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ANALYZING AND CLUSTERING NEURAL DATA

AMIT SINHA

ABSTRACT

This thesis aims to analyze neural data in an overall effort by the Charles Stark

Draper Laboratory to determine an underlying pattern in brain activity in healthy

individuals versus patients with a brain degenerative disorder. The neural data comes

from ECoG (electrocorticography) applied to either humans or primates. Each ECoG

array has electrodes that measure voltage variations which neuroscientists claim cor-

relates to neurons transmitting signals to one another. ECoG differs from the less in-

vasive technique of EEG (electroencephalography) in that EEG electrodes are placed

above a patients scalp while ECoG involves drilling small holes in the skull to allow

electrodes to be closer to the brain. Because of this ECoG boasts an exceptionally

high signal-to-noise ratio and less susceptibility to artifacts than EEG [6]. While

wearing the ECoG caps, the patients are asked to perform a range of different tasks.

The tasks performed by patients are partitioned into different levels of mental stress

i.e. how much concentration is presumably required. The specific dataset used in

this thesis is derived from cognitive behavior experiments performed on primates at

MGH (Massachusetts General Hospital).

The content of this thesis can be thought of as a pipelined process. First the

data is collected from the ECoG electrodes, then the data is pre-processed via sig-

nal processing techniques and finally the data is clustered via unsupervised learning

techniques. For both the pre-processing and the clustering steps, different techniques

are applied and then compared against one another. The focus of this thesis is to

evaluate clustering techniques when applied to neural data.

For the pre-processing step, two types of bandpass filters, a Butterworth Filter
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and a Chebyshev Filter were applied. For the clustering step three techniques were

applied to the data, K-means Clustering, Spectral Clustering and Self-Tuning Spec-

tral Clustering. We conclude that for pre-processing the results from both filters are

very similar and thus either filter is sufficient. For clustering we conclude that K-

means has the lowest amount of overlap between clusters. K-means is also the most

time-efficient of the three techniques and is thus the ideal choice for this application.
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Chapter 1

Introduction

1.1 Introduction

Understanding how dynamic changes in brain activity correspond to learning is a

major challenge in cognitive neuroscience. A topic of interest is finding a correlation

in neural spiking data and an observable stimuli the subject is experiencing. The

application of signal processing techniques to raw analog signals, along with various

machine learning techniques to neural spiking data, will be investigated along with

an analysis of trade offs between chosen parameters and underlying distributions.

In order to contribute to the Transdiagnostic Restoration of Affective Networks by

System Identification and Function Oriented Real- Modeling and Deep Brain Stim-

ulation (TRANSFORM-DBS) project at the Charles Stark Draper Laboratory, an

approach will be developed for determining the salient features of neural data when

a subject is experiencing specific stimuli. The goal of this thesis is help determine an

underlying pattern in the neural data via clustering. Once this is done, other efforts

within the overall project can develop ways to correlate the neural data with external

stimuli applied to the patient.

The overall goal of the TRANSFORM-DBS Project is to develop a brain-implantable

chip that monitor signals across multiple brain structures in real time to alleviate

symptoms related to neuropsychiatric disorders such as PTSD (Post Traumatic Stress

Disorder), severe depression, drug addiction, and TBI (Traumatic Brain Injury). Be-

cause the overall approach is expected to run on the implanted CPU as well as in real



2

time, any effort to reduce the complexity of the approach is worthwhile. Therefore

approaches that reveal underlying structure in the data (via unsupervised learning

techniques) that are also computationally efficient are desirable.

This will be accomplished by first pre-processing the data via bandpass filters

to remove noise. The resulting waveforms are then grouped together via amplitude

thresholding. Finally clustering techniques will be applied to the resulting waveforms

to see if an underlying pattern exists in the data.

1.2 Review of Prior Work

There are other studies that aim to characterize neural data by clustering neural

spikes. Most of these studies treat the pre-processing step in a similar fashion, where

the raw ECoG/EEG data is bandpass filtered and amplitude thresholding is applied

to extract prominent spikes. From here, each the studies aims to analyze the resulting

waveforms through some form of clustering. The specific goals of each study and thus

their approach to clustering differs.

Carin et al. (1) propose a methodology for clustering EEG data that claims to

accurately capture spikes that occur, disappear and then reappear in a dataset that

spans over multiple days. Their approach first uses dictionary learning to learn el-

ements of a dictionary that would allow the original signal to be represented as a

sparse vector. Those dictionary elements are then clustered using what (1) refers to

as a focused mixture model, which is a mixture model that focuses on a small num-

ber of clusters, those with a high probability of being observed from a set of specified

priors. There are many priors and parameters involved in the focused mixture model

approach described in (1) and the rationale for choosing each of these distributions

isnt clear.

Calabrese and Planksi (2) proposed a mixture of Kalman filters (MoK) model to
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explicitly deal with slow changes in the shape of the waveform. This approach also

models the spike rate and potentially the refractory period (the period where its be-

lieved a single neuron must wait until re-firing). This approach is novel in the sense

that it claims to deal with nonstationarity (i.e. phase lag between otherwise similar

waveforms) in the data. This approach however relies on Expectation Maximization

(EM) to estimate the model parameters in the mixture of Kalman Filters. Depend-

ing on the termination criteria, the time complexity of the overall approach could be

significantly worse than a simpler method.

Another approach known as Superparamagnetic Clustering is described in (3)

where after the initial pre-processing, the coefficients of the waveforms wavelet de-

composition are treated as features. This approach then uses a generalized version of

the Ising model, known as the Potts model, to assign random states to each sample

in the data. In the Ising model, each sample of data can be thought of as a point in a

lattice. The Ising model allows each point in a lattice one of two different spin values

but the Potts model can allow q spin values. After random states have been assigned,

the approach performs Monte Carlo iterations until the probability of any given point

changing from its neighbors has converged to a local minimum, and thus clusters are

formed. While this approach claims to infer the ideal amount of clusters instead of

choosing a value a priori (as in k-means and spectral clustering) this approach has

other parameters in the form of the number of possible states q per point as well

as the temperature T. Its not obvious what these parameters should be set to for

any given clustering application. Furthermore the run time of a Monte Carlo based

approach may prove to be less efficient than a simpler clustering method.

While there is a number of existing studies that propose solutions to clustering

neural data, the above approaches are complex. In this thesis, we consider the use of

simpler machine learning techniques that can effectively cluster the data to reveal the
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underlying structure of the waveforms. The resulting techniques will be computation-

ally efficient, and lead to accurate clustering into meaningful classes that correlate

well with varying external stimuli. The goal of the project is the make the overall

approach both accurate and computationally efficient.
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Chapter 2

Approach

2.1 Problem formulation and Solution

The overall goal of the TRANSFORM-DBS project is to find a correlation to neu-

ral activity and observable phenomenon in the patient such as mood swings, anxiety

attacks, stress, etc... While we can attempt to induce different behaviors in a patient

and then treat each set of recordings as a state (or label in a machine learning context)

we dont know the underlying mechanisms involved in a patients cognitive behavior.

For example, in an experiment where we induce behavior in a patient there may be

some internal states that lead to the final observable phenomenon. A deeper under-

standing of those internal states may allow us to more accurately diagnosis patients,

develop more effective treatments and predict future developments in patients.

Because we do not know the internal mechanisms of cognitive behavior we have

no ground truth i.e. no baseline to compare empirical datasets to. Thus we treat

this as an unsupervised learning application. Figure 2-1 captures the step-by-step

process taken to analyze the data. First, before analyzing the neural data we first

must consider how to remove noise and electrode artifacts from the data. Finally

clustering algorithms need to be applied to the chosen features.
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Figure 2·1: A pipelined approach to analyzing the neural data.

2.2 Filtering

The first step in our analysis is the filter the raw data gathered from the various

electrodes in the EEG cap. The first type of filter considered is the butterworth filter,

first described in 1930 by Stephen Butterworth in (4). The butterworth filter aims to

have a maximally flat frequency response in the passband. The gain of a Butterworth

low pass filter can be seen in Figure 2-2. Most of the Spike sorting literature suggests

a bandpass filter for the pre-processing step so we can modify our lowpass filter to

behave like a bandpass filter by applying the transformation in Figure 2-3 from (11)

to the gain in Figure 2-2.

Figure 2·2: Gain for a lowpass Butterworth Filter
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Figure 2·3: Transformation from lowpass to bandpass. The original
quantity is the normalized frequency. w0 is the center frequency while
w1 and w2 are the low cutoff and high cutoff for the basspand.

The second type of filter considered is the Chebyshev filter, named after Pafnuty

Chebyshev due to the filter being derived from Chebyshev polynomials. There are

two kinds of Chebyshev filters, referred to in most texts as Type I and Type II.

A Type I filter allows equiripple in the passband and a maximally flat response in

the stopband, while Type II is the opposite with a maximally flat response in the

passband and allowing equiripple in the stopband. The Chebyshev polynomials can

be derived from the recursion as seen in Figure 2-4. The respective gain of a lowpass

Chebyshev filter can be expressed in terms of this recursion as seen in Figure 2-5. We

modify Figure 2-5 by replacing the normalized frequency with Figure 2-3 as in the

Butterworth filter case.

Figure 2·4: The recursion for deriving a Chebyshev polynomial

Figure 2·5: The gain of a Chebyshev filter. Here e=1 if the filter is
Type I and e= -1 if the filter is Type II

In Figure 2-6 we can see an example of some raw ECoG data to be filtered. In

Figure 2-7 we see the result of a 3rd order Butterworth filter applied to it with a DC

gain of 0.45. In Figure 2-8 the same raw data from Figure 2-6 filtered by a 2nd order

Type I Chebyshev filter with 1 dB of passband ripple. For both filters the passband

was 300Hz - 3000Hz. Comparing Figures 2-7 and 2-8, we observe that the results of

both filters are very similar.
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Figure 2·6: A sub-section of raw EEG data to be filtered

Figure 2·7: The data from Figure 2-6 filtered by a 3rd order Butter-
worth Filter. The black line is a minimum for the peak threshold. The
maximum of the threshold in this case is larger than the local maxima



9

Figure 2·8: The data from Figure 2-6 filtered by a 2nd order Cheby-
shev Filter. The black lines are minimums for the peak threshold. The
maximum of the threshold in this case is larger than the local maxima

2.3 Spike Detection

After the raw data has been filtered, the next step is to perform amplitude thresh-

olding along the filtered data to extract relevant waveforms that correspond to neural

spikes. Amplitude thresholding involves picking a minimum value that the sample

must be equal to or greater than in order to be considered a neural spike for the

rest of the algorithm. To minimize the amount of electrode artifacts i.e. any abrupt

changes in the signal that are believed to not correlate to neural activity (an electrode

being touched, moved, etc...) a maximum value is also imposed in some studies (8).

In our implementation, a minimum of 0.05 mV and a maximum of 1mV are used.

From there, we threshold the signal to detect subsets of the signal that fit within

the threshold. Then the largest value within the subset is treated as the peak. Each

detected peak and a small time segment surrounding will be treated as a waveform

throughout the rest of the approach. The window we use is 3ms. The size of this
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window is arbitrary, and along with threshold values, isnt specified in most of the

existing literature. We take all of these waveforms, superimpose them and treat that

as the dataset in the clustering step later on. An example of the output of amplitude

thresholding can be seen in Figure 2-9.

The dataset used in Figure 2-9 is known as the Pittsburgh dataset, a synthetic

dataset derived from sine waves for the purpose of testing the focused mixture model

approach in (1). The Pittsburgh dataset has 3310 samples of data and 33 features.

Each sample is a single waveform and each feature is a segment of time along the x-axis

in figure 6. The dataset we are mainly interested in is known as the Clarissa dataset.

This dataset comes from an experiment performed on primates at the Massachusetts

General Hospital (MGH) in 2013. Each primate has two electrodes implanted into

it. During the recording session the primates are shown an object and then immedi-

ately after asked to to select that object among a lineup of objects. After applying

amplitude thresholding to our Clarissa dataset we have 1781 samples of data and 32

features. From here we are ready to consider applying different clustering techniques.

Figure 2·9: Filtered EEG Data ready to be clustered. This dataset
has clear gaps between each group of spikes.
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2.4 Clustering

Now that we have successfully pre-processed that data, the next and final stage

is to use unsupervised learning in order to see some underlying structure. In this

section we will discuss three clustering algorithms and then apply them to the data;

k-means Clustering, Spectral Clustering, and Self-Tuning Spectral Clustering.

The first clustering algorithm is known as k-means Clustering (7). To perform

k-means Clustering, we first pick a scalar value for k which represents the expected

number of clusters. We place these initial clusters as to maximize the distance be-

tween each cluster. In our implementation, this is done by keeping track of the highest

residual difference between samples and then pick a sample as to maximize the Eu-

clidian difference between the initial cluster locations.

Here in Figure 2-10 we can see some example code. First we keep track of the

difference between every data sample as seen in the first nested for loop. Next we ran-

domly choose one the of the two candidate points that formed the maximum residual,

this will be the first prototype location for the clusters. Next we exclude the chosen

sample from the dataset. For choosing the remaining prototype locations, we find

the maximum residual within the new dataset, but we want the point that is furthest

away from the existing prototypes as well. We keep track of all the distances between

the set of prototypes and the two candidate points as seen in the final for loop. We

take the point from the residual that is furthest away from the prototypes as seen in

the final if-else statement by comparing the min of each set of differences. We repeat

this process until we have the required amount of prototype locations, as seen in the

while loop.
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Figure 2·10: Choosing Prototype locations in the k-means clustering
algorithm

We then attribute each point (in our case a single sample from the waveforms) to

the cluster containing the closest centroid. Next we recalculate the cluster centroid

which is defined as the mean of all points in that cluster. In this case because our data

resides in N-dimensional space where N=32 time segments, we take the average of all

the samples in each dimension and treat the resulting point as the running mean. We

then repeat the previous two steps (attribute and re-calculate) until convergence.

In Figures 2-11, 2-12, and 2-13 we see the results of applying k-means Clustering

to the Clarissa dataset. In Figures 2-14, 2-15, and 2-16 we see the same clusters

represented in two dimensions by applying Principal Component Analysis (PCA) to

the waveforms and then plotting the first two principal components on each axis. The

chosen values of k are 2 ,3, and 4. The Clarissa dataset is ECoG data provided by

MGH from a recording session of primates performing a range of tasks.
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Figure 2·11: K-means clustering applied to Clarissa dataset. K=2

Figure 2·12: K-means clustering applied to Clarissa dataset. K=3
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Figure 2·13: K-means clustering applied to Clarissa dataset. K=4

Figure 2·14: The clusters in Figure 2-11 visualized through PCA.
Each axis is the 1st and 2nd Principal Component respectively.
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Figure 2·15: The clusters in Figure 2-12 visualized through PCA.
Each axis is the 1st and 2nd Principal Component respectively.

Figure 2·16: The clusters in Figure 2-13 visualized through PCA.
Each axis is the 1st and 2nd Principal Component respectively.

The next clustering algorithm applied to the data is known as Spectral Clustering.

Spectral Clustering involves first building an Affinity matrix S to gauge the pairwise
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interactions of all data samples. Each entry of the Affinity matrix is determined by a

predefined similarity metric. A common similarity metric is described in equation 4

from (5). In Figure 2-17 σ is known as a decay parameter (set to 0.5 in our simulation)

and the d(x,y) of two samples in this context is the Euclidean distance between xi

and xj. The next step is to build a diagonal degree matrix D, described in Equation

2-18, and a normalized Affinity matrix Lnorm as seen in Equation 2-19.

Figure 2·17: Similarity metric described in (5). σ is known as a decay
parameter

Figure 2·18: Diagonal Degree Matrix as described in (10).

Figure 2·19: Normalized Affinity matrix L. D is the Diagonal Degree
matrix of the data and S is the similarity matrix described by Figure
2-17.

The next step is to find the k eigenvectors of Lnorm associated with the k highest

eigenvalues. Then an n x k matrix is defined (denoted by E) where each column is an

eigenvector, in order of decreasing eigenvalue and each row corresponds to a scalar

within the eigenvector. This E matrix is then re-normalized by the formula in Figure

2-20 and at this point becomes the matrix U. Finally each row in the Matrix U is

treated as a data sample and clustered using the k-means algorithm.
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Figure 2·20: The matrix U after the rows are normalized.

In Figure 2-21, Figure 2-22, and Figure 2-23, Spectral Clustering is applied to the

Clarissa dataset. Here the values of k are 2,3, and 4. The base code comes from a

tutorial on Spectral Clustering (10), which was modified as needed for clustering the

neural data. In Figures 2-24, Figure 2-25, and Figure 2-26, the same clusters can be

seen in a two-dimensional representation via PCA, similar to Figures 2-21, 2-22, and

2-23.

Figure 2·21: Spectral Clustering applied to Clarissa dataset. K=2
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Figure 2·22: Spectral Clustering applied to Clarissa dataset. K=3

Figure 2·23: Spectral Clustering applied to Clarissa dataset. K=4
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Figure 2·24: The clusters in Figure 2-21 visualized through PCA.
Each axis is the 1st and 2nd Principal Component respectively

Figure 2·25: The clusters in Figure 2-22 visualized through PCA.
Each axis is the 1st and 2nd Principal Component respectively
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Figure 2·26: The clusters in Figure 2-23 visualized through PCA.
Each axis is the 1st and 2nd Principal Component respectively

Comparing Figures 2-11, 2-12, and 2-13 to Figures 2-21, 2-22, and 2-23 we notice

much more overlap in clusters generated in Spectral Clustering then we do with clus-

ters generated from K-means clustering. This behavior occurs throughout all three

values of k, while in k-means the amount of overlap seems to be minimal. Also it

is important to note that because Spectral Clustering applies k-means clustering as

its final step, its run time will most likely be longer. The difference in cluster results

motivates us to try a different variant of Spectral Clustering, namely Self-Tuning

Spectral Clustering (10).

The third clustering approach we will try is very similar to Spectral Clustering

as weve previously defined it. The key difference is in the decay parameter . Previ-

ously the decay parameter was a scalar that remained constant throughout the whole

affinity matrix, but in Self-Tuning Spectral Clustering the concept of local scaling is

introduced (10) where the value of changes for each data sample si. The distance

between two data samples si and sj as seen by si is the euclidean distance of the



21

two divided by i, a scaling parameter associated with si as seen in Figure 2-27. The

distance between two data samples si and sj as seen by sj is the converse of Figure

2-27 as seen in Figure 2-28. The squared distance between two samples can be gener-

alized to resemble Figure 2-29 and thus the affinity between two samples is described

in Figure 2-30.

Figure 2·27: The distance between two data samples si and sj as seen
by si

Figure 2·28: The distance between two data samples sj and sj as seen
by sj

Figure 2·29: The squared distance between two samples si and sj

Figure 2·30: The affinity between two samples si and sj

Local scaling involves using a specific σ for each pair of samples to account for the

local statistics of the neighborhoods surrounding points si and sj (10). One way of

performing local scaling is seen in Figure 2-31 where d(x,y) is the Euclidean distance

between si and sk and sk is the K-th nearest neighbor of si.

Figure 2·31: Local scaling described in (10). A value for is calculated
for each value in the Affinity matrix S.
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The results of applying Self-Tuning Spectral Clustering can be seen in Figure 2-32,

Figure 2-33, and Figure 2-34. Figure 2-35, Figure 2-26, and Figure 2-37 depict the

same clusters in a two-dimensional representation via PCA, similar to Figures 2-14,

2-15, and 2-16.

Figure 2·32: Self-Tuning Spectral Clustering applied to the Clarissa
dataset. K=2
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Figure 2·33: Self-Tuning Spectral Clustering applied to the Clarissa
dataset. K=3

Figure 2·34: Self-Tuning Spectral Clustering applied to the Clarissa
dataset. K=4
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Figure 2·35: The clusters in Figure 2-32 visualized through PCA.
Each axis is the 1st and 2nd Principal Component respectively.

Figure 2·36: The clusters in Figure 2-33 visualized through PCA.
Each axis is the 1st and 2nd Principal Component respectively.
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Figure 2·37: The clusters in Figure 2-34 visualized through PCA.
Each axis is the 1st and 2nd Principal Component respectively.

When comparing the clusters of two-dimensional form to the original version of

spectral clustering, the overlap in clusters does not seem to have decreased, in fact

the overlap seems to have increased. Its important to note that the clusters analyzed

in (10) typically had noticeable gaps between them while in the case of the Clarissa

dataset there seems to be an inherent overlap in the clusters. Even in the k-means

case, which initializes its centroids to be maximally far away, results in clusters that

touch at their borders as seen in Figures 10-12. Because this variant of Spectral

Clustering requires a value for the decay parameter to be calculated for every sample,

(which involves calculating the k-th nearest neighbor of every data sample) it is

likely that Self-Tuning Spectral Clustering will have a larger time complexity than

its counterpart.

Table 2.1 lists the average distance from a data sample to its respective cluster

center as well as the distance between clusters. The distance between clusters seems

to be the largest for k-means. For cluster tightness i.e. how close the points are to the
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center, one of the clusters in Spectral Clustering seems to be much larger than the

clusters in k-means and Self-Tuning Spectral Clustering. Interestingly, the tightness

of clusters in self-tuning spectral clustering is comparable to k-means.

Table 2.1: Cluster Metrics for k-means, Spectral, and Self-Tuning
Spectral Clustering when k=2.

k-means Clus-
tering

Spectral Clus-
tering

Spectral Cluster-
ing (Self Tuning)

Average distance
for Cluster 1

0.0582 0.612 0.0692

Average distance
for Cluster 2

0.0615 0.0683 0.0652

Distance between
Cluster 1 and 2

0.0688 0.0412 0.0206

Table 2.2 lists the average distance within a cluster as well as distance between

clusters for when k=3. In this case the average distance within a cluster seems to

be similar for all three clustering algorithms. In terms of distance between clusters,

its important to note that the distance is much less for Spectral and for Self-Tuning

Spectral vs k-means Clustering.

Table 2.2: Cluster Metrics for k-means, Spectral, and Self-Tuning
Spectral Clustering when k=3.

k-means Clustering Spectral Clustering Self-Tuning Spec-
tral Clustering

Average distance
for Cluster 1

0.0563 0.0670 0.0654

Average distance
for Cluster 2

0.0678 0.0633 0.0701

Average distance
for Cluster 3

0.0627 0.0677 0.0661

Distance between
Cluster 1 and 2

0.0495 0.0144 0.0142

Distance between
Cluster 2 and 3

0.0387 0.0162 0.0131

Distance between
Cluster 1 and 3

0.0319 0.0294 0.0028

Table 2.3 lists the average distance within a cluster as well as distance between
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clusters for when k=4. In this case the average distance within a cluster seems to be

similar for all three clustering algorithms. In terms of distance between clusters, its

important to note that the distance for k-means Clustering is noticeably larger than

in Spectral Clustering and Self-Tuning Spectral Clustering. The distances between

cluster centers seems to be slightly lower in Self-Tuning when compared to Spectral

Clustering.

Table 2.3: My caption

k-means Clustering Spectral Clustering Self-Tuning Spec-
tral Clustering

Average distance
for Cluster 1

0.0563 0.0680 0.0666

Average distance
for Cluster 2

0.0678 0.0640 0.0689

Average distance
for Cluster 3

0.0643 0.0617 0.0682

Average distance
for Cluster 4

0.0643 0.0637 0.0663

Distance between
Cluster 1 and 2

0.0495 0.0113 0.0117

Distance between
Cluster 1 and 3

0.0378 0.0221 0.0116

Distance between
Cluster 1 and 4

0.0378 0.0342 0.0025

Distance between
Cluster 2 and 3

0.0328 0.0109 0.0007

Distance between
Cluster 2 and 4

0.0321 0.0235 0.0136

Distance between
Cluster 3 and 4

0.0302 0.0133 0.0135
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Chapter 3

Conclusion

3.1 Conclusion

In this MS thesis we analyze ECoG data using signal processing and machine

learning techniques in order to contribute to the TRANSFORM-DBS project at the

Charles Stark Draper Laboratory. We assert to treat the problem with unsupervised

learning techniques because we do not have ground truth to the supposed hidden

mechanisms involved in cognitive behavior. In the Clarissa dataset it appears that

both a Butterworth and a Chebyshev filter provide similar filtering results. In terms

of clustering the Clarissa dataset, when only looking at the clusters as colored wave-

forms, in both k-means and Spectral, there is a noticeable pattern of two averaged

peaks when k=2. When k=3 or 4, the results of k-means clustering continue to yield

clusters with minimal overlap while the spectral clustering results are inconclusive.

For all three cases of Self-Tuning Spectral Clustering the resulting clusters seem to

overlap. When observing the clusters in a two-dimensional representation, there is

noticeable overlap between clusters in Spectral Clustering and Self-Tuning Spectral

Clustering as opposed to K-means.

Future work in clustering this data could involve using different clustering algo-

rithms as well trying different approaches for feature extraction. Future work in the

overall DBS project would be to find a way to correlate the resulting clusters to

recorded patient activity. The clustering efforts of this Thesis focused on the shape of

waveforms as opposed to when and in what sequence they occur (i.e. the stochastic
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aspect of the neural data). Approaches that account for changes over time may prove

to give more insight on the data, but the overall project needs to strike a balance

between a comprehensive characterization of the data and an approach that can be

energy/time efficient.
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