9,473 research outputs found

    Fast Clustering Using a Grid-Based Underlying Density Function Approximation

    Get PDF
    Clustering is an unsupervised machine learning task that seeks to partition a set of data into smaller groupings, referred to as “clusters”, where items within the same cluster are somehow alike, while differing from those in other clusters. There are many different algorithms for clustering, but many of them are overly complex and scale poorly with larger data sets. In this paper, a new algorithm for clustering is proposed to solve some of these issues. Density-based clustering algorithms use a concept called the “underlying density function”, which is a conceptual higher-dimension function that describes the possible results from the continuous data set that our input data is just a discrete sample of. The algorithm proposed in this paper seeks to use this concept by creating a piecewise approximation of the underlying density function, and then merging points towards local density maxima from this higher-dimensioned space. First, the data space is divided into a grid-based structure and the density of each grid is calculated. Second, each of these “grid-squares” determines the densest space in its local area. Finally, the grid squares are merged together in the direction of their local density maximum, ultimately merging with one of the density maxima that form the root of a cluster. The experimental results show significant time improvements over standard algorithms such as DBSCAN with no accuracy penalty. Furthermore, the algorithm is also suitable for use with parallel and distributed systems, as an implementation with Apache Spark showed proper parallel scaling with low data set sizes required to overtake the serial implementation

    Unsupervised Bilingual POS Tagging with Markov Random Fields

    Get PDF
    In this paper, we give a treatment to the problem of bilingual part-of-speech induction with parallel data. We demonstrate that naïve optimization of log-likelihood with joint MRFs suffers from a severe problem of local maxima, and suggest an alternative – using contrastive estimation for estimation of the parameters. Our experiments show that estimating the parameters this way, using overlapping features with joint MRFs performs better than previous work on the 1984 dataset.

    Analyzing and clustering neural data

    Get PDF
    This thesis aims to analyze neural data in an overall effort by the Charles Stark Draper Laboratory to determine an underlying pattern in brain activity in healthy individuals versus patients with a brain degenerative disorder. The neural data comes from ECoG (electrocorticography) applied to either humans or primates. Each ECoG array has electrodes that measure voltage variations which neuroscientists claim correlates to neurons transmitting signals to one another. ECoG differs from the less invasive technique of EEG (electroencephalography) in that EEG electrodes are placed above a patients scalp while ECoG involves drilling small holes in the skull to allow electrodes to be closer to the brain. Because of this ECoG boasts an exceptionally high signal-to-noise ratio and less susceptibility to artifacts than EEG [6]. While wearing the ECoG caps, the patients are asked to perform a range of different tasks. The tasks performed by patients are partitioned into different levels of mental stress i.e. how much concentration is presumably required. The specific dataset used in this thesis is derived from cognitive behavior experiments performed on primates at MGH (Massachusetts General Hospital). The content of this thesis can be thought of as a pipelined process. First the data is collected from the ECoG electrodes, then the data is pre-processed via signal processing techniques and finally the data is clustered via unsupervised learning techniques. For both the pre-processing and the clustering steps, different techniques are applied and then compared against one another. The focus of this thesis is to evaluate clustering techniques when applied to neural data. For the pre-processing step, two types of bandpass filters, a Butterworth Filter and a Chebyshev Filter were applied. For the clustering step three techniques were applied to the data, K-means Clustering, Spectral Clustering and Self-Tuning Spectral Clustering. We conclude that for pre-processing the results from both filters are very similar and thus either filter is sufficient. For clustering we conclude that K- means has the lowest amount of overlap between clusters. K-means is also the most time-efficient of the three techniques and is thus the ideal choice for this application.2016-10-27T00:00:00
    corecore