108 research outputs found

    Anomaly detection with machine learning for automotive cyber-physical systems

    Get PDF
    2022 Spring.Includes bibliographical references.Today's automotive systems are evolving at a rapid pace and there has been a seismic shift in automotive technology in the past few years. Automakers are racing to redefine the automobile as a fully autonomous and connected system. As a result, new technologies such as advanced driver assistance systems (ADAS), vehicle-to-vehicle (V2V), 5G vehicle to infrastructure (V2I), and vehicle to everything (V2X), etc. have emerged in recent years. These advances have resulted in increased responsibilities for the electronic control units (ECUs) in the vehicles, requiring a more sophisticated in-vehicle network to address the growing communication needs of ECUs with each other and external subsystems. This in turn has transformed modern vehicles into a complex distributed cyber-physical system. The ever-growing connectivity to external systems in such vehicles is introducing new challenges, related to the increasing vulnerability of such vehicles to various cyber-attacks. A malicious actor can use various access points in a vehicle, e.g., Bluetooth and USB ports, telematic systems, and OBD-II ports, to gain unauthorized access to the in-vehicle network. These access points are used to gain access to the network from the vehicle's attack surface. After gaining access to the in-vehicle network through an attack surface, a malicious actor can inject or alter messages on the network to try to take control of the vehicle. Traditional security mechanisms such as firewalls only detect simple attacks as they do not have the ability to detect more complex attacks. With the increasing complexity of vehicles, the attack surface increases, paving the way for more complex and novel attacks in the future. Thus, there is a need for an advanced attack detection solution that can actively monitor the in-vehicle network and detect complex cyber-attacks. One of the many approaches to achieve this is by using an intrusion detection system (IDS). Many state-of-the-art IDS employ machine learning algorithms to detect cyber-attacks for its ability to detect both previously observed as well as novel attack patterns. Moreover, the large availability of in-vehicle network data and increasing computational power of the ECUs to handle emerging complex automotive tasks facilitates the use of machine learning models. Therefore, due to its large spectrum of attack coverage and ability to detect complex attack patterns, we adopt and propose two novel machine learning based IDS frameworks (LATTE and TENET) for in-vehicle network anomaly detection. Our proposed LATTE framework uses sequence models, such as LSTMs, in an unsupervised setting to learn the normal system behavior. LATTE leverages the learned information at runtime to detect anomalies by observing for any deviations from the learned normal behavior. Our proposed LATTE framework aims to maximize the anomaly detection accuracy, precision, and recall while minimizing the false-positive rate. The increased complexity of automotive systems has resulted in very long term dependencies between messages which cannot be effectively captured by LSTMs. Hence to overcome this problem, we proposed a novel IDS framework called TENET. TENET employs a novel convolutional neural attention (TCNA) based architecture to effectively learn very-long term dependencies between messages in an in-vehicle network during the training phase and leverage the learned information in combination with a decision tree classifier to detect anomalous messages. Our work aims to efficiently detect a multitude of attacks in the in-vehicle network with low memory and computational overhead on the ECU

    Deep Learning-based Vehicle Behaviour Prediction For Autonomous Driving Applications: A Review

    Full text link
    Behaviour prediction function of an autonomous vehicle predicts the future states of the nearby vehicles based on the current and past observations of the surrounding environment. This helps enhance their awareness of the imminent hazards. However, conventional behaviour prediction solutions are applicable in simple driving scenarios that require short prediction horizons. Most recently, deep learning-based approaches have become popular due to their superior performance in more complex environments compared to the conventional approaches. Motivated by this increased popularity, we provide a comprehensive review of the state-of-the-art of deep learning-based approaches for vehicle behaviour prediction in this paper. We firstly give an overview of the generic problem of vehicle behaviour prediction and discuss its challenges, followed by classification and review of the most recent deep learning-based solutions based on three criteria: input representation, output type, and prediction method. The paper also discusses the performance of several well-known solutions, identifies the research gaps in the literature and outlines potential new research directions

    An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos

    Full text link
    Videos represent the primary source of information for surveillance applications and are available in large amounts but in most cases contain little or no annotation for supervised learning. This article reviews the state-of-the-art deep learning based methods for video anomaly detection and categorizes them based on the type of model and criteria of detection. We also perform simple studies to understand the different approaches and provide the criteria of evaluation for spatio-temporal anomaly detection.Comment: 15 pages, double colum

    VT-Former: A Transformer-based Vehicle Trajectory Prediction Approach For Intelligent Highway Transportation Systems

    Full text link
    Enhancing roadway safety and traffic management has become an essential focus area for a broad range of modern cyber-physical systems and intelligent transportation systems. Vehicle Trajectory Prediction is a pivotal element within numerous applications for highway and road safety. These applications encompass a wide range of use cases, spanning from traffic management and accident prevention to enhancing work-zone safety and optimizing energy conservation. The ability to implement intelligent management in this context has been greatly advanced by the developments in the field of Artificial Intelligence (AI), alongside the increasing deployment of surveillance cameras across road networks. In this paper, we introduce a novel transformer-based approach for vehicle trajectory prediction for highway safety and surveillance, denoted as VT-Former. In addition to utilizing transformers to capture long-range temporal patterns, a new Graph Attentive Tokenization (GAT) module has been proposed to capture intricate social interactions among vehicles. Combining these two core components culminates in a precise approach for vehicle trajectory prediction. Our study on three benchmark datasets with three different viewpoints demonstrates the State-of-The-Art (SoTA) performance of VT-Former in vehicle trajectory prediction and its generalizability and robustness. We also evaluate VT-Former's efficiency on embedded boards and explore its potential for vehicle anomaly detection as a sample application, showcasing its broad applicability

    Deep learning-based vehicle behaviour prediction for autonomous driving applications : a review

    Get PDF
    Behaviour prediction function of an autonomous vehicle predicts the future states of the nearby vehicles based on the current and past observations of the surrounding environment. This helps enhance their awareness of the imminent hazards. However, conventional behavior prediction solutions are applicable in simple driving scenarios that require short prediction horizons. Most recently, deep learning-based approaches have become popular due to their promising performance in more complex environments compared to the conventional approaches. Motivated by this increased popularity, we provide a comprehensive review of the state-of-the-art of deep learning-based approaches for vehicle behavior prediction in this article. We firstly give an overview of the generic problem of vehicle behavior prediction and discuss its challenges, followed by classification and review of the most recent deep learning-based solutions based on three criteria: input representation, output type, and prediction method. The article also discusses the performance of several well-known solutions, identifies the research gaps in the literature and outlines potential new research directions

    VegaEdge: Edge AI Confluence Anomaly Detection for Real-Time Highway IoT-Applications

    Full text link
    Vehicle anomaly detection plays a vital role in highway safety applications such as accident prevention, rapid response, traffic flow optimization, and work zone safety. With the surge of the Internet of Things (IoT) in recent years, there has arisen a pressing demand for Artificial Intelligence (AI) based anomaly detection methods designed to meet the requirements of IoT devices. Catering to this futuristic vision, we introduce a lightweight approach to vehicle anomaly detection by utilizing the power of trajectory prediction. Our proposed design identifies vehicles deviating from expected paths, indicating highway risks from different camera-viewing angles from real-world highway datasets. On top of that, we present VegaEdge - a sophisticated AI confluence designed for real-time security and surveillance applications in modern highway settings through edge-centric IoT-embedded platforms equipped with our anomaly detection approach. Extensive testing across multiple platforms and traffic scenarios showcases the versatility and effectiveness of VegaEdge. This work also presents the Carolinas Anomaly Dataset (CAD), to bridge the existing gap in datasets tailored for highway anomalies. In real-world scenarios, our anomaly detection approach achieves an AUC-ROC of 0.94, and our proposed VegaEdge design, on an embedded IoT platform, processes 738 trajectories per second in a typical highway setting. The dataset is available at https://github.com/TeCSAR-UNCC/Carolinas_Dataset#chd-anomaly-test-set

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    A Deep Learning Approach for Spatiotemporal-Data-Driven Traffic State Estimation

    Get PDF
    The past decade witnessed rapid developments in traffic data sensing technologies in the form of roadside detector hardware, vehicle on-board units, and pedestrian wearable devices. The growing magnitude and complexity of the available traffic data has fueled the demand for data-driven models that can handle large scale inputs. In the recent past, deep-learning-powered algorithms have become the state-of-the-art for various data-driven applications. In this research, three applications of deep learning algorithms for traffic state estimation were investigated. Firstly, network-wide traffic parameters estimation was explored. An attention-based multi-encoder-decoder (Att-MED) neural network architecture was proposed and trained to predict freeway traffic speed up to 60 minutes ahead. Att-MED was designed to encode multiple traffic input sequences: short-term, daily, and weekly cyclic behavior. The proposed network produced an average prediction accuracy of 97.5%, which was superior to the compared baseline models. In addition to improving the output performance, the model\u27s attention weights enhanced the model interpretability. This research additionally explored the utility of low-penetration connected probe-vehicle data for network-wide traffic parameters estimation and prediction on freeways. A novel sequence-to-sequence recurrent graph networks (Seq2Se2 GCN-LSTM) was designed. It was then trained to estimate and predict traffic volume and speed for a 60-minute future time horizon. The proposed methodology generated volume and speed predictions with an average accuracy of 90.5% and 96.6%, respectively, outperforming the investigated baseline models. The proposed method demonstrated robustness against perturbations caused by the probe vehicle fleet\u27s low penetration rate. Secondly, the application of deep learning for road weather detection using roadside CCTVs were investigated. A Vision Transformer (ViT) was trained for simultaneous rain and road surface condition classification. Next, a Spatial Self-Attention (SSA) network was designed to consume the individual detection results, interpret the spatial context, and modify the collective detection output accordingly. The sequential module improved the accuracy of the stand-alone Vision Transformer as measured by the F1-score, raising the total accuracy for both tasks to 96.71% and 98.07%, respectively. Thirdly, a real-time video-based traffic incident detection algorithm was developed to enhance the utilization of the existing roadside CCTV network. The methodology automatically identified the main road regions in video scenes and investigated static vehicles around those areas. The developed algorithm was evaluated using a dataset of roadside videos. The incidents were detected with 85.71% sensitivity and 11.10% false alarm rate with an average delay of 27.53 seconds. In general, the research proposed in this dissertation maximizes the utility of pre-existing traffic infrastructure and emerging probe traffic data. It additionally demonstrated deep learning algorithms\u27 capability of modeling complex spatiotemporal traffic data. This research illustrates that advances in the deep learning field continue to have a high applicability potential in the traffic state estimation domain
    • …
    corecore