image Processing,
19(12):3073–3088.

[92] Ozolin, š, V., Lai, R., Caflisch, R., and Osher, S. (2013). Compressed modes for
variational problems in mathematics and physics. Proceedings of the National Academy
of Sciences, 110(46):18368–18373.

[93] Panozzo, D., Lipman, Y., Puppo, E., and Zorin, D. (2012). Fields on symmetric
surfaces. ACM Transactions on Graphics, 31(4).

[94] Parikh, N. and Boyd, S. (2014). Proximal algorithms. Found. Trends Optim.,
1(3):127–239.

[95] Patanè, G., Spagnuolo, M., and Falcidieno, B. (2004). Para-graph: Graph-based
parameterization of triangle meshes with arbitrary genus. Comput. Graph. Forum,
23(4):783–797.

[96] Patanè, G., Spagnuolo, M., and Falcidieno, B. (2007). Families of cut-graphs for
bordered meshes with arbitrary genus. Graphical Models, 69(2):119–138.

[97] Pietroni, N., Tarini, M., and Cignoni, P. (2010). Almost isometric mesh parameteri-
zation through abstract domains. IEEE Transaction on Visualization and Computer
Graphics, 16(4):621–635.

146 References

[98] Pinkall, U. and Polthier, K. (1993). Computing discrete minimal surfaces and their
conjugates. Experiment. Math., 2(1):15–36.

[99] Pock, T., Chambolle, A., Cremers, D., and Bischof, H. (2009). A convex relaxation
approach for computing minimal partitions. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 810–817.

[100] Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., and Spagnuolo, M. (2009). Discrete
laplace-beltrami operators for shape analysis and segmentation. Computers & Graphics,
33(3):381–390.

[101] Rodriguez, P. and Wohlberg, B. (2006). An iteratively reweighted norm algorithm
for total variation regularization. In 2006 Fortieth Asilomar Conference on Signals,
Systems and Computers, pages 892–896.

[102] Rolland-Nevière, X., Doërr, G., and Alliez, P. (2013). Robust diameter-based
thickness estimation of 3d objects. Graphical Models, 75(6):279 – 296.

[103] Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based
noise removal algorithms. Phys. D, 60(1-4):259–268.

[104] Schonemann, P. H. (1985). On the formal differentiation of traces and determinants.
Multivariate Behavioral Research, 20(2):113–139. PMID: 26771405.

[105] Sebastien Valette, Remy Prost, J. M. C. (2007). Generic remeshing of 3d triangular
meshes with metric-dependent discrete voronoi diagrams. IEEE Transactions on
Visualization & Computer Graphics, 14:369–381.

[106] Selesnick, I. W. and Bayram, I. (2014). Sparse signal estimation by maximally
sparse convex optimization. Trans. Sig. Proc., 62(5):1078–1092.

[107] Shamir, A. (2008). A survey on Mesh Segmentation Techniques. Computer Graphics
Forum.

[108] Shapira, L., Shamir, A., and Cohen-Or, D. (2008). Consistent mesh partitioning
and skeletonisation using the shape diameter function. Vis. Comput., 24(4):249–259.

[109] Shor, N. Z., Kiwiel, K. C., and Ruszcayǹski, A. (1985). Minimization Methods for
Non-differentiable Functions. Springer-Verlag New York, Inc., New York, NY, USA.

[110] Steiner, D. and Fischer, A. (2002). Cutting 3d freeform objects with genus-n into
single boundary surfaces using topological graphs. In Proceedings of the Seventh ACM
Symposium on Solid Modeling and Applications, SMA ’02, pages 336–343, New York,
NY, USA. ACM.

[111] Strekalovskiy, E., Chambolle, A., and Cremers, D. (2012). A convex representation
for the vectorial mumford-shah functional. In CVPR, pages 1712–1719. IEEE Computer
Society.

[112] Strong, D. and Chan, T. (2003). Edge-preserving and scale-dependent properties
of total variation regularization. Inverse Problems, 19(6):S165.

References 147

[113] Tarini, M., Hormann, K., Cignoni, P., and Montani, C. (2004). Polycube-maps.
ACM Trans. Graph., 23(3):853–860.

[114] Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., and Puppo, E. (2010). Practical
quad mesh simplification. Computer Graphics Forum (Special Issue of Eurographics
2010 Conference), 29(2):407–418.

[115] Theologou, P., Pratikakis, I., and Theoharis, T. (2017). Unsupervised spectral
mesh segmentation driven by heterogeneous graphs. IEEE transactions on pattern
analysis and machine intelligence, 39(2):397–410.

[116] Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. (2006). Designing
Quadrangulations with Discrete Harmonic Forms. In Sheffer, A. and Polthier, K.,
editors, Symposium on Geometry Processing. The Eurographics Association.

[117] Tournois, J., Wormser, C., Alliez, P., and Desbrun, M. (2009). Interleaving delaunay
refinement and optimization for practical isotropic tetrahedron mesh generation. ACM
Trans. Graph., 28(3):75:1–75:9.

[118] Vallet, B. and Levy, B. (2008). Spectral Geometry Processing with Manifold
Harmonics. Computer Graphics Forum.

[119] Vese, L. A. and Guyader, C. L. (2015). Variational Methods in Image Processing.
Chapman & Hall/CRC.

[120] Villa, S., Salzo, S., Baldassarre, L., and Verri, A. (2013). Accelerated and inexact
forward-backward algorithms. SIAM Journal on Optimization, 23(3):1607–1633.

[121] Vogel, C. R. and Oman, M. E. (1996). Iterative methods for total variation
denoising. SIAM J. SCI. COMPUT, 17:227–238.

[122] Ševčovič, D. (2016). Direct Lagrangian Methods for Solving Mean Curvature Flows
and their Applications. IRIS – Vydavateľstvo a tlač, s.r.o., Bratislava, Slovakia.

[123] Wang, Y., Yin, W., and Zeng, J. (2015). Global Convergence of ADMM in
Nonconvex Nonsmooth Optimization. ArXiv e-prints.

[124] Wolke, R. and Schwetlick, H. (1988). Iteratively reweighted least squares: Algo-
rithms, convergence analysis, and numerical comparisons. SIAM Journal on Scientific
and Statistical Computing, 9(5):907–921.

[125] Wu Leif Kobbelt, J. (2005). Structure recovery via hybrid variational surface
approximation. Computer Graphics Forum, 24(3):277–284.

[126] Xia, J., Garcia, I., He, Y., Xin, S.-Q., and Patow, G. (2011). Editable polycube
map for gpu-based subdivision surfaces. In Symposium on Interactive 3D Graphics
and Games, I3D ’11, pages 151–158, New York, NY, USA. ACM.

[127] Yan, D.-M., Levy, B., Liu, Y., Sun, F., and Wang, W. (2009). Isotropic Remeshing
with Fast and Exact Computation of Restricted Voronoi Diagram. Computer Graphics
Forum.

148 References

[128] Yan, D.-M., Wang, W., Liu, Y., and Yang, Z. (2012). Variational mesh segmentation
via quadric surface fitting. Comput. Aided Des., 44(11):1072–1082.

[129] Yin, K. and Osher, S. (2013). On the completeness of the compressed modes in
the eigenspace. Technical report, CALIFORNIA UNIV LOS ANGELES DEPT OF
MATHEMATICS.

[130] Zhang, J., Zheng, J., Wu, C., and Cai, J. (2012). Variational mesh decomposition.
ACM Trans. Graph., 31(3):21:1–21:14.

[131] Zhao, H. (2005). A fast sweeping method for eikonal equations. Math. Comput.,
74(250):603–627.

[132] Zhao, H.-K., Osher, S., and Fedkiw, R. (2001). Fast surface reconstruction using
the level set method. In Proceedings IEEE Workshop on Variational and Level Set
Methods in Computer Vision, pages 194–201.

[133] Zuo, W., Meng, D., Zhang, L., Feng, X., and Zhang, D. (2013). A generalized
iterated shrinkage algorithm for non-convex sparse coding. In The IEEE International
Conference on Computer Vision (ICCV).

Appendix A

Proofs in Section 5.3 on Lp
Compressed Manifold Modes

Proof of Theorem 1.
Proof. The proof is decomposed in four steps.

Step 1:
We first derived the Euler-Lagrange equations for (5.17). For any function u, let s(u)
denote an element of subdifferential of |u|p, that is:

s(u) = sign(u) · p · |u|p−1 . (A.1)

The solutions of (5.17) are weak solutions of the following system of nonlinear boundary
value problem:

1
µ
s(ψi)− 2λiiψi −∆ψi −

∑
j ̸=i

λijψj = 0, i = 1, .., N on Ω (A.2)

where λij, with λij = λji are Lagrange multipliers corresponding to orthonormality
constraints:∫

Ω
ψ2
i dx = 1 and

∫
Ω
ψiψjdx = 0, for i, j = 1, ..., N, j ̸= i . (A.3)

Step 2: Upper bounds for λii, ∥ψi∥pp and ∥∇ψi∥2

For each i multiply both sides of equation (A.2) by ψi(x) and integrate over domain Ω:
∫

Ω

1
µ
s(ψi)ψidx− 2λii

∫
Ω
ψiψidx−

∫
Ω

∆ψiψidx−
∑
j ̸=i

λij

∫
Ω
ψiψjdx = 0 . (A.4)

150 Proofs in Section 5.3 on Lp Compressed Manifold Modes

By using orthonormality conditions (A.3), we can rewrite the above equation as:
∫

Ω

1
µ
s(ψi)ψidx− 2λii −

∫
Ω

∆ψiψidx = 0 (A.5)

that, using integration by parts and zero boundary conditions on Ω, implies that
∫

Ω

1
µ
s(ψi)ψidx− 2λii +

∫
Ω
|∇ψi|2 dx = 0 (A.6)

and then
λii = 1

2µ

∫
Ω
s(ψi)ψidx+ 1

2

∫
Ω
|∇ψi|2 dx . (A.7)

By using definition (A.1), relation (A.7) can be reformulated as:

λii = 1
2µ

∫
Ω
p |ψi|p dx+ 1

2

∫
Ω
|∇ψi|2 dx . (A.8)

From Proposition 4, we know that the first compressed mode ψ has support whose
volume satisfy (5.18). It follows that for µ sufficiently small and 0 < p ≤ 1, the N disjoint
copies (i.e. translates) of ψ can be placed in Ω, and these N functions are a solution for
problem (5.17). Therefore, in view of Proposition 4, there exist µ0 (depending on values
of p,N , and d) such that for µ < µ0:

N∑
i=1

∫
Ω

1
µ
|ψi|p dx+

N∑
i=1

1
2

∫
Ω
|∇ψi|2 dx ≤ m(Ω)

1
p

−1C1Nµ
− 4

4+d . (A.9)

Because each of the summands in the left hand side of above inequality is positive, there
exist constant C2 (depending on d and N) such that for µ < µ0∫

Ω

1
µ
|ψi|p dx ≤ m(Ω)

1
p

−1C2µ
− 4

4+d and
∫

Ω
|∇ψi|2 dx ≤ m(Ω)

1
p

−1C2µ
− 4

4+d . (A.10)

Moreover, replacing the above inequalities into (A.8), it follows that there exist a
constant C3 (depending on d, N and p), such that for µ < µ0

|λii| < p
C2

2 µ− 4
4+dm(Ω)

1
p

−1 + p
C2

2 µ− 4
4+dm(Ω)

1
p

−1 < C3µ
− 4

4+dm(Ω)
1
p

−1. (A.11)

151

Step 3: Upper bounds for λ′
ijs.

Fix i. For k ̸= i, multiply both sides of equation (A.2) by ψk(x) and integrate over Ω:

∫
Ω

 1
µ
s(ψi)ψk − 2λiiψiψk −∆ψiψk −

∑
j ̸=i

λijψjψk

 dx = 0 , (A.12)

which, using orthonormality condition (A.3) and integration by parts, implies that:

1
µ

∫
Ω
s(ψi)ψkdx+

∫
Ω

(∇ψi)(∇ψk)dx− λik = 0 . (A.13)

Therefore
λik = 1

µ

∫
Ω
s(ψi)ψk dx+

∫
Ω

(∇ψi)(∇ψk) dx . (A.14)

By using relation (A.1), we have⏐⏐⏐⏐⏐ 1µ
∫

Ω
s(ψi)ψk dx

⏐⏐⏐⏐⏐ ≤ 1
µ

∫
Ω
|s(ψi)ψk| dx = p

µ

∫
Ω
|ψi|p−1 |ψk| dx = p

µ

∫
Ω
|ψi|p

|ψk|
|ψi|

dx .

(A.15)

Since |ψi|p does not change sign on Ω, by the First Mean Value Theorem for Integrals,
there exists ξ ∈ Ω, with ψi(ξ) ̸= 0, such that, if we set M = |ψk(ξ)|

|ψi(ξ)| , it follows that

p

µ

∫
Ω
|ψi|p

|ψk|
|ψi|

dx = M
p

µ

∫
Ω
|ψi|p dx .

Making use of (A.10), we conclude that⏐⏐⏐⏐⏐ 1µ
∫

Ω
s(ψi)ψkdx

⏐⏐⏐⏐⏐ ≤ pMm(Ω)
1
p

−1C2µ
− 4

4+d . (A.16)

Finally, using Cauchy-Schwarz and equation (A.10),

⏐⏐⏐⏐∫
Ω

(∇ψi)(∇ψk)dx
⏐⏐⏐⏐ ≤ (∫

Ω
|∇ψi|2 dx

) 1
2
(∫

Ω
|∇ψk|2 dx

) 1
2
<

(m(Ω)
1
p

−1C2µ
− 4

4+d) 1
2 (m(Ω)

1
p

−1C2µ
− 4

4+d) 1
2 = m(Ω)

1
p

−1C2µ
− 4

4+d . (A.17)

Substituting the two upper bounds given in (A.16) and (A.17) into equation (A.14), we

152 Proofs in Section 5.3 on Lp Compressed Manifold Modes

have for µ < µ0

|λik| < pMm(Ω)
1
p

−1C2µ
− 4

4+d +m(Ω)
1
p̃

−1C2µ
− 4

4+d =

m(Ω)
1
p

−1C2µ
− 4

4+d (pM + 1) < C4m(Ω)
1
p̃

−1µ− 4
4+d (A.18)

where C4 depends on N , M , p and µ.
Step 4: Bounding the volume of the support ψi’s
For each i multiply both sides of equation (A.2) by 1

p
sign(ψi) |ψi|1−p and integrate over

domain Ω:

1
µ
|supp(ψi)|−

2
p
λii

∫
Ω
|ψi|2−p dx−1

p

∫
Ω

∆ψisign(ψi) |ψi|1−p dx−1
p

∑
j ̸=i

λij

∫
Ω
ψjsign(ψi) |ψi|1−p dx = 0 ,

(A.19)
namely

1
µ
|supp(ψi)| =⏐⏐⏐⏐⏐⏐2pλii
∫

Ω
|ψi|2−p dx+ 1

p

∫
Ω

∆ψisign(ψi) |ψi|1−p dx+ 1
p

∑
j ̸=i

λij

∫
Ω
ψjsign(ψi) |ψi|1−p dx

⏐⏐⏐⏐⏐⏐ ≤⏐⏐⏐⏐⏐2pλii
∫

Ω
|ψi|2−p dx+ 1

p

∫
Ω

∆ψisign(ψi) |ψi|1−p dx

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐⏐1p
∑
j ̸=i

λij

∫
Ω
ψjsign(ψi) |ψi|1−p dx

⏐⏐⏐⏐⏐⏐ .
(A.20)

Define
Ω+ = {x ∈ Ω : ψi(x) > 0}

and
Ω− = {x ∈ Ω : ψi(x) < 0} .

According to Green’s formula
∫

Ω+
∆ψidx =

∫
∂Ω+

∂ψi
∂ν

dS ≤ 0

where ν is outward pointing unit normal vector along ∂Ω+. Since ψ is positive in Ω+

and becomes zero on ∂Ω+, the right-hand side of the above expression is not positive.
With a similar argument, we have that

∫
Ω−

∆ψidx =
∫
∂Ω−

∂ψi
∂ν

dS ≥ 0 .

153

Hence, since |ψi|1−p ≥ 0 ∀i, it follows that:∫
Ω

∆ψisign(ψi) |ψi|1−p dx =
∫

Ω+
∆ψi |ψi|1−p dx−

∫
Ω−

∆ψi |ψi|1−p dx ≤ 0 . (A.21)

Using inequality (A.21), (A.20) can be rewritten as:

1
µ
|supp(ψi)| ≤

⏐⏐⏐⏐⏐2pλii
∫

Ω
|ψi|2−p dx

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐⏐1p
∑
j ̸=i

λij

∫
Ω
|ψj| |ψi|1−p dx

⏐⏐⏐⏐⏐⏐ ≤
2
p
|λii|

∫
Ω
|ψi|2−p dx+ 1

p

∑
j ̸=i
|λij|

∫
Ω
|ψj| |ψi|1−p dx ≤

2
p
|λii|

∫
Ω
|ψi| |ψi|1−p dx+ 1

p

∑
j ̸=i
|λij|

∫
Ω
|ψj| |ψi|1−p dx . (A.22)

We set p̃ = 1− p, 0 < p̃ < 1 , for 0 < p < 1

1
µ
|supp(ψi)| ≤

2
p
|λii|

∫
Ω
|ψi| |ψi|p̃ dx+ 1

p

∑
j ̸=i
|λij|

∫
Ω
|ψj| |ψi|p̃ dx . (A.23)

Since |ψi|p̃ does not change sign on Ω, by the First Mean Value Theorem for Integrals,
there exist ξ, η ∈ Ω such that, if we set M̄ = |ψi(ξ)| and M̃ = |ψj(η)|, relation (A.23)
can be rewritten as

1
µ
|supp(ψi)| ≤

2
p
M̄ |λii|

∫
Ω
|ψi|p̃ dx+ 1

p

∑
j ̸=i

M̃ |λij|
∫

Ω
|ψi|p̃ dx. (A.24)

By using (A.10), (A.11),(A.18), then (A.24) becomes

1
µ
|supp(ψi)| ≤

2
p
M̄C3m(Ω)

1
p

−1µ− 4
4+dm(Ω)

1
1−p

−1C2µ
− 4

4+d
+1+

1
p

(N − 1)M̃C4m(Ω)
1
p

−1µ− 4
4+dm(Ω)

1
1−p

−1C2µ
− 4

4+d
+1

≤ C5µ
− 8

4+d
+1m(Ω)

1
p(1−p) −2 (A.25)

where C5 depends on N and p.

Appendix B

Proofs in Section 6.3 on the CNC
Approach in Segmentation Over
Surfaces

Proof of Lemma 2.
Proof. Let x := (x0, x1, . . . , xv)T ∈ Rv+1, be the vector of neighbors associated with a

generic vertex in V of valence v. Then, function fv(· ;λ, η, a) in (6.22) can be rewritten
in more compact form as follows:

fv(x;λ, η, a) = λ

2 x
TDx + η

2 xTQx + φ
(√

xTQx ; a
)
, (B.1)

with the arrowhead and diagonal matrices Q in (6.26) and D ∈ R(v+1)×(v+1) defined as

D = diag
{ 1

vj + 1

}v
j=0

 , (B.2)

respectively. Let ṽ := maxj vj and D̃ := 1
ṽ+1 I, with I denoting the (v + 1) × (v + 1)

identity matrix. Then, since the matrix D − D̃ is positive semi-definite, a sufficient
condition for function fv in (B.1) to be strictly convex is that the function f̃v defined by

f̃v(x;λ, η, a) = λ

2 x
T D̃x + η

2 xTQx + φ
(√

xTQx ; a
)

= λ

2(1 + ṽ) x
Tx + η

2 xTQx + φ
(√

xTQx ; a
)
, (B.3)

is strictly convex.

156 Proofs in Section 6.3 on the CNC Approach in Segmentation Over Surfaces

The matrix Q in (6.26) is real, symmetric, arrowhead and positive semi-definite with
the following eigenvalue decomposition:

Q = V ΛV T , Λ = diag(0, λ1, λ2, . . . , λv) , V V T = V TV = I , (B.4)

where orthogonality of the modal matrix V in (B.4) follows from symmetry of the matrix
Q and the nonzero eigenvalues satisfy λ1 ≥ λ2 ≥ . . . ≥ λv > 0. Then, we decompose the
diagonal eigenvalues matrix Λ in (B.4) as follows:

Λ = ZΛ̃Z , Z = diag(1,
√
λ1,

√
λ2, . . . ,

√
λv) , Λ̃ = diag(0, 1, 1, . . . , 1

v entries

) . (B.5)

Substituting (B.5) into (B.4), then (B.4) into into (B.3), we obtain the following equivalent
expression for the function f̃v:

f̃v(x;λ, η, a) = λ

2(1 + ṽ) x
Tx + η

2 x
TV ZΛ̃Z V T x + φ

(√
xTV ZΛ̃Z V T x ; a

)
. (B.6)

Recalling that the property of convexity for a function is invariant under non-singular
linear application of its domain, we introduce the following one for the domain Rv+1 of
function f̃v above:

x = Ty , T := V Z−1 ∈ R(v+1)×(v+1) , (B.7)

which is non-singular due to V and Z being non singular matrices. By defining as
f̃Tv := f̃v ◦ T the function f̃v in the T -transformed domain, we have:

f̃Tv (y;λ, η, a) = λ

2(1 + ṽ) y
TZ−2y + η

2 y
T Λ̃ y + φ

(√
yT Λ̃ y ; a

)
. (B.8)

157

Recalling the definitions of Z and Λ̃ in (B.5), we can write (B.8) in explicit form:

f̃ Tv (y;λ, η, a) = λ

2(1 + ṽ)

(
y2

0 + y2
1
λ1

+ y2
2
λ2

+ . . .+ y2
v

λv

)

+ η

2
(
y2

1 + y2
2 + . . .+ y2

v

)
+ φ

(√
y2

1 + y2
2 + . . .+ y2

v ; a
)

= λ

2(1 + ṽ)

y2
0 +

v∑
j=1

(
1
λj
− 1
λ1

)
y2
j

+ λ

2(1 + ṽ)λ1

(
y2

1 + y2
2 + . . .+ y2

v

)
+ η

2
(
y2

1 + y2
2 + . . .+ y2

v

)
+ φ

(√
y2

1 + y2
2 + . . .+ y2

v ; a
)

= λ

2(1 + ṽ)

y2
0 +

v∑
j=1

(
1
λj
− 1
λ1

)
y2
j

+ 1

2

(
η + λ

(1 + ṽ)λ1

)(
y2

1 + y2
2 + . . .+ y2

v

)
+ φ

(√
y2

1 + y2
2 + . . .+ y2

v ; a
)

= λ

2(1 + ṽ)

y2
0 +

v∑
j=1

(1
λj
− 1
λ1

> 0

)
y2
j

+ gv(y1, . . . , yv;λ, η, a) , (B.9)

where the function gv in (B.9) is defined in (6.24). Since the first term in (B.9) is
(quadratic) convex, a sufficient condition for the function f̃ Tv in (B.9) to be strictly
convex is that the function gv in (6.24) is strictly convex. This concludes the proof after
recalling that the function fv is strictly convex if the function f̃v is strictly convex and
that the function f̃v is strictly convex if and only if the function f̃ Tv is strictly convex.

Proof of Proposition 5.
Proof. The functional J (· ;λ, η, a) in (6.21) is clearly proper. Moreover, since the

functions φ(· ; a) and ∥ · ∥2 are both continuous and bounded from below by zero, J is
also continuous and bounded from below by zero. The second and third terms of our
functional J in (6.21) are not coercive. However, since the first term (namely, the fidelity
term) is quadratic and strictly convex, hence coercive, and the second and third terms
are bounded from below by zero, J is coercive.

As far as strong convexity is concerned, it follows from Definition 3 that the functional
J (· ;λ, η, a) in (6.21) is µ-strongly convex if and only if the functional J̃ (· ;λ, η, a, µ)

158 Proofs in Section 6.3 on the CNC Approach in Segmentation Over Surfaces

defined as

J̃ (u;λ, η, a, µ) := λ

2 ∥u− f∥
2
2 +

n∑
i=1
∥(∇wu)i∥2

2 +
n∑
i=1

φ (∥(∇wu)i∥2; ai)
J (u;λ,η,a)

− µ

2 ∥u∥
2
2

= A(u)+λ− µ2 ∥u∥2
2+

n∑
i=1
∥(∇wu)i∥2

2 +
n∑
i=1

φ (∥(∇wu)i∥2; ai) (B.10)

is convex, where A(u) is an affine function of u. We notice that the functional J̃ in
(B.10) almost coincides with the original functional J in (6.21), the only difference being
the coefficient λ − µ instead of λ. Hence, we can apply the results in Theorem 4 and
state that J̃ in (B.10) is convex if condition (6.27) is satisfied with λ− µ in place of λ.
By substituting λ− µ for λ in that condition, deriving the solution interval for µ and
then taking the maximum, one obtains equality (6.28).

Proof of Proposition 6.
Proof. The demonstration of condition (6.42) for strict convexity of the function θ in

(6.41) is straightforward. In fact, the function θ can be equivalently rewritten as

θ(x) = φ (∥x∥2; a) + η + β

2 ∥x∥2
2

θ̄(x)

+ A(x) , x ∈ Rv , (B.11)

with A(x) an affine function of x, so that a necessary and sufficient condition for θ to be
strictly convex is that the function θ̄ in (B.11) is strictly convex. We then notice that θ̄
is almost identical to the function g in (6.24), the only difference being the coefficient
(η + β) that for g reads (η + λ/κ). By setting η + β = η + λ/κ ⇐⇒ λ = κβ, the two
functions coincide. Condition for strict convexity of g in (6.27) reads as λ/κ > a − η,
hence by substituting λ = κβ in it we obtain condition (6.42) for strict convexity of θ.

For the proof of statement (6.44), according to which the unique solution x∗ of the
strictly convex problem (6.43) is obtained by a shrinkage of vector r, we refer the reader
to [70][Proposition 4.5].

We now prove statement (6.45). First, we notice that if ∥r∥2 = 0, i.e. r is the null
vector, the minimization problem in (6.43) with the objective function θ(x) defined in
(6.41) reduces to

arg min
x∈Rv

{
φ (∥x∥2; a) + η + β

2 ∥x∥2
2

}
. (B.12)

159

Since both the terms of the cost function in (B.12) are monotonically increasing functions
of ∥x∥2, the solution of (B.12) is clearly x∗ = 0. Hence, the case ∥r∥2 = 0 can be easily
dealt with by taking any value ξ∗ in formula (6.44). We included the case ∥r∥2 = 0 in
formula a) of (6.45). In the following, we consider the case ∥r∥2 > 0.

Based on the previously demonstrated statement (6.44), by setting x = ξ r, ξ ≥ 0,
we turn the original unconstrained v-dimensional problem in (6.43) into the following
equivalent constrained 1-dimensional problem:

ξ∗ = arg min
0≤ξ<1

{
φ (∥ξr∥2 ; a) + η

2 ∥ ξr∥
2
2 + β

2 ∥ξr − r∥
2
2

}

= arg min
0≤ξ<1

{
φ (∥r∥2 ξ; a) + η

2 ∥r∥
2
2 ξ

2 + β

2 ∥r∥
2
2 (ξ − 1)2

}

= arg min
0≤ξ<1

{
f(ξ) := φ (∥r∥2 ξ; a) + ∥r∥2

2

(
η + β

2 ξ2 − βξ
)}

(B.13)

where in (B.13) we omitted the constant terms and introduced the cost function
f : R+ → R for future reference. Since the penalty function φ is twice continuously
differentiable on R+ - see assumption A1) in Section 2 - the cost function f in (B.13)
is also twice continuously differentiable on R+. Moreover, f is strictly convex since
it represents the restriction of the strictly convex function θ in (6.41) to the half-line
ξ r, ξ ≥ 0. Hence, a necessary and sufficient condition for an inner point 0 < ξ < 1 to be
the global minimizer of f is as follows:

f ′(ξ) = 0 ⇐⇒ ∥r∥2

[
φ′ (∥r∥2ξ; a) + ∥r∥2

(
(η + β) ξ − β

)]
= 0 . (B.14)

Since f is continuously differentiable and strictly convex on R+, the first-order derivative
f ′(ξ) is continuous and strictly increasing in the optimization domain 0 ≤ ξ ≤ 1 and at
the extremes we have:

f ′(0+) = ∥r∥2
[
φ′(0+; a)− β ∥r∥2

]
, f ′(1) = ∥r∥2

[
φ′(∥r∥2; a) + η ∥r∥2

]
. (B.15)

Since η ≥ 0, ∥r∥2 > 0 and φ′(t; a) > 0 for any t ≥ 0 by assumption A2) in Section
2, f ′(1) in (B.15) is positive. Hence, we have two cases. If f ′(0+) ≥ 0, that is ∥r∥ ≤
φ′(0+; a)/β = 1/β, f ′(t) is positive in 0 < t ≤ 1, hence the function f has its minimum at
ξ∗ = 0; if f ′(0+) < 0, that is ∥r∥ > 1/β, then f has the minimum at its unique stationary
point 0 < ξ∗ < 1, which can be obtained by solving the nonlinear equation in (B.14).
The proof of statement (6.45) is thus completed.

Appendix C

Proofs in Section 7.4 on the
Tangential Evolution

Proof of Lemma 3

The local density g can be controlled by the parameters α and λ. The relation how g

is changing in time depending on α and λ (and prescribed β) we derive in the following.
Starting with the following relation between g, xu and xv

gt = |xu × xv|t = xu × xv

|xu × xv|
· (xu × xv)t , (C.1)

the term (xu × xv)t can be expanded as

(xu × xv)t = (xu)t × xv + xu × (xv)t
= (xt)u × xv + xu × (xt)v
= (βN + αxu + λxv)u × xv + xu × (βN + αxu + λxv)v
= (βN)u × xv + (αxu + λxv)u × xv + xu × (βN)v + xu × (αxu + λxv)v .

(C.2)

For transparency reasons, let us further focus on (C.2) splitted into two parts by
collecting the terms containing βN and the ones containing αxu + λxv.

162 Proofs in Section 7.4 on the Tangential Evolution

Plugging the first part of (C.2) into (C.1), we obtain

xu × xv

|xu × xv|
· ((βN)u ×xv + xu × (βN)v)

=
(

(xu · (βN)u) (xv · xv)− (xu · xv) (xv · (βN)u)

+ (xu · xu) (xv · (βN)v)− (xu · (βN)v) (xu · xv)
)/
|xu × xv|

=
(

(xuu · βN) (xv · xv)− (xu · xv) (xvu · βN)

+ (xu · xu) (xvv · βN)− (xuv · βN) (xu · xv)
)/
|xu × xv|

=
(

(xuu · βN) (xv · xv)− 2 (xu · xv) (xvu · βN)

+ (xu · xu) (xvv · βN)
)/
|xu × xv|

=
((

xuu · β
xu × xv

|xu × xv|

)
(xv · xv)− 2 (xu · xv)

(
xvu · β

xu × xv

|xu × xv|

)

+ (xu · xu)
(

xvv · β
xu × xv

|xu × xv|

))/
|xu × xv|

=
(

(xuu · (xu × xv)) (xv · xv)− 2 (xu · xv) (xvu · (xu × xv))

+ (xu · xu) (xvv · (xu × xv))
)
|xu × xv|
|xu × xv|3

β

= H|xu × xv|β

= g Hβ

where the formula for mean curvature has been used from [48].

163

Similarly, plugging the second, tangential part of (C.2) into (C.1)

xu × xv

|xu × xv|
· ((αxu +λxv)u × xv + xu × (αxu + λxv)v)

= xu × xv

|xu × xv|
·
(

(αuxu + αxuu + λuxv + λxvu)× xv

+ xu × (αvxu + αxuv + λvxv + λxvv)
)

= xu × xv

|xu × xv|
·
(
αuxu × xv + αxuu × xv + λuxv × xv + λxvu × xv

+ αvxu × xu + αxu × xuv + λvxu × xv + λxu × xvv

)

= xu × xv

|xu × xv|
·
(
αuxu × xv + αxuu × xv + λxvu × xv

+ αxu × xuv + λvxu × xv + λxu × xvv

)

=
(
αu|xu × xv|+ α

(xu × xv) · (xuu × xv + xu × xuv)
|xu × xv|

+ λv|xu × xv|+ λ
(xu × xv) · (xu × xvv + xvu × xv)

|xu × xv|

)

=
(
αu|xu × xv|+ α

(xu × xv) · (xu × xv)u
|xu × xv|

+ λv|xu × xv|+ λ
(xu × xv) · (xu × xv)v

|xu × xv|

)

=
(
αu|xu × xv|+ α|xu × xv|u + λv|xu × xv|+ λ|xu × xv|v

)

= |xu × xv|
|xu × xv|

(
(α|xu × xv|)u + (λ|xu × xv|)v

)
= g ∇x · (α, λ)

where the formula for divergence of a vector field on manifold has been used in the last
step. Given a function ϕ(u, v), u ∈ [0, 1], v ∈ [0, 1] on a surface S, its intrinsic gradient
relative to a mapping x(t, u, v) is given by

∇xϕ = (1
g

(gϕ)u,
1
g

(gϕ)v) . (C.3)

164 Proofs in Section 7.4 on the Tangential Evolution

Then, the divergence of a vector VT = αxu+λxv on a surface S relative to a mapping
x(t, u, v) is defined as

∇S ·VT = ∇x · (α, λ) = 1
g

((gα)u + (gλ)v) . (C.4)

Combining the preceding two parts together, we obtain (7.11) �.

Proof of Theorem 5

For the time derivative of the surface area A we have

At =
(∫∫

U
g dudv

)
t

=
∫∫

U
gt dudv

=
∫∫

U
g Hβ dudv +

∫∫
U
g ∇x · (α, λ) dudv

=
∫∫

S
Hβ dX +

∫∫
S
∇S ·VT dX

=
∫∫

S
Hβ dX +

∮
∂S

VT · n dS

=
∫∫

S
Hβ dX + 0

where VT = αxu + λxv and we used Gauss’s theorem. Since our surface S is either a
closed watertight surface, or a surface with boundary which has prescribed zero Neumann
boundary condition, the boundary integral in At formulation is equal to zero.

Then, putting together the obtained expressions, we can write
(
g

A

)
t

= gtA− gAt
A2 = (g Hβ + g ∇x · (α, λ))A− g

∫∫
S Hβ dX

A2 , (C.5)

and putting (C.5) into equation (7.12) we obtain (7.13) �.

165

Numerical Approximation of the Normal Derivatives

Fig. C.1 Illustration of the bilinear interpolation at one Qj, j ∈ N�(Xi) used in the
normal derivatives approximation.

Here we describe the bilinear interpolation used to approximate normal derivatives
∂f
∂n∗

j
in (7.18), in case of LBO applied to a generic function f . The figure C.1 should

clarify the next few paragraphs.
Let us recall the Green’s theorem applied on

∫
Vi

∆sf dS

∫
∂Vi

∇sf · n ds =
∑

j∈N�(Xi)

∫
e1

j

∂f

∂n1
j

ds+
∫
e3

j

∂f

∂n3
j

ds . (C.6)

The values of x on the Qj, j ∈ N�(Xi) can be approximated by

x(φ, ρ) = (1− φ)(1− ρ)x0
j + φ(1− ρ)x1

j + (1− φ)ρx3
j + φρx2

j (C.7)

and similarly the values of f as

f(φ, ρ) = (1− φ)(1− ρ)f 0
j + φ(1− ρ)f 1

j + (1− φ)ρf 3
j + φρf 2

j . (C.8)

Derivatives of x(φ, ρ) are

∂ρx(φ, ρ) = −(1− φ)x0
j − φx1

j + (1− φ)x3
j + φx2

j ,

∂φx(φ, ρ) = −(1− ρ)x0
j + (1− ρ)x1

j − ρx3
j + ρx2

j . (C.9)

166 Proofs in Section 7.4 on the Tangential Evolution

Non-normed tangent to the edges e1
j and e3

j are defined as

T 1
j = ∂ρx(1/2, 1/4) = −1/2x0

j − 1/2x1
j + 1/2x3

j + 1/2x2
j ,

T 3
j = ∂φx(1/4, 1/2) = −1/2x0

j + 1/2x1
j − 1/2x3

j + 1/2x2
j . (C.10)

There are another two vectors defined by the derivatives of x, namely

F 1
j = ∂φx(1/2, 1/4) = −3/4x0

j + 3/4x1
j − 1/4x3

j + 1/4x2
j ,

F 3
j = ∂ρx(1/4, 1/2) = −3/4x0

j − 1/4x1
j + 3/4x3

j + 1/4x2
j . (C.11)

Using the vectors defined above, we can compute non-normed normals to the edge e1
j

using the Gram-Schmidt orthogonalization process as

N 1
j = F 1

j −
F 1
j · T 1

j

T 1
j · T 1

j

T 1
j = ∂φx(1/2, 1/4)−

∂φx(1
2 ,

1
4) · ∂ρx(1

2 ,
1
4)

∂ρx(1
2 ,

1
4) · ∂ρx(1

2 ,
1
4)∂ρx(1/2, 1/4)

= ∂φx(1/2, 1/4)− a1
j∂ρx(1/2, 1/4)

= −3
4x0

j + 3
4x1

j −
1
4x3

j + 1
4x2

j − a1
j

(
−1

2x0
j −

1
2x1

j + 1
2x3

j + 1
2x2

j

)
(C.12)

and similarly for the edge e3
j as

N 3
j = F 3

j −
F 3
j · T 3

j

T 3
j · T 3

j

T 3
j = ∂ρx(1/4, 1/2)−

∂ρx(1
4 ,

1
2) · ∂φx(1

4 ,
1
2)

∂φx(1
4 ,

1
2) · ∂φx(1

4 ,
1
2)∂φx(1/4, 1/2)

= ∂ρx(1/4, 1/2)− a3
j∂φx(1/4, 1/2)

= −3
4x0

j −
1
4x1

j + 3
4x3

j + 1
4x2

j − a3
j

(
−1

2x0
j + 1

2x1
j −

1
2x3

j + 1
2x2

j

)
. (C.13)

Finally the derivative of f in the normal direction at the edge e1
j is approximated as

∂f

∂n1
j

≈ 1
|N1

j |

[
1
4
(
−3f 0

j + 3f 1
j − f 3

j + f 2
j

)
−
a1
j

2
(
−f 0

j − f 1
j + f 3

j + f 2
j

)]
, (C.14)

167

and similarly for ∂f
∂n3

j
. Now we can write the approximation of Laplace-Beltrami operator

applied on a generic function f integrated over the finite volume Vi as

∫
∂Vi

∇sf · n ds ≈
∑

j∈N�(fi)

m(e1
j)

|N1
j |

[
1
4
(
−3f 0

j + 3f 1
j − f 3

j + f 2
j

)
−
a1
j

2
(
−f 0

j − f 1
j + f 3

j + f 2
j

)]

+
m(e3

j)
|N3

j |

[
1
4
(
−3f 0

j − f 1
j + 3f 3

j + f 2
j

)
−
a3
j

2
(
−f 0

j + f 1
j − f 3

j + f 2
j

)]
.

(C.15)

The mean curvature integral in (7.19) is approximated as

∫
∂Vi

∇xx · n ds ≈
∑

j∈N�(xi)

m(e1
j)

|N1
j |

[
1
4
(
−3x0

j + 3x1
j − x3

j + x2
j

)
−
a1
j

2
(
−x0

j − x1
j + x3

j + x2
j

)]

+
m(e3

j)
|N3

j |

[
1
4
(
−3x0

j − x1
j + 3x3

j + x2
j

)
−
a3
j

2
(
−x0

j + x1
j − x3

j + x2
j

)]
.

(C.16)

	Table of contents
	1 Introduction
	2 Variational Formulation of the Shape Partitioning Problem
	2.1 Mumford-Shah Variational Models

	3 First Order Optimization Methods
	3.1 Convex Optimization Methods
	3.2 Non-Convex Optimization Methods
	3.3 Convex-NonConvex Strategy

	4 Spatial Discretization
	4.1 Discrete Differential Operators
	4.2 Quad-based Finite Volumes Spatial Discretization

	5 Shape Analysis
	5.1 Meshless approach to SDF computation by particles flow
	5.1.1 SDF: Examples

	5.2 Affinity Matrix
	5.3 Compact Support LpCMs as Localized Shape Descriptors
	5.3.1 The sparsity-inducing variational model for LpCMs
	5.3.2 Discretization of the variational model
	5.3.3 Applying ADMM to the proposed model

	6 Shape Partitioning
	6.1 Sparsity-Inducing Non-Convex Variational Shape Partitioning
	6.1.1 Discretization of the SMCMR model
	6.1.2 Algorithm SMCMR

	6.2 Localized Shape Descriptors in Non-Convex Shape Partitioning
	6.3 Convex Non-Convex approach in Segmentation over Surfaces
	6.3.1 Non-convex penalty functions
	6.3.2 Convexity Analysis
	6.3.3 Applying ADMM to the proposed CNC model

	6.4 Experiments on the Partitioning Algorithms
	6.4.1 Data Set and Hardware Specifications
	6.4.2 Experimental results of SMCMR Framework
	6.4.3 Experimental Results of Partitioning Driven by Lp Compressed Modes
	6.4.4 Experimental Results of CNC Segmentation on Surfaces

	7 Application in Surface-Patch Quadrangulation
	7.1 Related Work
	7.2 Mesh Partitioning
	7.3 Build of the Topology Skeleton
	7.3.1 Step 1: Construction of the boundaries of Si
	7.3.2 Step 2: Discretization of the boundaries into rectangular topology
	7.3.3 Step 3: Construction of the topology-skeleton S

	7.4 Skeleton Evolution
	7.4.1 Lagrangian Evolution
	7.4.2 Numerical scheme

	7.5 Numerical experiments
	7.5.1 Example 1: Mesh Quadrangulation
	7.5.2 Example 2: Different resolutions

	8 Conclusions
	References
	Appendix A Proofs in Section 5.3 on Lp Compressed Manifold Modes
	Appendix B Proofs in Section 6.3 on the CNC Approach in Segmentation Over Surfaces
	Appendix C Proofs in Section 7.4 on the Tangential Evolution

