5,667 research outputs found

    Music emotion recognition based on segment-level two-stage learning

    Full text link
    AbstractIn most Music Emotion Recognition (MER) tasks, researchers tend to use supervised learning models based on music features and corresponding annotation. However, few researchers have considered applying unsupervised learning approaches to labeled data except for feature representation. In this paper, we propose a segment-based two-stage model combining unsupervised learning and supervised learning. In the first stage, we split each music excerpt into contiguous segments and then utilize an autoencoder to generate segment-level feature representation. In the second stage, we feed these time-series music segments to a bidirectional long short-term memory deep learning model to achieve the final music emotion classification. Compared with the whole music excerpts, segments as model inputs could be the proper granularity for model training and augment the scale of training samples to reduce the risk of overfitting during deep learning. Apart from that, we also apply frequency and time masking to segment-level inputs in the unsupervised learning part to enhance training performance. We evaluate our model on two datasets. The results show that our model outperforms state-of-the-art models, some of which even use multimodal architectures. And the performance comparison also evidences the effectiveness of audio segmentation and the autoencoder with masking in an unsupervised way.</jats:p

    Audio-based music classification with a pretrained convolutional network

    Get PDF
    Recently the ‘Million Song Dataset’, containing audio features and metadata for one million songs, was made available. In this paper, we build a convolutional network that is then trained to perform artist recognition, genre recognition and key detection. The network is tailored to summarize the audio features over musically significant timescales. It is infeasible to train the network on all available data in a supervised fashion, so we use unsupervised pretraining to be able to harness the entire dataset: we train a convolutional deep belief network on all data, and then use the learnt parameters to initialize a convolutional multilayer perceptron with the same architecture. The MLP is then trained on a labeled subset of the data for each task. We also train the same MLP with randomly initialized weights. We find that our convolutional approach improves accuracy for the genre recognition and artist recognition tasks. Unsupervised pretraining improves convergence speed in all cases. For artist recognition it improves accuracy as well

    Transfer learning by supervised pre-training for audio-based music classification

    Get PDF
    Very few large-scale music research datasets are publicly available. There is an increasing need for such datasets, because the shift from physical to digital distribution in the music industry has given the listener access to a large body of music, which needs to be cataloged efficiently and be easily browsable. Additionally, deep learning and feature learning techniques are becoming increasingly popular for music information retrieval applications, and they typically require large amounts of training data to work well. In this paper, we propose to exploit an available large-scale music dataset, the Million Song Dataset (MSD), for classification tasks on other datasets, by reusing models trained on the MSD for feature extraction. This transfer learning approach, which we refer to as supervised pre-training, was previously shown to be very effective for computer vision problems. We show that features learned from MSD audio fragments in a supervised manner, using tag labels and user listening data, consistently outperform features learned in an unsupervised manner in this setting, provided that the learned feature extractor is of limited complexity. We evaluate our approach on the GTZAN, 1517-Artists, Unique and Magnatagatune datasets
    • …
    corecore