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Abstract 

Clustering is an unsupervised machine learning task that seeks to partition a set of data 

into smaller groupings, referred to as “clusters”, where items within the same cluster are 

somehow alike, while differing from those in other clusters. There are many different 

algorithms for clustering, but many of them are overly complex and scale poorly with 

larger data sets. In this paper, a new algorithm for clustering is proposed to solve some 

of these issues. Density-based clustering algorithms use a concept called the “underlying 

density function”, which is a conceptual higher-dimension function that describes the 

possible results from the continuous data set that our input data is just a discrete sample 

of. The algorithm proposed in this paper seeks to use this concept by creating a piecewise 

approximation of the underlying density function, and then merging points towards local 

density maxima from this higher-dimensioned space. First, the data space is divided into 

a grid-based structure and the density of each grid is calculated. Second, each of these 

“grid-squares” determines the densest space in its local area. Finally, the grid squares 

are merged together in the direction of their local density maximum, ultimately merging 

with one of the density maxima that form the root of a cluster. The experimental results 

show significant time improvements over standard algorithms such as DBSCAN with 

no accuracy penalty. Furthermore, the algorithm is also suitable for use with parallel and 

distributed systems, as an implementation with Apache Spark showed proper parallel 

scaling with low data set sizes required to overtake the serial implementation. 
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CHAPTER I 

 

INTRODUCTION 

 

   Clustering is an unsupervised machine learning task common in the world of data 

analysis. Clustering algorithms seek to discover groupings of related data within a 

dataset, each of which is referred to as a cluster. As clustering is an unsupervised task, 

it must do so without utilizing any external information or training datasets. Clustering’s 

ability to determine trends in data while only looking at the data itself has made it very 

attractive as an early-stage part of image recognition and many other data analysis tasks. 

 Clustering algorithms exist in many different forms, which are broadly separated 

into classes of algorithms. The most common form of clustering are the Partitioning 

methods such as k-means which simply partition the set into clusters based on a metric 

such as Euclidian distance. There is also Density-based clustering which views the data 

points as individual instances of output from a higher-level underlying density function, 

and clusters are viewed as areas of relatively high density that correspond to areas that 

function is more likely to produce results. Grid-based methods seek to use a grid 

substructure to reduce the amount of calculations needed by scaling off of the number 

of grids instead of the number of records. Hierarchical methods seek to create a hierarchy 

of clusters, each at a different level of strictness, to show sub-clusters within normal 

clusters. Fuzzy clustering is also a commonly seen technique in which each record may 

exist in several clusters simultaneously, having a similarity measure for each instead of 

a binary yes or no to belonging. 
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 All of these different types of algorithms result in a wide selection when it comes to 

choosing a clustering algorithm. Different algorithms are suitable for different 

applications, and as such, many different algorithms are useful for real-world data 

analysis. In this paper, we propose a new clustering algorithm that combines the 

underlying principles of density-based clustering methods with the grid structure from 

grid-based methods. By doing so we are able to maintain accuracy on par with other 

density-based methods while having the algorithm itself scale off of the grid substructure, 

resulting in greatly reduced runtimes. Throughout this paper, this algorithm will be 

referenced as the Density-Grid algorithm.  

 One of the most important elements of modern real-world data analysis, with or 

without involving clustering, are the concepts of parallel and distributed computing 

(known collectively as “High-Performance Computing” or HPC). Due to the massive 

sizes and complexities of modern “Big Data” datasets, running analysis algorithms in 

serial is unfeasible. As such, all real-world data analysis of importance utilizes HPC in 

order to vastly reduce runtimes. As such, this paper also discusses our attempts to 

parallelize the Density-Grid algorithm, in order to show its viability for real-world use, 

and we ultimately propose a parallel implementation using Apache Spark. 

 The rest of this paper is organized as follows. Chapter II discusses the related work 

and research, Chapter III discusses the Density-Grid algorithm and its development, 

Chapter IV discusses the parallel implementation of the Density-Grid algorithm, Chapter 

V covers our experiments and results for both the serial and parallel implementations, 

and Chapter VI summarizes our work with the Density-Grid algorithm and its 

contribution to the field. 
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CHAPTER II 

 

RELATED WORK 

 

This chapter is divided into two parts: Clustering Algorithms and Parallel 

Computing Frameworks. Both subjects are important for the discussion of our work, so 

in this section we summarize previous work and research involving these two domains. 

 

2.1 Clustering Algorithms 

A wide range of traditional and novel clustering algorithms exist, and attempting to 

summarize each and every one is a task beyond the scope of this paper. As such, this 

section will focus on a selection of important traditional algorithm research and more 

modern novel algorithms, with an aim towards discussing the different classes of 

clustering and their strengths and weaknesses. 

The clustering algorithm most familiar to many will be the venerated k-Means 

Clustering algorithm proposed by several authors but most concretely in [1] by Edward 

W. Forgy. This algorithm takes advantage of an iterative process in order to divide data 

points into clusters, focusing on their similarity to the centroids of clusters. The 

algorithm operates by first selecting k points in the data set to operate as the initial cluster 

centroids. Then the distance of each data point to each of the centroids is computed, with 

each point being assigned to the cluster whose centroid it they are closest to. The mean 
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of every point assigned to each cluster is then taken, with these mean values becoming 

the new values of the cluster centroids. These steps are repeated until the change in 

centroid values between iterations is below a certain threshold, at which point it is said 

to have converged. This algorithm is, as previously stated, one of the most well-known 

clustering algorithms and the first that many learn. It is not without its flaws however, 

given its nature as a first-of-its-kind algorithm. The first of these notable flaws is its run-

to-run variance. In traditional k-means, the initial centroids are chosen randomly, and 

this random choice can lead to wildly different results at convergence. Second is the fact 

that k-means only accurately detects circular clusters, as traditionally Euclidian distance 

is used to determine distance, which causes a circular region around each cluster to be 

favored over any other shape. Finally, there is a trait many algorithms using traditional 

distance measurements share, which is poor accuracy scaling in high-dimensioned space 

due to the “Curse of Dimensionality” spreading points out. Much research exists 

modifying the k-means algorithm to address these shortcomings, and it is widely viewed 

as the most important of the “partitioning” class of clustering methods. 

Next, we focus on the Density-based class of clustering algorithms, most notably 

represented by the DBSCAN algorithm in [2] by M. Ester, H. P. Kriegel, J. Sander, and 

X. Xu. Density-based algorithms in general see data as instances of output that, taken 

together, produce a continual higher-dimension underlying density function, and see 

clusters as areas of space that are relatively dense with points, with those regions being 

where the underlying density function is most likely to produce output. DBSCAN visits 

each point in a data set, looking at an area surrounding this point to determine whether 

it has a local density great enough to justify assuming it to be part of a cluster. This is 
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controlled via two parameters: ε, how large of a neighborhood to search, and minPts, 

how many data points are required to be found in a neighborhood to count as a cluster. 

Each point is visited in an arbitrary order, the number of points in its ε-neighborhood is 

observed, and it is then decided whether this point and its ε-neighborhood constitute a 

new cluster or whether the point itself should be considered noise until further notice. If 

noise, then the point will be unclustered unless it is later added to a cluster from being 

in another point’s ε-neighborhood. Otherwise, if the number of points passes the minPts 

threshold, the point and all of the points in its ε-neighborhood are added to a cluster, and 

any points in those points’ ε-neighborhoods are also added to the cluster. This algorithm 

is well regarded and heavily used to this day, with only a few shortcomings. The main 

weakness being that having a single static value for ε means that DBSCAN can have 

issues detecting meaningful clusters if the density of data between clusters vary greatly. 

Much research has been devoted to modifying DBSCAN to improve performance for 

various cases of data, but the core algorithm is still considered the standard for clustering 

algorithms.  

One such modification to DBSCAN is the OPTICS algorithm proposed in [3] by M. 

Ankerst, M. Bruenig, H. P. Kriegel, and J. Sander. The OPTICS algorithm is very similar 

to DBSCAN, but seeks to address the varying density issue by also calculating a core 

distance, defined as the distance from a point to the minPtsth point closest to it. Having 

both this core distance and ε allows OPTICS to consider different densities of clusters. 

This improvement has made it very attractive for use in many applications, however the 

additional processing slows it down compared to DBSCAN, with the authors of OPTICS 
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showing its runtimes to consistently be approximately 1.6 times slower than those of 

DBSCAN. 

Another form of clustering is hierarchical clustering, in which a hierarchy of clusters 

and subclusters are represented in a manner similar to a tree graph, allowing for the 

relations between these varying levels of relation in clusters to be viewed in a logical 

form. The most well-known algorithm for hierarchical clustering is BIRCH, proposed 

in [4] by T. Zhand, R. Ramakrishnan, and M. Livny. BIRCH was originally created to 

modify hierarchical clustering for large data sets by doing a large amount of 

preprocessing that is not reliant on having the global data structure in memory. BIRCH 

constructs a tree of clustering features by reducing a set of data points into three values: 

the number of points, the linear sum of the points, and the square sum of the points. 

These features are each set as a node in a tree, and then a more traditional agglomerative 

hierarchical algorithm is used to do the clustering on the CF nodes. This allows for 

efficient clustering based only on the relevant information. Hierarchical clustering 

results in an overview of all of the different clusters present and their relations; however, 

the process does result in long runtimes since multiple levels/rounds of clustering must 

occur. 

In [5], W. Wang, J. Yang, and R. Muntz proposed the STING algorithm for grid-

based clustering. In STING, the data space is recursively divided into a grid structure, 

with the initial data space having 4 grid subsections, each of which has 4 grid subsections, 

which repeats until it reaches a set number of layers. The clustering and processing is 

then done on these subsections instead, allowing the algorithm to scale based on the 

number of grids instead of on the number of data points. Splitting the data into separate 
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units also allows algorithms such as STING to be efficiently parallelized, as they 

overcome the issue of data dependency (discussed in section 2.2). The reliance on grid 

substructures can result in a loss of accuracy however, as points are considered as a 

group and not individually. 

In [6], R. Agrawel, J. Gehrke, D. Gunopuloa, and P. Raghaven propose CLIQUE, a 

subspace clustering algorithm which seeks to determine clusters that exist not just in the 

set of all dimensions, but in any given subset of the data’s dimensions as well. It first 

separates each dimension into a set of independent grids based on a gridSize parameter. 

The number of points in each grid of each dimension is compared to a threshold 

parameter that determines if it counts as a “dense” grid or not. Each combination of 

dimensions is then investigated, with the overlaps of dense grids from each dimension 

in the subset being flagged as dense subspaces that are likely to contain clusters. This 

approach allows for effective cluster detection without as extensive dimension reduction 

or feature selection preprocessing as many other algorithms, but becomes very reliant 

on the gridSize and threshold parameters being suitable for the data set involved. This 

algorithm also scales well compared to the number of data points, but is much more 

sensitive to the dimensionality of the data, as it must look at each subset of dimensions. 

The final traditional method to be discussed is the Fuzzy c-means clustering 

algorithm proposed in [7] by J. C. Dunn. This algorithm takes advantage of fuzzy set 

theory, in which any individual point may actually belong to more than one set or cluster. 

In fuzzy c-means this is represented by the use of a membership coefficient. In other 

terms, in a normal partitioning clustering method, a point has the value 0 or 1 for 

belonging to a given cluster, while in fuzzy c-means it instead has a value from 0 to 1, 
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representing its degree of similarity to that cluster. Fuzzy c-means determines these 

values in a process much like that of k-means discussed previously. It begins by 

randomly assigning membership coefficients from each cluster to each point. Then it 

iteratively determines the centroid of each cluster based on these coefficients, and then 

updates the coefficients based on this new cluster centroid. This process is repeated until 

the coefficients converge and become stable. This algorithm suffers from many of the 

same problems as k-means with regards to the random initial values, but the use of the 

fuzzy logic properties allows for unique information compared to many other clustering 

methods. 

The first recent novel algorithm to be discussed is dGridSlink, proposed in [8] by 

Goyal et al. This algorithm is an extension of GridSlink, which itself is an extension of 

SLINK, or “single linkage”, which is a hierarchical clustering algorithm. GridSlink 

seeks to use a grid structure to allow the SLINK algorithm better scaling while still 

maintaining a good approximation of results. The distributed form of GridSlink is 

dGridSlink. This algorithm demonstrates two important concepts that will be built upon 

later: Parallel/Distributed computing is vital for efficient data analysis work, and grid-

based algorithms are prime candidates for parallelization due to their reduced data 

dependency between calculations in the same stage. 

In [9], D. Huang et al propose U-SPEC, which is a hybrid spectral clustering method. 

Spectral clustering methods utilize the concept of eigenvalues to cluster in a reduced 

dimension set in order to avoid issues with the “curse of dimensionality.” Hybrid 

methods are an increasingly common type of clustering that uses multiple classes of 

clustering methods together to create a new approach. U-SPEC uses a combination of a 
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representative data point selection method to select a subset of data points, and an 

approximation method to then reduce this set into K representatives. Spectral clustering 

is then performed on this reduced subset. 

In [10], D. Huang, C. Wang, and J. Lai propose an ensemble clustering method 

based on local weights and uncertainty estimation. Ensemble clustering methods 

typically seek to create multiple clusterings of the data set, before analyzing them and 

creating a final clustering based on the most common similarities between the base 

clusterings. This work seeks to use a system of more flexible local weight and 

uncertainty measures as opposed to the more common global weights. This allows for 

variation in the distribution and uncertainty of individual clusters. They also propose 

novel consensus functions based on this difference.  

In [11], R. Bhagawati, S. R. Lasker, and B. Swain proposed an algorithm for 

clustering with quantum computers, combining the knowledge of classical clustering 

algorithms with quantum physics. They do this by using quantum mechanics to represent 

each piece of data as a vector, and then using the Schrödinger Equation to perform a 

clustering on these vectors. This work demonstrates that clustering is an important task, 

even within new fields such as Quantum Computing, and that new classes of clustering 

algorithms are actively being developed. 

 

2.2 Parallel Computing Frameworks 

Parallel Computing, frequently discussed in combination with Distributed 

Computing and referred to as High Performance Computing (HPC), is a computing 

concept that has become vastly important in the modern field of data analysis. It is the 
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process of breaking a larger calculation or task down into a number of smaller 

components, each of which may be independently processed by different computing 

units. This allows multiple operations to be done in parallel, increasing the speed of 

computation. As modern data sets have dramatically increased in size, this technology 

has become vital to data analysis tasks. There are many ways to take advantage of 

parallel computing, but the most common ones are a pair of frameworks that allow for 

easy development of parallel algorithms while allowing all of the low-level 

implementation details to be handled by said frameworks. The two frameworks most 

commonly used are MapReduce and Apache Spark. 

MapReduce was proposed in [12] by J. Dean and S. Ghemawat, two computer 

scientists working at Google. It was created to be a simple-to-use framework for 

implementing parallel computations and allowing them to be efficiently done on very 

large distributed data sets. The main structure of MapReduce revolves around two 

operations: map and reduce. A map operation is a function that maps each piece of data 

in the data set to a key-value pair. The reduce operation is a function that takes all of the 

key-value pairs with the same key and aggregates them in order to create a final key-

value pair, with a single entry per unique key. This framework was revolutionary as it 

allowed for a user-friendly programming interface that allowed users to focus primarily 

on the logical operations, without worrying about the lower-level communications work. 

MapReduce quickly gained traction in the data analysis world, and became the de facto 

standard for parallel data analysis work. It was not without criticism however, as many 

pointed out its shortcomings. These include it being limited to solely map and reduce 

operations and not being able to implement any others, which some claim limit the tasks 
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it may be applied to, and its inability to store temporary files in the computing clusters’ 

main memory in favor of hard disks, which greatly slows down communication. 

Spark was originally proposed in [13] by M. Zaharia, M. Chowdhury, M. J. Franklin, 

S. Shenker, and I. Stoica; researchers at the University of California, Berkeley’s 

AMPLab. It was later donated in its entirety to the Apache Software Foundation, who 

currently maintain the project. It was created in order to address some of the 

aforementioned shortcomings with MapReduce. Spark’s key building block is the 

concept of a Resilient Distributed Dataset, or RDD. An RDD is a dataset that is 

distributed in an error-resistant way across all of the worker nodes, and the flow of a 

Spark program is based on a series of Transformations and Actions being performed on 

these RDDs. The wide range of available transformations allow for Apache Spark to be 

much more flexible than MapReduce, overcoming the restrictive single Map into single 

Reduce program structure of MapReduce. In [14] the Apache Software Foundation 

covers the majority of the available transformations and actions in the current version of 

Apache Spark (ver. 2.4.5). Transformations take an RDD and transform the data within 

into some new form, also to be stored in an RDD while Actions simply perform an action 

on the data in an RDD with the results being returned in a non-distributed form to the 

driver node. Map still exists as a transformation; however, there are a wide range of 

forms from a simple 1-to-1 map or mapByKey, to a 1-to-many flatMap, to the many-to-

1 mapPartitions. Reduce exists as well, with reduce itself being an action while 

reduceByKey exists as a transformation for Key-Value pair RDDs. Other 

transformations like count, countByKey, repartition, aggregateByKey, union, 

intersection, and takeSample allow Spark applications to be very flexible. Spark also 
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allows control of data storage locations, allowing for datasets to be processed in main 

memory, greatly increasing the speed of processing. 

Both MapReduce and Apache Spark have been widely used with data processing 

algorithms, including clustering. In [15], Y. He et al used MapReduce to create a parallel 

implementation of the DBSCAN algorithm, showing runtime improvements over that 

of the traditional serial implementation. In [16], G. Luo, X. Luo, T. F. Gooch, L. Tian, 

and K. Qin similarly implemented DBSCAN with Apache Spark, also showing runtime 

improvement, illustrating that both frameworks are suitable for use with parallel data 

analysis. Many other authors have also contributed to the body of work for MapReduce 

and Apache Spark data analysis algorithm implementations. Following is a selection of 

recent or important papers detailing relevant work. 

In [17], Y. Xu, W. Qu, Z. Li, G. Min, K. Li, and Z. Liu implement a version of the 

k-means algorithm known as k-means++ with MapReduce. The k-means++ algorithm 

uses a sequential process to select cluster centroids in a non-random manner. This 

process is not guaranteed to result in an optimal centroid choice, but it is shown that it 

is very close to the optimal solution and much more accurate than the traditional method. 

Their paper discusses the challenges involved with parallelizing the k-means++ 

algorithm, as it traditionally scales poorly with dataset size. They do this by using the k-

means++ initialization algorithm to combine two MapReduce stages from the traditional 

k-means MapReduce implementation, allowing for a runtime reduction with a close 

approximation to the optimal k-means results. This paper highlights that fact that with 

MapReduce you must code in a linear fashion, with a single MapReduce job consisting 

of a single map stage followed by a single reduce stage (there is technically a shuffle 
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operation between the two, but that is automated and handled by the framework). This 

means that in order to parallelize some algorithms with MapReduce, tricks must be done 

to reduce the number of repeated stages. 

In [18], W. Huang, L. Meng, D. Zhang, and W. Zhang showcase the ability of 

Apache Spark to perform its operations in-memory. They introduce a generic model for 

parallel processing of remote sensing data, and, using a massive dataset of remote 

sensing data, they demonstrate the performance gains inherent in using Spark to process 

the data in-memory. This is important as it demonstrates how Spark’s capabilities were 

influenced by the shortcomings of MapReduce. It is true that MapReduce is still widely 

popular, but features such as in-memory processing have allowed Apache Spark to 

challenge it for its crown as the go-to parallel processing framework. 

In [19], B. Liu, S. He, D. He, Y. Zhang and M. Guizani demonstrate a parallel 

implementation of the Fuzzy c-means algorithm using Apache Spark. Their 

implementation was specialized for Agricultural Image data, but the work is applicable 

to data analysis using fuzzy c-means in other fields. The results predictably show a 

significant increase in performance compared to the traditional serial implementation. 

The significance of this paper comes from the fact that is a recent paper (being published 

in 2019) showing how research into the real-world applications of Apache Spark is 

currently an area of great interest. Currently much research is being done to optimize 

and implement algorithms for Apache Spark, and to show how these improvements 

make the tasks viable for use in real-world data analysis tasks.  

In [20], J. Franklin, S. Wenke, S. Quasem, L. A. Carraher, and P. A. Wilsey propose 

streamingRPHash, a MapReduce-based parallel clustering algorithm that seeks to 
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cluster only a random projection of the data. This is done in order to improve scaling 

with large datasets, as many traditional clustering methods do not scale well with data 

set size. Furthermore, the authors discuss how this random sampling may actually serve 

to increase security and anonymity of data. This paper illustrates how parallel algorithms 

alone may not be enough to improve data scaling enough for real world use, as well as 

showing the advantages of not scaling directly off of data point, even in a 

parallel/distributed environment. 
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CHAPTER III 

 

Density-Grid Clustering Algorithm 

 

The Density-Grid algorithm was originally designed in order to address many of the 

factors important to clustering discussed in the previous sections. Our main goal was to 

improve runtimes for large data sets, specifically focusing on the algorithm’s scaling with 

regards to data set size and suitability for parallelization. In addition, we wanted for the 

algorithm to be able to detect clusters of arbitrary shape, to not have the number of clusters 

as an input value, and to attempt to reduce the impact of high-dimensionality on accuracy. 

We decided on a combination of ideas from the Density-based and Grid-based classes of 

clustering algorithms. By utilizing a grid structure, we sought to scale at least part of our 

calculations not on the number of data points, but on the number of grids, thereby 

reducing complexity. By using the concepts of density-based clustering methods, we 

sought to handle arbitrary shapes of clusters and to have relatively high accuracy. 

 We achieved these goals by focusing on a core idea of the Density-based class of 

algorithms: the Underlying Density Function. The idea of the underlying density 

function is that the data in our data set is just a series of individual observations, with 

the set of all possible observations being the product of some higher-dimensioned 

function. The concept follows that the areas of higher density in our data set represent 

the areas that the underlying density function is maximized, or where more results are 

likely to be located in the continual spectrum. In order to merge this idea with the 
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concepts from grid-based clustering, we used a grid structure to create a piecewise 

approximation of this underlying density function, and then merged the grid cells 

towards their local density maxima, having them fall towards local maximums in the 

underlying density function. This piecewise approximation is very similar in form to 

that of the rectangle rule for approximation the value of an integral. Much as in the 

rectangle rule, we collapse a continuous function value inside of a “bin” into a singular 

representative value. This value is then used as an approximation for the higher 

dimensioned result. This process is illustrated with figures 1 and 2. These figures show, 

using a sample one-dimensional dataset, how we use the density of the grid squares to 

add an additional dimension and create the piecewise approximation of the continuous 

underlying density function. Figures 3 and 4 then show how each grid square is either 

the densest in its area, or has a denser one as a neighbor that it is assigned to, and how 

these assignments result in a final clustering. 

The concepts explained above allowed us to use the high-level concept of the 

underlying density function to create what is ultimately an algorithm with a simplicity, 

and resultant speed, that belies its true nature. The algorithm consists of three phases, 

each of which will be discussed in more algorithmic detail in the following subsections; 

however, figures 2 through 4 also serve as a visual representation of the process, each 

corresponding to the output of a phase. 

 

 

Figure 1. Graphical representation of a sample one-dimensional data set, displayed on a 

number line. 
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Figure 2. Graphical representation of the density “binning” of the data set from Figure 1 

with a grid size of 5. The number of data points in each grid were totaled, resulting in a 

value for that grid square’s density. Arranging these densities as a second dimension along 

the original data shows how these density values resemble the rectangle rule, and work as 

a piecewise approximation of the underlying density function. This process of determining 

grid square location and grid square density comprises phase one of the algorithm. 

 

 
 

Figure 3. Graphical representation of the relationship between neighboring grid squares 

from figure 2. Squares with a vertical bar are the local density maxima that form the cores 

of the clusters, while all other grid squares have an arrow pointing to the left or the right, 

depending on which neighbor has the highest density. The determination of core status or 

densest neighbor location comprises phase two of the algorithm. 
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Figure 4. Graphical representation of the final clusters of the data from previous figures. 

Each chain of densest neighbor assignments has been collapsed and all squares merged 

with one of the core squares to form a final cluster that surrounds a local maximum of the 

underlying density function. This process of using the densest neighbor information to form 

the final clusters comprises phase three of the algorithm. 

 

3.1 Grid Square Density Calculation 

Phase one of the Density-Grid Clustering Algorithm is the Grid Square Density 

Calculation phase. In this phase we iterate through the data set and assign each point to 

a grid square, while maintaining a density measurement for each of the grid squares. 

The pseudocode for this phase of the algorithm is shown in Figure 5. 

 The input for this phase of the algorithm is two items: our list of data points in the 

form of a List data structure containing arrays of doubles (each dimension of each data 

point being a double in the array) and our only runtime variable, a double 

corresponding to the size of our grids.  



19 

 

 

Figure 5. Pseudocode representation of the first phase of the Density-Grid Clustering 

Algorithm. This phase consists of assigning each data point to a grid square and 

determining the density of each grid square 

 

We begin by initializing a new list that we use to build our output, utilizing a 

custom class called GridSquare. This class represents a grid square, and contains the 

GridSquare’s identification array, a list of points, and a density measurement, in 

addition to several useful methods. We then iterate over each data point, first 

determining which GridSquare a given data point belongs to. GridSquares are 

identified by how many intervals of gridSize they are away from the origin point of the 
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grid in each dimension. To calculate which GridSquare the data point we are looking at 

belongs to, we use the following equation on each dimension of the data point: 

(𝑖𝑛𝑡) ⌊
𝑑[𝑖]

𝑔𝑟𝑖𝑑𝑆𝑖𝑧𝑒
⌋ 

We divide each dimension by the gridSize value and then floor the result, as that is 

how the GridSquares’s identifications works. This number is then cast to an integer to 

serve as the identification array of a GridSquare. Now that we have a GridSquare id 

array, we search our list of GridSquares to see if this GridSquare object has been 

created yet. If it has, then we add this point to that GridSquare object’s list of points 

and increment its density value by one. If it has not been created, we create it, add this 

data point, and then add the new GridSquare to the above list. 

 The final output of this phase is a List of GridSquares, each containing a set of 

points and a density measure corresponding to the number of points contained in that 

GridSquare. This output List is then utilized by the following phase to determine the 

densest neighbor of each GridSquare. 

 

3.2 Densest Neighbor Determination 

Phase two of the algorithm is the Densest Neighbor Determination phase. In this 

phase we determine the densest neighboring grid square for each grid square, or if it is 

denser that all of its neighbors. For this algorithm we define a neighboring grid square 

as one where the identification array of the two does not differ by more than one space 

in any dimension. By not relying on a traditional distance metric, we theorize that this 
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may also be somewhat effective at countering the curse of dimensionality. The 

pseudocode for this algorithm is shown in Figure 6. 

The input for this phase is the list of GridSquare objects created during the 

previous phase. We will return the same list at the end, however, each GridSquare in 

the list will have been updated with a pointer to the GridSquare that is its densest 

neighbor (or itself, if it is its own densest neighbor and therefore the core of a cluster). 

We begin by creating a new list of GridSquares that is the same as the original list 

but sorted by descending density. This means that the first object in this new temporary 

List is the densest GridSquare that exists. We do this in order to reduce the complexity 

of comparisons for the following steps, as well as to maintain clustering accuracy of 

any set of neighboring grid squares with equal-and-highest density. 

Once we have our temporary list, we begin iterating over all of the GridSquares in 

the original list. We then use a nested for loop to compare this GridSquare to each of 

the GridSquares in the sorted list. This ensures we are comparing in order of highest-

to-lowest density. By sorting the list beforehand, we ensure that the first neighbor we 

find will either be the densest neighbor or tied for densest. Being tied only matters if 

there are several neighboring grid squares of equal density which are also all local 

density maxima. In that case, the first one in the list will be chosen as the core square, 

preventing errors. Since the first neighbor we find is guaranteed to be the densest one, 

all we have to do is check them in order. We must also ensure that the density of a 

given GridSquare is not less than the one for which we wish to determine the densest 

neighbor. If so, it means that that square is its own densest neighbor.  
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Figure 6. Pseudocode representation of the second phase of the Density-Grid Clustering 

Algorithm. This phase consists of determining the densest neighbor of each GridSquare. 

 

The GridSquare class has a field for a pointer to another GridSquare, which we use 

to point to each GridSquare’s densest neighbor once it is found. If it is determined that 

a GridSquare is its own densest neighbor, then a pointer to itself is added instead. Once 

the iteration over the initial List is complete, we have the same list but with each 

GridSquare object having that pointer field filled. We then return that List so that it can 

get used for the third phase. 
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3.3 Cluster Creation 

Phase three of the algorithm is Cluster Creation, in which we determine our final 

clusters. The input for this phase is the List of GridSquares with their densestNeighbor 

field filled in from the previous phase. The output of this phase is a List of Cluster 

objects, which are from a custom Cluster class that contains a List of GridSquares 

belonging to that cluster as well as several helper methods. The pseudocode for this 

phase is shown in Figure 7. 

We begin by initializing a new list of cluster objects that we will use to build our 

clustering piece-by-piece. We then start the main iterative part of the phase by iterating 

over every gridSquare in the input list and then check to see if that gridSquare and its 

DensestNeighbor are included in a cluster yet. This may occur due to a point having 

been the densest neighbor of a previous point, or due to two points sharing a densest 

neighbor. The custom findCluster method we use to check returns -1 if the gridSquare 

does not belong to a cluster yet, or, if it does belong to a cluster, an integer value 

corresponding to that cluster’s position in the global list.  

We then have a flow of logic that determines what step we take in order to cluster 

both the gridSquare and its densestNeighbor. We first check to see if a cluster is its 

own densest neighbor, which determines if it is a core or not. If it is a core, we check to 

see if it has already been included in a cluster due to being another point’s 

densestNeighbor. If it has, then we are done with this GridSquare. If it has not been 

clustered, then we create a new cluster object and add this gridSquare.  
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Figure 7. Pseudocode representation of the third phase of the Density-Grid Clustering 

Algorithm. This phase consists of determining the final clustering. 
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If a gridSquare is not a core square, then we have to check if either it or its 

densestNeighbor are clustered yet. If neither of the two gridSquares has been clustered 

yet, then we create a new Cluster object and add both gridSquares to it. If either one, 

but not both, of the gridSquares are in a cluster, then we add the other gridSquare to 

that cluster as well. If both belong to different clusters, then we must merge those two 

clusters together. 

After this logic is applied to each gridSquare in the global list, we are guaranteed to 

have a final list of clusters that contains every gridSquare (and therefore every point) 

between them. This is our final clustering. 
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CHAPTER IV 

 

Parallel Implementation Using Apache Spark 

 

In order to parallelize the Density-Grid algorithm, several challenges need to be 

overcome. In general, the largest challenge when parallelizing algorithms is the 

concept of “data dependency”. Since different pieces of data are being processed on 

different nodes of the cluster, if calculations are dependent on other calculations or 

data that is not on the same node, communication between nodes must occur for the 

calculation to proceed. In our case, the three-phase design of the algorithm was 

originally conceived in order to address this issue. Within each phase of the algorithm, 

every calculation is independent of other calculations in that phase. Global information 

is produced at the end of phases one and two that is needed in the phases after them, 

but this can be done using communication tools built into Spark. Ultimately this means 

that the design of the parallel implementation is very similar to that of the serial, with 

the three phases separated by communications, and the logic placed within Spark 

transformations so as to operate in parallel. 

Spark’s systems of RDDs, actions, and transformations was mentioned previously, 

but in order to describe the work done in the parallel implementation, the 

transformations and actions used need to be described in more detail. Specifically, the 

functions to be discussed are: map, mapToPair, countByKey, collect, broadcast, and 

parallelize. 
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First are map and mapToPair, the main tools used in the implementation. We 

mainly use mapToPair, but as it is a specialized form of map, both must be discussed. 

As discussed previously, Spark uses a data structure called a Resilient Distributed 

Dataset, or RDD, as its basis. Data is stored and distributed across the cluster in these 

structures, with each node having part of the data. The map transformation is the most 

basic form of transformation in Spark. The notation of the transformation is that it 

transforms the RDD from one form of data to another, mapping the input to the output. 

This is accomplished by using the map transformation to denote a function to be 

applied to each item in the source RDD. This function must take as input the data type 

or types of a single record from the source RDD, and returns a new record of the same 

or a different data type. In this manner you are able to apply a function to all of the 

data points in an RDD in a distributed manner. MapToPair is the same as map, but it is 

used to map an RDD to a key-value pair RDD instead of a single-value one. In a 

single-value RDD, each record is a single variable and they are all the same type. In a 

key-value pair RDD, each record consists of two variables and the key and value can 

be different types. The keys are non-unique, as they are frequently used to denote a 

relationship or belonging to a group.  

Our second spark feature to discuss, countByKey, can only be used on a key-value 

pair RDD, and utilize the non-uniqueness of the key. countByKey is an action, not a 

transformation, as it does not result in a new RDD. CountByKey is a distributed way to 

count how many records have the same key, and return this information back to the 

driver node as a “Map” data structure (not to be confused with the map Spark 

transformation) relating each unique key to the number of records with that key.  
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The third feature is collect, which is also an action. Collect takes an RDD and has 

all of the information stored in it across all of the nodes, and sends it all to the driver 

node as a list. Its name is appropriate, as it collects all of the data to a single node. This 

can be useful if serial processing is needed, or if communications work needs to be 

done like in the case of information needed globally. 

The fourth feature is how Spark allows for global information to be sent. Normally 

only RDDs are stored across each node, and all other data structures created are stored 

locally on the driver node. Broadcast, however, allows us to send a variable from the 

driver node to every worker node, so that that variable is available for use within 

transformations. 

Finally, we have the parallelize action. Parallelize is used to create a new RDD 

from some list local to the driver node. In this sense it is collect, but in reverse. There 

are many ways to create RDDs, including a built-in-function to read and parallelize a 

text file without the user having to do any processing, but parallelize is the most 

versatile of these methods as it can turn any List object into as RDD. 

Now that we have discussed the main transformations and actions we will be 

using; we can look at the implementation in more detail. As before, the algorithm is 

split into three phases, and each will be discussed in its own subsection.  

 

4.1 Grid Square Density Calculation 

This phase corresponds to the phase discussed in 3.1. In this phase we seek to take 

our data, assign each point to a grid square, and then find the total density of each grid 

square. The input for the parallel form of this phase is a text file containing our data in 
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CSV format (each line is a record, and individual dimensions are separated by 

commas), and a double value corresponding to our grid size. The output will be an 

RDD of gridSquares and a global list of gridSquare densities. The pseudocode for this 

phase is shown in Figures 8 and 9. Figure 8 details the Grid Space determination while 

Figure 9 details the density calculations and communications work. 

First, we must turn our text file data into an RDD. Apache Spark has a built-in 

method for this, which is just Spark.textFile(). This automatically reads in the text file 

and distributes it out to the worker nodes as an RDD of strings. In order to work with 

the data, we need it in the form of doubles, not strings (specifically as arrays of 

doubles). Luckily, we can transform the data from strings to double arrays in the same 

mapToPair operation we use to determine which grid square it belongs to. 

The main work of this first part of the phase is done in a single mapToPair 

transformation. In this transformation, the work done is very similar to that done in the 

first phase of the original algorithm. The mapToPair consists of code to retrieve our 

data point as a double array from the initial string, and then the original logic used to 

determine which grid square a point belongs to based on its offset from the origin in 

each dimension. In order to retrieve a double array, we split the string at each comma, 

and then parse each individual substring into a double. The equation for determining 

the gridSquare is the same as discussed in section 3.1. We divide the data point by 

gridSize and then floor the result. We then return each record in the form of a key-

value pair, with a gridSquare object as the key and our data point as the value.  
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Figure 8. Pseudocode representation of the parallel implementation of the first half of 

Phase 1 of the algorithm. 

 

 

Figure 9. Pseudocode representation of the parallel implementation of the second half of 

Phase 1 of the algorithm. 
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We now take our intermediate RDD and use the second feature of Spark we 

discussed earlier: countByKey. Since our key values correspond to the grid squares, 

countByKey will, in parallel, count how many data points belong to each grid square 

and return this information to the driver node in the form of a Map data structure. This 

is the information we will need in the next phase, but we need it in a slightly different 

form. We first convert the Map structure to a simple List of gridSquares, with their 

densities stored inside of the gridSquare object. We then sort this list of gridSquares by 

decreasing density, much as in the serial form of the algorithm. Now that we have the 

data in the form we want it, we need to send that data to each worker node, so that it is 

globally available. To do this we use the broadcast feature of Spark to transfer the data, 

and then retrieve it in each node as the List. Finally, we parallelize our List as well, 

creating a new RDD. By doing this, we now have an RDD consisting only of a single 

record per grid square, instead of multiple records per grid square. This new RDD and 

the global density list are the output from this phase used in phase 2. 

 

4.2 Densest Neighbor Determination 

This phase corresponds to the phase discussed in 3.2. In this phase we seek to 

identify what each grid square’s densest neighboring grid square is, or if it is its own 

densest neighbor and therefore the core of a cluster. The input for the parallel form of 

this phase is a global list of GridSquares and their densities, sorted in order of 

decreasing density, and an RDD of gridSquares. The output will be a global Map data 

structure connecting each data point to its densest neighbor. The pseudocode for this 

phase is shown in figure 10. 
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Figure 10. Pseudocode representation of the parallel implementation of phase 2 of the 

algorithm. 

 

 We begin with a mapToPair transformation containing all of the algorithmic work. 

In this mapToPair, we follow the same procedure from the serial algorithm, where we 

compare our current gridSquare to each gridSquare in the sorted list, stopping when we 
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find a neighbor or a gridSquare with a density lower than the current gridSquare’s. The 

resulting key-value pair in the new RDD always has the key of our current gridSquare, 

and the value is either our densest neighbor, if one exists, or this point again if it is its 

own densest neighbor. 

 Now that we have an RDD relating each grid square to its densest neighbor, we 

want to retrieve it to the driver node so that we can broadcast it and make it a global 

variable, so that it can be used by the worker nodes in phase 3. To do this, we use a 

special form of collect called collectAsMap. CollectAsMap does the same thing as 

collect, but instead of returning the RDD as a local list of tuples, it returns it as a Map 

data structure with the same key-value pair relations as our RDD. We collect it as a 

Map for quick and efficient look up in phase 3. We then use the same system of 

broadcast and value retrieval as in phase 1 to ensure that we have this Map of densest 

neighbors available as a global variable. 

 

4.3 Cluster Creation 

This phase corresponds to the phase discussed in 3.3. In this phase we seek to 

utilize the densest neighbor information from phase 2 to create our final clusters. The 

input for the parallel form of this phase is a global map of gridSquares and their 

densest neighbors, and the same RDD of gridSquares used in phase 2. The output will 

be a local list data structure corresponding to our final clusters. This list will have the 

form of a List of tuples, where the first value in each tuple is the core gridSquare, and 

the second value is a List of grid squares in the cluster with that core. The pseudocode 

for this phase is shown in figure 11. 
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Figure 11. Pseudocode representation of the parallel implementation of phase 3 of the 

algorithm. 

 

This is the first parallel phase where the function done within our main mapToPair 

takes on a significantly different form than that of the serial form of this phase. Since 

the serial version constructs our clusters piece-by-piece using global information, we 



35 

 

are not able to use the exact same procedure here. Instead we use the concept that each 

cluster has a core grid square, and seek to determine which core square each grid 

square belongs to. We can then use this notation to construct our final clusters. In order 

to determine the core cluster each grid square belongs to; we have to follow the chains 

of densest neighbors until we find a grid square that is its own densest neighbor. We do 

this by, for each grid square in the RDD, looking it up in our map to find its densest 

neighbor. If it is not already a core grid square because of its densest neighbor being 

itself, we continue following the chain of densest neighbors, looking up each new 

neighbor in the map until we find that core grid square. We then return a new record as 

a key-value pair where the key is the core grid square and the value is our current grid 

square. This results in an RDD with one record per grid square, with those squares as 

the values and the final grid square that is their root as the keys.  

Since, outside of some very extreme corner case data sets, there are fewer clusters, 

and therefore core squares, than grid squares overall, this means that the keys are non-

unique. This is important as we are then able to use the groupByKey transformation to 

reduce our RDD down to a single record per cluster. GroupByKey first shuffles the 

partitioning of an RDD so that each record with the same key is on a single node. It 

then combines the values of those records into a List structure, and sets that as the 

value field of a new key-value pair. In this manner we go from our RDD of one record 

per grid square to an RDD with one record per cluster, with a key of the core square of 

the cluster and the value of a list of all of the grid squares belonging to that cluster. We 

are then able to collect this to the driver node as a List, with each record in the list 

corresponding to a single cluster. 
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CHAPTER V 

 

Experiments 

 

This section describes the procedures and results from the experiments used to test 

the algorithm in both serial and parallel. The serial experiments will be discussed in 

section 5.1, while the parallel experiments will be discussed in section 5.2.  

 

5.1 Serial Experiments 

5.1.1 Data Sets 

Two types of data sets were used for the serial experiments: synthetically generated 

data sets created by Julia Handl from the University of Manchester [21] detailed in 

Table 1, and ten well-known real data sets from the UCI Machine Learning Repository 

[22] – [31] detailed in Table 2. The synthetic data sets are relatively low-noise 

compared to the real data sets, which is why a selection of both were used. 

Julia Handl is an associate professor at the University of Manchester who created a 

cluster generator that could create high-dimensional data sets with ground-truth 

clusters to be used as test data for clustering algorithms [21]. The website hosting the 

information and source code for her generators also contains 160 sample data sets 

produced by the generator, of which 24 were selected for use in this testing. Table 1 

details the relevant information about each selected data set.  
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Table 1. Synthetic data set information for serial experiments 

Data Set Clusters Features Instances 

2d-4c-no0.dat 4 2 1572 

2d-4c-no1.dat 4 2 1623 

2d-4c-no2.dat 4 2 1064 

2d-10c-no0.dat 10 2 2972 

2d-10c-no1.dat 10 2 2525 

2d-10c-no2.dat 10 2 3073 

2d-20c-no0.dat 20 2 1517 

2d-20c-no1.dat 20 2 1231 

2d-20c-no2.dat 20 2 1084 

2d-40c-no0.dat 40 2 2563 

2d-40c-no1.dat 40 2 2215 

2d-40c-no2.dat 40 2 2146 

10d-4c-no0.dat 4 10 1289 

10d-4c-no1.dat 4 10 958 

10d-4c-no2.dat 4 10 838 

10d-10c-no0.dat 10 10 2729 

10d-10c-no1.dat 10 10 3056 

10d-10c-no2.dat 10 10 3618 

10d-20c-no0.dat 20 10 1013 

10d-20c-no1.dat 20 10 904 

10d-20c-no2.dat 20 10 1164 

10d-40c-no0.dat 40 10 1937 

10d-40c-no1.dat 40 10 2289 

10d-40c-no2.dat 40 10 2502 

 

The real data sets were all retrieved from the UCI Machine Learning Repository, and 

represent a wide range of different fields and types of observations [22] – [31]. Many of 

the data sets selected are well known and frequently used for testing data analysis 

algorithms. There is a wide range of dimensionality, amount of data points, and number 

of clusters. Table 2 details the relevant information about each of these data sets. 
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Table 2. Real data set information for serial experiments 

Data Set Clusters Features Instances 

Iris[22] 3 4 150 

Ecoli[23] 8 7 336 

Pendigits[24] 10 16 3498 

Mammogram[25] 2 5 830 

Red Wine[26] 6 11 1599 

Seeds[27] 10 7 210 

Libras[28] 15 90 360 

Gesture[29] 5 50 1743 

Ionosphere[30] 2 34 351 

Parkinsons[31] 2 16 195 

 

5.1.2 Experimental Procedures 

Each data set was processed using both the Density-Grid clustering algorithm and 

the DBSCAN algorithm. They were run 10 times through each algorithm to calculate an 

average runtime, as both algorithms are guaranteed to result in the same final clustering 

accuracy (in comparison to an algorithm like k-means that has a random initialization). 

An optimal-to-the-thousandsth input variable was used for each algorithm to ensure 

fairness. Final clustering accuracy was calculated using the Adjusted Rand Index, a 

commonly-used metric for cluster similarity. The Rand Index works by, for every pair 

of data points in the data set, comparing the experimental and labeled clusterings to see 

whether those two data points are in the same or different clusters in each clustering. 

This means it serves as a measure of how often the two clusterings agree or disagree. 

The Adjusted Rand Index corrects for chance, giving a more accurate result. 

DBSCAN was used for comparison for several reasons. It is one of the most, if not 

the most, widely used clustering algorithms in existence, and is well-regarded for both 
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its accuracy and runtimes. Furthermore, it is also a density-based clustering algorithm 

like our Density-Grid algorithm, meaning the two are very similar in terms of capabilities 

and are therefore suitable for comparison. Both handle arbitrary shapes of clusters, have 

a single input variable, and utilize similar underlying concepts in regards to the 

representation of clusters as dense areas of space. 

Our tests were run on a university-provided computing cluster with 24 computing 

threads, Apache Hadoop as management software, and YARN as our resource allocator, 

with the code for both algorithms being implemented using Java. 

 

5.1.3 Results 

The two main metrics by which a clustering algorithm can be judged are its runtimes 

and accuracy. We will start with runtimes, as that is the metric we are most heavily 

targeting with our algorithm design. 

Table 3 summarizes the results of the synthetic data runtime testing, showing and 

average runtime difference of 40.77ms, which is 49 percent faster on average. More 

importantly, the difference in runtime between the two algorithms increases with regards 

to the number of data points in each data set as shown in Figure 12. 

In Table 4 we look at the results from the real data tests, which have a similar 

improvement with an average runtime difference of 38.05ms, or 51 percent. Like the 

synthetic tests, we also see a trend of the runtime difference increasing with respect to the 

number of data points, as shown in Figure 13. 
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Table 3. Synthetic Data Runtime Averages 

Data Set 
Runtime Average (ms)   

Density-Grid DBSCAN  Difference Percent Difference 

2d-4c-no0.dat 13.16 38.97 25.82 0.66 

2d-4c-no1.dat 13.48 41.19 27.71 0.67 

2d-4c-no2.dat 10.29 25.48 15.19 0.60 

2d-10c-no0.dat 19.72 103.23 83.51 0.81 

2d-10c-no1.dat 18.85 86.46 67.61 0.78 

2d-10c-no2.dat 23.29 140.05 116.76 0.83 

2d-20c-no0.dat 18.95 47.72 28.77 0.60 

2d-20c-no1.dat 16.38 28.33 11.95 0.42 

2d-20c-no2.dat 19.24 24.08 4.83 0.20 

2d-40c-no0.dat 25.88 82.12 56.24 0.68 

2d-40c-no1.dat 23.46 66.17 42.70 0.65 

2d-40c-no2.dat 23.88 61.51 37.63 0.61 

10d-4c-no0.dat 33.75 54.50 20.75 0.38 

10d-4c-no1.dat 27.03 34.77 7.74 0.22 

10d-4c-no2.dat 29.41 27.34 -2.07 -0.08 

10d-10c-no0.dat 104.08 175.43 71.35 0.41 

10d-10c-no1.dat 115.27 221.73 106.46 0.48 

10d-10c-no2.dat 164.49 264.79 100.31 0.38 

10d-20c-no0.dat 36.09 41.73 5.64 0.14 

10d-20c-no1.dat 35.91 34.22 -1.69 -0.05 

10d-20c-no2.dat 37.16 41.18 4.02 0.10 

10d-40c-no0.dat 58.60 98.91 40.30 0.41 

10d-40c-no1.dat 73.74 119.88 46.14 0.38 

10d-40c-no2.dat 86.73 147.57 60.84 0.41 

Average 42.87 83.64 40.77 0.49 

 

Table 4. Real Data Runtime Averages 

Data Set 
Runtime Average (ms)   

Density-Grid DBSCAN Difference Percent Difference 

Iris 5.60 5.52 -0.08 -0.01 

Ecoli 7.92 8.81 0.89 0.10 

Pendigits 127.93 352.97 225.04 0.64 

Mammogram 11.42 26.74 15.32 0.57 

Red Wine Quality 42.36 70.28 27.93 0.40 

Seeds 8.68 10.65 1.97 0.18 

Libras 31.09 36.37 5.28 0.15 

Gesture 90.76 195.07 104.32 0.53 

Ionosphere 22.92 22.10 -0.82 -0.04 

Parkinsons 9.81 10.44 0.63 0.06 

Average 35.85 73.90 38.05 0.51 
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Figure 12. Synthetic data runtime with respect to the number of instances in the data set 

 

 

Figure 13. Real data runtime with respect to the number of instances in the data set 
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Next, we look at accuracy with Table 5 detailing the results of our synthetic testing. 

We see the two algorithms being relatively similar in terms of accuracy, with one or the 

other usually being slightly more or less accurate than the other. There are occasional 

outliers with one being much more accurate than the other, but the final average Adjusted 

Rand Index accuracy difference of only 0.01% proves the closeness of accuracy.  

Table 6 shows the real data testing for accuracy, and shows more variance. A few 

data sets are very closely matched, but in many cases the specific nature of one of the data 

sets causes one or the other of the algorithms to be a significantly better fit. Interestingly 

enough, the Adjusted Rand Index accuracy difference measure ends up being 10.01% 

higher for our algorithm, but this is likely due to the difference in noise handling between 

the two algorithms. DBSCAN is very aggressive with noise handling, frequently refusing 

to place points it considers too noisy into a cluster. In a situation where each point has a 

ground-truth cluster label, this results in an artificial decrease in its Adjusted Rand Index 

score. This is why we only see this phenomenon in the relatively noisier real data sets. By 

comparison, our algorithm makes a best-faith attempt to cluster each data point, as the 

piecewise approximation nature makes it ill-suited for determining if individual points 

are too noisy or not, instead clustering them as an entire grid square. 
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Table 5. Synthetic Data Accuracy Comparison 

Data Set 
Adjusted Rand Index Accuracy (%) 

Density Grid DBSCAN Difference 

2d-4c-no0.dat 99.43% 96.88% 2.54% 

2d-4c-no1.dat 94.21% 96.36% -2.16% 

2d-4c-no2.dat 96.71% 89.47% 7.24% 

2d-10c-no0.dat 94.01% 86.10% 7.91% 

2d-10c-no1.dat 88.72% 90.28% -1.56% 

2d-10c-no2.dat 97.22% 97.12% 0.10% 

2d-20c-no0.dat 98.29% 98.71% -0.42% 

2d-20c-no1.dat 97.01% 86.57% 10.44% 

2d-20c-no2.dat 93.70% 89.80% 3.90% 

2d-40c-no0.dat 91.60% 85.39% 6.21% 

2d-40c-no1.dat 86.99% 84.09% 2.90% 

2d-40c-no2.dat 78.58% 76.59% 2.00% 

10d-4c-no0.dat 92.09% 98.29% -6.21% 

10d-4c-no1.dat 76.29% 78.79% -2.50% 

10d-4c-no2.dat 48.08% 66.43% -18.36% 

10d-10c-no0.dat 64.03% 78.58% -14.54% 

10d-10c-no1.dat 68.18% 57.38% 10.80% 

10d-10c-no2.dat 66.52% 66.85% -0.33% 

10d-20c-no0.dat 97.22% 98.08% -0.86% 

10d-20c-no1.dat 95.92% 99.89% -3.97% 

10d-20c-no2.dat 93.96% 91.18% 2.78% 

10d-40c-no0.dat 94.00% 98.77% -4.77% 

10d-40c-no1.dat 90.11% 89.75% 0.36% 

10d-40c-no2.dat 93.53% 94.68% -1.15% 

Average 87.35% 87.33% 0.01% 

 

Table 6. Real Data Accuracy Comparison 

Data Set 
Adjusted Rand Index Accuracy (%) 

Density Grid DBSCAN Difference 

Iris 79.87% 79.87% 0.00% 

Ecoli 74.03% 50.04% 23.99% 

Pendigits 50.23% 62.35% -12.12% 

Mammogram 34.52% 18.46% 16.06% 

Red Wine Quality 9.32% 4.22% 5.11% 

Seeds 70.88% 40.93% 29.95% 

Libras 21.40% 24.57% -3.17% 

Gesture 19.07% 24.05% -4.98% 

Ionosphere 35.17% 21.96% 13.21% 

Parkinsons 38.67% 6.65% 32.02% 

Average 43.32% 33.31% 10.01% 
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5.2 Parallel Experiments 

5.2.1 Data Sets 

The parallel experiments were conducted using the HEPMASS data set from the 

UCI Machine Learning Repository [32]. The HEPMASS data set is data from a series 

of particle collision experiments, and features both testing and training data sets for 

both constant and variable particle masses. We are using a subset of the constant mass 

training set, which consists of 7000000 instances with 27 features each. We tested 11 

subsets, ranging from 1000 to 1000000 instances, as that was the top end of what our 

computing cluster could handle.  

 

5.2.2 Experimental Procedures 

We ran each subset of the HEPMASS data set through both our serial 

implementation and our parallel implementation of the Density-Grid clustering 

method, recording an average runtime after multiple runs of each subset. Our tests 

were run on a university-provided computing cluster with 24 computing threads, 

Apache Hadoop as management software, YARN as our resource allocator, and 

Apache Spark version 2.1.1 executing our Java implementations for both algorithms. 

Due to these being subsets of a larger data set, accuracy was not compared because 

without all of the data, the labels included are meaningless, as well as the fact that it is 

the same algorithm, so accuracy is exactly the same between both the serial and 

parallel implementations (accuracy was compared during development to ensure the 

correctness of the implementation).  
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Our goal was to determine whether our parallel implementation of the Density-

Grid clustering algorithm was successful, i.e., if it showed the expected behavior in 

regards to its scaling with the number of instances in a data set. The behavior we 

expect to see from a successful and suitable parallel implementation is: Worse 

runtimes with few instances in a data set, better runtime with large numbers of 

instances, and a runtime percentage the improve as the number of instances grows. 

Suitability for real world use is also a top priority, and this can be assessed by 

observing at what point the parallel implementation overtakes the serial in runtime. 

 

5.2.3 Results 

Our runtime comparison data is shown in Table 7. Here we can see that all three of 

the trends in the data we wished to see are in fact present. In the 1000 and 5000 record 

subsets, the two smallest ones, the parallel implementation took longer to complete 

than the serial due to increased communications overhead. After that, we see a 

significant time savings in the larger data sets, with a general trend of the runtime 

difference increasing as the data sets grow larger. There is a small amount of deviation 

from this trend at the 750000 and, to a smaller degree, 1000000 data sets, however we 

believe this to be due to the computing cluster reaching the limits of its hardware, and 

running into communications and storage difficulties. 

Figure 14 shows our runtime data with a normal scale, showing the significant time 

savings at the high end of the data set sizes. The scales involved do mean the runtimes 

involved before the 100000-instance are too small to properly see with this scale. 
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Table 7. Serial and Parallel Runtime Comparison 

Number of Instances 
Runtime (ms)   

Serial Parallel Difference Runtime Percentage 

1000 2977.42 3156.97 -179.55 1.06 

5000 3534.59 3769.81 -235.22 1.07 

10000 4745.83 4660.58 85.24 0.98 

15000 6867.38 6648.85 218.53 0.97 

25000 11132.29 10097.90 1034.40 0.91 

50000 35357.00 24987.25 10369.75 0.71 

100000 109366.10 74673.90 34692.21 0.68 

250000 1100871.90 447619.13 653252.77 0.41 

500000 5373061.33 1985783.47 3387277.86 0.37 

750000 13012802.60 7389147.97 5623654.64 0.57 

1000000 25340973.66 11179733.41 14161240.25 0.44 

 

 

Figure 14. Comparison of parallel and serial implementation runtimes with respect to the 

number of instances in the HEPMASS subset 
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To try to address this shortcoming, Figure 15 uses a logarithmic scale to showcase 

the overall runtime trends with respect to the number of instances in the data. Both 

lines have a similar shape, which makes sense since they are the same algorithm, but 

the parallel implementation is located significantly below that of the serial 

implementation. This graph also shows us the intercept where the two lines cross over 

one another, however it is still too small to truly see any details about that point.  

We get a better view of this intersection by plotting our runtime difference with 

respect to the number of instances in Figure 16. The runtime percentage is defined as 

the runtime of the parallel implementation divided by that of the serial implementation. 

This means that the lower the runtime percentage, the faster the parallel 

implementation’s runtime is in comparison to the serial. The horizontal line with 

percentage equal to 1 represents the point at which the two runtimes are equal. With 

this we can more clearly see that the parallel implementation overtakes the serial at 

around the 10000-instance mark. 



48 

 

 

Figure 15. Comparison of parallel and serial implementation runtimes with respect to the 

number of instances in the HEPMASS subset with a log scale y-axis 

 

 

Figure 16. Graph of the runtime percentage (parallel/serial runtimes) with respect to the 

number of instances in the HEPMASS subset 
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CHAPTER VI 

 

Conclusion 

 

In this paper, we presented the Density-Grid Based Clustering Algorithm, which is 

a novel clustering algorithm designed using concepts from both the density-based and 

grid-based schools of clustering algorithm. It divides the data space into a series of grid 

squares, calculates the densities of each grid square to create a piecewise 

approximation of the underlying density function, and then merges the grid squares 

towards the local density maxima in the underlying density function. We showed that 

this algorithm has significant time savings when compared to DBSCAN, the most 

heavily used density-based clustering method, if not the most used clustering method 

overall. This decrease in runtime was not at the expense of accuracy either, as the 

accuracy difference between the two algorithms was minimal. 

We also presented work in parallelizing this algorithm for use with real world data 

sets using Apache Spark as our parallel computing framework. The testing of the serial 

and parallel implementations showed all of the hallmarks of a successful parallel 

implementation, with runtimes increasingly improving as the data sets increased in 

size. We also showed suitability for real world data sets, as the parallel implementation 

overtook the serial in runtimes at only 10000 records, with a relatively low-power 

cluster of only 24 threads. When real world data sets can easily be well above the 

millions of instances mark, this is an easily achievable mark. 
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Overall, we conclude that the Density-Grid Based Clustering Algorithm 

successfully achieves its goals of improving the scaling of clustering while using 

density-based clustering ideals, all without sacrificing accuracy. Furthermore, we 

conclude that it is suitable for parallelization, and therefore can be used in real-world 

scenarios that other algorithms do not parallelize well for. This algorithm is believed to 

be a significant contribution to the field, and a new candidate for real-world data 

analysis use. 
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