
THESIS

ANOMALY DETECTION WITH MACHINE LEARNING FOR AUTOMOTIVE CYBER-

PHYSICAL SYSTEMS

Submitted by

Sooryaa Vignesh Thiruloga

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2022

Doctoral Committee:

 Advisor: Sudeep Pasricha

 Ryan Kim
 Indrakshi Ray

Copyright by Sooryaa Vignesh Thiruloga 2022

All Rights Reserved

ii

ABSTRACT

ANOMALY DETECTION WITH MACHINE LEARNING FOR AUTOMOTIVE CYBER-

PHYSICAL SYSTEMS

Today’s automotive systems are evolving at a rapid pace and there has been a seismic shift

in automotive technology in the past few years. Automakers are racing to redefine the

automobile as a fully autonomous and connected system. As a result, new technologies such as

advanced driver assistance systems (ADAS), vehicle-to-vehicle (V2V), 5G vehicle to

infrastructure (V2I), and vehicle to everything (V2X), etc. have emerged in recent years. These

advances have resulted in increased responsibilities for the electronic control units (ECUs) in the

vehicles, requiring a more sophisticated in-vehicle network to address the growing

communication needs of ECUs with each other and external subsystems. This in turn has

transformed modern vehicles into a complex distributed cyber-physical system. The ever-

growing connectivity to external systems in such vehicles is introducing new challenges, related

to the increasing vulnerability of such vehicles to various cyber-attacks. A malicious actor can

use various access points in a vehicle, e.g., Bluetooth and USB ports, telematic systems, and

OBD-II ports, to gain unauthorized access to the in-vehicle network. These access points are

used to gain access to the network from the vehicle’s attack surface. After gaining access to the

in-vehicle network through an attack surface, a malicious actor can inject or alter messages on

the network to try to take control of the vehicle.

Traditional security mechanisms such as firewalls only detect simple attacks as they do not

have the ability to detect more complex attacks. With the increasing complexity of vehicles, the

iii

attack surface increases, paving the way for more complex and novel attacks in the future. Thus,

there is a need for an advanced attack detection solution that can actively monitor the in-vehicle

network and detect complex cyber-attacks. One of the many approaches to achieve this is by

using an intrusion detection system (IDS). Many state-of-the-art IDS employ machine learning

algorithms to detect cyber-attacks for its ability to detect both previously observed as well as

novel attack patterns. Moreover, the large availability of in-vehicle network data and increasing

computational power of the ECUs to handle emerging complex automotive tasks facilitates the

use of machine learning models. Therefore, due to its large spectrum of attack coverage and

ability to detect complex attack patterns, we adopt and propose two novel machine learning

based IDS frameworks (LATTE and TENET) for in-vehicle network anomaly detection.

Our proposed LATTE framework uses sequence models, such as LSTMs, in an

unsupervised setting to learn the normal system behavior. LATTE leverages the learned

information at runtime to detect anomalies by observing for any deviations from the learned

normal behavior. Our proposed LATTE framework aims to maximize the anomaly detection

accuracy, precision, and recall while minimizing the false-positive rate.

The increased complexity of automotive systems has resulted in very long term

dependencies between messages which cannot be effectively captured by LSTMs. Hence to

overcome this problem, we proposed a novel IDS framework called TENET. TENET employs a

novel convolutional neural attention (TCNA) based architecture to effectively learn very-long

term dependencies between messages in an in-vehicle network during the training phase and

leverage the learned information in combination with a decision tree classifier to detect

anomalous messages. Our work aims to efficiently detect a multitude of attacks in the in-vehicle

network with low memory and computational overhead on the ECU.

iv

ACKNOWLEDGEMENTS

I would like to thank all the individuals whose encouragement and support have made the

completion of this thesis possible.

First and foremost, I would like to express my sincere gratitude to my advisor, Prof.

Sudeep Pasricha, who has guided me through the process of this study with his insightful and

timely advice. I can with complete confidence say that it was only with his encouragement and

motivation I was able to explore the exciting domain of in-vehicle network cybersecurity. He

ensured that I was always on the right track and have all the necessary resources for my research.

He nurtured the analytical mindset and gave me sufficient time and opportunities to realize my

true potential in accomplishing my M.S. goals. I would like to thank Prof. Sudeep Pasricha for

all the help, guidance, inspiration, and encouragement.

I would like to take this opportunity to thank the respected members of my thesis

committee,

Prof. Ryan Kim, and Prof. Indrakshi Ray. Their feedback helped me to refine my work from

different perspectives.

Furthermore, my special thanks to my research partner Vipin Kumar Kukkala, whose

collaboration helped me understand the research challenges in my initial days of maters studies

by gaining valuable insights on in-vehicle network cybersecurity and more over for his support

and cooperation through intellectually stimulating conversations that boosted my morale while

solving complex research problems. This list cannot be complete without mentioning the

company and the help from my current and former lab mates in Prof. Pasricha’s EPIC lab:

v

Abhishek Balasubramanium, Joydeep Dey, Saideep Tiku, Ninad Hogade, Shoumik Maiti, Febin

Sunny, Asif Anwar Baig Mirza, Kamil Khan, and Liping Wang.

 I am blessed to have a wonderful family ‒ my father Thiruloga Chander Prakasam, my

mother Revathy Thiruloga Chander, and my sister Mrudha Sri Thiruloga ‒ for their continuous

support that empowered me to pursue my master’s degree. Their generosity and humility have

made me continually strive to be a better person.

vi

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS... iv

LIST OF TABLES .. ix

LIST OF FIGURES ..x

LIST OF RESEARCH PUBLICATIONS ... xii

JOURNAL PUBLICATIONS: ... xii

CONFERENCE PUBLICATIONS: ... xii

BOOK CHAPTER: .. xii

1. INTRODUCTION ...1

1.1. OVERVIEW AND MOTIVATION ..1

1.2. HISTORY OF AUTOMOTIVE CYBER-ATTACKS ...3

1.3. THESIS OVERVIEW ...6

2. BACKGROUND AND RELATED WORK ...9

2.1. BACKGROUND ..9

2.1.1 INTRUSION DETECTION SYSTEM (IDS) ...9

2.1.2 SYSTEM OVERVIEW .. 14

2.1.3 COMMUNICATION MODEL .. 15

2.1.4 ATTACK MODEL .. 17

2.1.5 NEURAL NETWORKS... 19

2.1.6 SEQUENCE MODELS.. 22

2.2. RELATED WORK ... 32

2.3. LIMITATIONS OF EXISTING APPROACHES .. 36

vii

3. LATTE: LSTM SELF-ATTENTION BASED ANOMALY DETECTION IN

AUTOMOTIVE CYBER-PHYSICAL SYSTEMS .. 38

3.1 LATTE FRAMEWORK: OVERVIEW... 39

3.1.1 DATA COLLECTION ... 40

3.1.2 PREDICTOR MODEL .. 41

3.1.3 DETECTOR MODEL .. 44

3.1.4 MODEL TESTING .. 47

3.2 EXPERIMENTAL STUDIES ... 48

3.2.1 EXPERIMENTAL SETUP .. 48

3.2.2 COMPARISON OF LATTE VARIANTS ... 50

3.2.3 COMPARISON OF LATTE WITH PRIOR WORKS ... 53

3.2.4 LATTE OVERHEAD ANALYSIS .. 56

3.3 CONCLUSION .. 57

4. TENET: TEMPORAL CNN WITH ATTENTION FOR ANOMALY DETECTION IN

AUTOMOTIVE CYBER-PHYSICAL SYSTEMS .. 58

4.1 TENET FRAMEWORK: OVERVIEW... 59

4.1.1 DATA COLLECTION ... 60

4.1.2 TENET LEARNING PHASE .. 61

4.1.3 TENET EVALUATION PHASE ... 65

4.2 EXPERIMENTS ... 67

4.2.1 EXPERIMENTAL SETUP .. 67

4.2.2 RECEPTIVE FIELD LENGTH ANALYSIS ... 70

4.2.3 COMPARISON OF TENET CLASSIFIER VARIANTS 71

4.2.4 PRIOR WORK COMPARISON .. 74

4.2.5 TENET MEMORY OVERHEAD ANALYSIS ... 78

viii

4.3 CONCLUSION .. 80

5. CONCLUSION AND FUTURE WORK .. 81

5.1. RESEARCH CONCLUSION ... 81

5.2. FUTURE WORK ... 82

5.2.1 INTRUSION RESPONSE SYSTEMS (IRS) ... 82

5.2.2 DATA PROTECTION AND PRIVACY ... 83

5.2.2 TAMPER-PROOF AI.. 84

5.2.3 SECURING AUTOMOTIVE IC SUPPLY CHAINS ... 84

5.2.4 ADOPTING EMERGING TECHNOLOGIES ... 85

BIBLIOGRAPHY ... 86

ix

LIST OF TABLES

Table 1 Memory, model and runtime overhead of LATTE in comparison with BWMP [52],

HAbAD [55], and S-HAbAD [55] ... 56

Table 2 TCNA variants with different receptive field lengths ... 70

Table 3 Average percentage improvement of TENET over comparison works........................ 75

x

LIST OF FIGURES

Figure 1 Illustration of an in-vehicle network connecting different ECUs using isolated networks

that are connected to a gateway (GW), and external connectivity of modern vehicles with various

systems in the environment. .. 2

Figure 2 Timeline of major automotive cyber-attacks .. 4

Figure 3 CIA Triad .. 10

Figure 4 IDS Classification ... 12

Figure 5 Overview of automotive system ... 14

Figure 6 CAN frame format. ... 16

Figure 7 Real-world CAN message with signal information. .. 17

Figure 8 Example of an artificial neural network with 2 hidden layers. 20

Figure 9 A single artificial neural network neuron model. .. 21

Figure 10 (a) A single RNN cell and (b) unrolled RNN unit; where, f-RNN cell, x-input, and h-

hidden state. .. 23

Figure 11 (a) A single LSTM cell with different gates and (b) unrolled LSTM unit; where, f-

LSTM cell, x-input, c-cell state, and h-hidden state. ... 26

Figure 12 (a) A single GRU cell with different gates and (b) unrolled GRU unit; where, f-GRU

cell, x-input, and h-hidden state. .. 28

Figure 13 Example CNN based sequence network using dilated causal convolutional layers with

dilation factors (d) of 1, 2, and 4. ... 30

Figure 14 An example of an anomaly detection framework that monitors the network traffic and

detects deviations from expected normal behavior during the attack intervals shown in red. 38

xi

Figure 15 Overview of proposed LATTE framework. ... 40

Figure 16 Our proposed predictor model for the LATTE anomaly detection framework showing

the stacked LSTM encoder – decoder rolled out in time for t time steps along with the self-

attention mechanism generating context vector for time step t. The output at time step t (xt) is the

prediction of the input at time step t+1 (xt + 1)... 42

Figure 17 OCSVM decision boundary shown in the blue sphere with the green dots showing the

normal samples from training data, and yellow and red dots showing the normal and anomalous

samples respectively from test data. ... 45

Figure 18 Comparison of (a) detection accuracy, (b) false-positive rates, (c) F1 score of LATTE

variants under different attack scenarios, and (d) ROC curve with AUC for continuous attack. 53

Figure 19 Comparison of (a) accuracy, (b) false-positive rates, (c) F1 score of LATTE and the

comparison works under different attack scenarios, and (c) ROC curve with AUC for continuous

attack. ... 55

Figure 20 Different phases of our proposed TENET framework .. 59

Figure 21 (a) TCNA network architecture with the internal structure of the TCNA block, (b)

TCN residual block showing the various layers of transformation and, (c) the attention

mechanism. ... 62

Figure 22 Comparison of (a) detection accuracy and (b) MCC of TENET variants under various

attack scenarios, and (c) ROC with AUC for the playback attack. ... 73

Figure 23 Comparison of (a) detection accuracy, (b) MCC, (c) FNR, (d) FPR of TENET and

comparison works under various attack scenarios, and (e) ROC with AUC for playback attack.77

Figure 24 Comparison of memory overhead of TENET and the comparison works. 79

xii

LIST OF RESEARCH PUBLICATIONS

JOURNAL PUBLICATIONS:

 V. K. Kukkala, S. V. Thiruloga, and S. Pasricha, “Roadmap for Cybersecurity in

Autonomous Vehicles”, IEEE Consumer Electronics Magazine (CEM) (under review),

2021.

 V. K. Kukkala, S. V. Thiruloga, and S. Pasricha, “LATTE: LSTM Self-Attention based

Anomaly Detection in Embedded Automotive Platforms”, in ACM Transactions on

Embedded Computing Systems (TECS), Volume 20, Issue 5, pp 1–23, 2021.

 V. K. Kukkala, S. V. Thiruloga, and S. Pasricha, “INDRA: Intrusion Detection using

Recurrent Autoencoders in Automotive Embedded Systems”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, (TCAD), 39(11), Nov 2020.

CONFERENCE PUBLICATIONS:

 S. V. Thiruloga, V. K. Kukkala, and S. Pasricha, “TENET: Temporal CNN with Attention

for Anomaly Detection in Automotive Cyber-Physical Systems”, IEEE/ACM Asia & South

Pacific Design Automation Conference (ASPDAC) (to appear), 2022.

BOOK CHAPTER:

 V. K. Kukkala, S. V. Thiruloga, and S. Pasricha, “AI for Cybersecurity in Distributed

Automotive IoT Systems”, Electronic Design for AI, IoT and Hardware Security (to

appear), Springer, 2022.

1

1. INTRODUCTION

This chapter provides an overview of the ongoing transformation of the automotive

industry and the necessity for securing future vehicles. Autonomous vehicles are on the horizon

and will be transforming transportation safety and comfort. These vehicles will be connected to

various external systems and utilize advanced cyber-physical systems (CPS) to perceive their

environment and make intelligent decisions. However, this increased connectivity makes these

vehicles vulnerable to various cyber-attacks that can have catastrophic effects. Attacks on

automotive systems are already on the rise in today’s vehicles and are expected to become more

commonplace in future autonomous vehicles. Thus, there is a need to strengthen cybersecurity in

future autonomous vehicles. This chapter also gives a general overview of the contributions of

this thesis.

1.1. OVERVIEW AND MOTIVATION

The aggressive attempts of automakers to make vehicles fully autonomous have resulted in

increased software and hardware complexity across automotive subsystems. Many state-of-the-

art automotive subsystems for collision avoidance, lane keep assist, pedestrian and traffic sign

detection, etc., demand powerful CPS, typically referred to as Electronic Control Units (ECUs),

to be integrated into the vehicles. To meet the needs across various subsystems, a diverse set of

ECUs consisting of different compute and memory capacities are used in today’s vehicles. The

ECUs are distributed across the vehicle and communicate using an in-vehicle network. Several

in-vehicle network protocols are used in modern vehicles to meet the data rate, timing, and

reliability requirements of automotive subsystems. Some of the most commonly used in-vehicle

2

network protocols include controller area network (CAN), local interconnect network (LIN),

FlexRay, and Ethernet. Both ECUs and in-vehicle networks are becoming more complex to

satisfy emerging autonomy needs.

Figure 1 Illustration of an in-vehicle network connecting different ECUs using isolated

networks that are connected to a gateway (GW), and external connectivity of modern

vehicles with various systems in the environment.

Additionally, a variety of automotive subsystems rely heavily on the data from external

systems as shown in Figure 1, which makes modern vehicles highly vulnerable to various

security attacks. In the past decade (2010 onwards), nearly 79.6% of all automotive attacks have

been remote attacks, which do not require the attacker to be within the vicinity of the vehicle [1].

A variety of attack vectors have been used including wireless fidelity (WiFi), telematics,

Bluetooth, keyless entry systems, and mobile applications. We discuss many of these attacks in

the next subsection, as well as techniques that have been proposed to protect vehicles from

cyber-attacks. However, due to the overall increase of the automotive system complexity

3

(heterogeneous ECUs, network architectures/protocols, and applications), detecting cyber-attacks

is not easy, which poses a major challenge for emerging connected and autonomous vehicles

(CAVs). There is a critical need for a monitoring solution that can serve as an intrusion detection

system (IDS) to detect cyber-attacks in vehicles. Traditionally, such IDSs in computing systems

have relied on using firewalls, or rule-based systems to detect cyber-attacks. These simple

systems cannot detect highly complex modern automotive attacks.

Another interesting trend in modern vehicles is the widespread adoption of artificial

intelligence (AI) techniques for advanced driver assistance subsystems (ADAS), where

environmental perception is required [2]. Such AI techniques can also be deployed in powerful

automotive ECUs to monitor and detect cyber-attacks. AI-based solutions are well known to be

highly efficient in learning the complex patterns that exist in high dimensional time-series

vehicular network data. They can observe anomalous patterns on in-vehicle networks that

connect all in-vehicle and external subsystems, to detect cyber-attacks. With fully autonomous

vehicles supporting increased connectivity to external subsystems on the horizon, having an

efficient IDS that can detect a variety of cyber-attacks using AI techniques is crucial and an

urgent requirement.

1.2. HISTORY OF AUTOMOTIVE CYBER-ATTACKS

Several automotive attacks have been observed in the past that ranged from targeting a

single stationary vehicle to a fleet of vehicles on the road. Here we present a timeline of the

major automotive attacks, in Figure 2, and discuss their impacts. The researchers at the

University of California at San Diego and the University of Washington demonstrated one of the

first vehicle hacks in 2010 [3]. They exploited the onboard telematics system and reverse-

4

engineered the system and were able to gain full control of the vehicle. The researchers however

worked with the manufacturer and did not disclose the full details of the vulnerability. Needless

to say, this hack opened up a Pandora's box. Several other works followed this approach and

tried to reverse engineer the ECUs in the vehicles in the following years. However, all of these

attacks required the attacker to be physically present inside the target vehicle, which resulted in

dismissing as an unlikely situation and these hacks not gaining much traction in the media.

Figure 2 Timeline of major automotive cyber-attacks

This changed in 2015 when the first major remote attack was demonstrated on an unaltered

2014 Jeep Cherokee [4] by two security researchers. The researchers identified a software bug in

the vehicle’s infotainment system that would allow them to connect to the vehicle remotely over

the 4G LTE and send CAN messages to the ECUs in the vehicle. They demonstrated a wide

range of attacks ranging from remotely controlling simple functionality such as the vehicle radio,

A/C, and windshield wipers to more critical functionality such as controlling brakes,

transmission, and even killing the engine while the vehicle was on a freeway. The attackers were

able to launch these attacks on a remote vehicle from their homes. This hack created a huge

media outburst and the manufacturer had to issue a patch to fix the bug. The same researchers in

2016 exposed another bug that let them remotely control the acceleration, steering wheel, and

cruise control systems. Similar attacks came into light in 2016, where an attacker was able to

5

remotely control a Nissan Leaf in England from Australia. These attacks changed the landscape

of how automotive cyber-attacks were carried out and highlighted the urgency to address

cybersecurity in vehicles.

Starting around 2016, a new type of attack emerged that focused on hacking the keyless

entry system in vehicles. The goal of these attacks was to steal the vehicle rather than remotely

control it. The researchers at the University of Birmingham showed how they were able to

recover the cryptographic algorithms and keys from the ECUs and clone the Volkswagen group

remote control by eavesdropping on a single signal sent by the original remote [5]. Several other

attacks have emerged that targeted mobile applications that were used for remote start and

immobilizer systems in vehicles. Some of the recent attacks in this class include cloning the

Tesla model S key fob in 2018 [6] and the model X key fob in 2019 [7]. Researchers were able

to clone key fobs by capturing the Bluetooth communication between the key fob and the body

control module (BCM) and were able to use a bootleg BCM to replay it and steal the vehicle in

under 90 seconds.

A different class of attacks has gained popularity since 2018, mainly targeting the ADAS

systems and the onboard sensors used for perception. In [8], researchers generated various robust

visual adversarial perturbations to a stop sign that resulted in it being misidentified as a 45-mph

speed limit sign. A few years before this, researchers were able to blind a Mobileye C2-270

camera and demonstrate jamming, spoofing, and relay attacks on an Ibeo LUX3 LiDAR sensor

[9]. More recent attacks include tricking lane change system of a Tesla Model S with bright

stickers on the road by Tencent Keen security lab in 2019 [10] and object removal attacks on

LiDAR sensors in 2021 [11]. Another recent attack that made the headlines was the T-BONE

attack [12] where researchers were able to gain remote code execution (RCE) over WiFi on the

6

infotainment system in a Tesla Model 3 using a drone. They were able to remotely open doors

and trunk, change seat positions, steering, and acceleration modes. However, this exploit does

not provide driving control of the vehicle. The researchers also highlighted that adding a

privilege escalation exploit such as CVE-2021-3347 to T-BONE would weaponize this exploit

and turn it into a worm. This would allow them to load new WiFi firmware and exploit other

Tesla cars in the victim car’s proximity. More recently, at the beginning of 2021, an online

hacking group by the name Doppel Paymer claimed to conduct a ransomware attack on KIA

motors America and have stolen unencrypted confidential data [13].

1.3. THESIS OVERVIEW

In summary, there is a crucial need for a holistic framework as an IDS that can learn the

normal vehicle behavior at design time and monitor the network for anomalies at runtime. Such a

framework is not easy to conceptualize because of the increasing complexity of automotive

systems. With the increasing complexity, the attack surface is only going to increase, paving the

way for more complex and novel attacks in the future. Traditional security mechanisms such as

firewalls only detect simple attacks and do not have the ability to detect more complex attacks

such as those in [14], [15]. To address the above-mentioned problems, the main contribution of

this thesis is the design of two novel IDS frameworks called LATTE [16] and TENET [17] to

actively monitor the in-vehicle network and observe for any deviation from the normal behavior

to detect novel and complex attack patterns. The rest of this thesis is organized as follows:

In chapter 2, we start by introducing essential concepts to intrusion detection. We define

what a network attack is, what an intrusion detection system is. Different types of IDSs are

detailed, with their strengths and weaknesses. We provide an overview of the automotive system

7

and formally define the communication model considered in this thesis. We then define the

different types of complex attacks that can occur in an automotive network. Moreover, we

explain the contributions of deep learning in this field and provide a background of state-of-the-

art deep learning techniques for intrusion detection. We present existing works related to

intrusion detection for automotive systems. Following this, we identify the limitations of existing

works and provide ideas on how to improve. The insights gathered in this chapter are used in the

design of the IDSs in the following chapters.

In chapter 3, we present a novel anomaly detection framework called LATTE to detect

cyber-attacks in the Controller Area Network (CAN) based automotive networks [16]. LATTE

uses a novel stacked LSTM with self-attention architecture that learns the normal system

behavior by learning to predict the next message instance under normal operating conditions. We

presented a one class support vector (OCSVM) based detector model to detect cyber-attacks by

monitoring the message deviations from the normal behavior. We present a detailed analysis by

comparing our proposed model with multiple variants of our model and the best-known prior

works in this area.

In chapter 4, we present another novel anomaly detection framework called TENET [17]

for automotive systems based on Temporal Convolutional Neural Attention (TCNA) networks to

efficiently learn very long-term dependencies between in-vehicle network messages with low

memory and computational overhead and accurately detect a multitude of simple, complex, and

novel attacks. We also proposed a metric called the divergence score (DS), which measures the

deviation of the predicted signal value from the actual signal value. A decision tree (DT) based

classifier was used to learn the model deviations that correspond to the normal vehicle operation

at design time. At runtime, the trained TCNA and DT models were used to observe for deviations

8

using the deviation score metric to detect cyber-attacks. We compared our framework with the

best-known prior works that employ a variety of sequence model architectures for anomaly

detection.

Chapter 5 concludes this thesis. We summarize our research in this chapter and also make

recommendations for future work.

9

2. BACKGROUND AND RELATED WORK

This chapter is divided into three major sections. In section 2.1, we provide a background

on (i) basic concepts of intrusion detection systems, (ii) automotive system and communication

model considered for our proposed frameworks in chapters 3 and 4, (iii) complex attacks

considered for evaluating our proposed works, and (iii) advanced deep learning based techniques

for modeling complex data. In section 2.2, we present multiple existing IDS solutions proposed

by researchers to detect attacks on automotive networks. Finally, section 2.3 addresses the

limitations of the existing IDS solutions and presents a set of goals that need to be achieved to

overcome those limitations.

2.1. BACKGROUND

In this section, we start by introducing the essential concepts of the intrusion detection

system in the context of in vehicle networks in subsection 2.1.1. We provide a complete picture

of the automotive system (subsection 2.1.2); communication model (subsection 2.1.3) considered

for our works and discuss how IDSs can be deployed for anomaly detection in the automotive

network. Subsection 2.1.4 defines the different types of complex attacks that can occur in an

automotive network. In subsections 2.1.5 and 2.1.6, we explore state-of-the-art deep learning

techniques for intrusion detection.

2.1.1 INTRUSION DETECTION SYSTEM (IDS)

A cyber-attack (or an intrusion) is defined as all unauthorized activities that compromise one,

two, or all of these three fundamental components of an information system. The three

10

components are (i) confidentiality, (ii) integrity, and (iii) availability. It is also known as the CIA

triad as shown in Figure 4.

Figure 3 CIA Triad

 Confidentiality: it is defined as the “property that information is not made

available or disclosed to unauthorized individuals, entities, or processes” [18] by

the ISO 27000 standard. This information could be credit card numbers, personal

data, or any information considered private. The challenge of confidentiality is to

allow legitimate users to access this information while preventing others from

doing so. An example of a confidentiality attack would be when a malicious

attacker executes a ransomware attack [13] to gain access to confidential data from

the vehicle. Failure of confidentiality results in a data breach that cannot be

remedied but can be managed in a way that minimizes its impact on users. To

ensure the confidentiality property different security mechanisms are implemented

such as encryption, two-factor authentication, passwords, etc. Depending on the

level of confidentiality of the information, the strength of the security measure is

11

decided. Confidential information can also be protected by staking multiple layers

of protection.

 Integrity: It is defined as the “property of accuracy and completeness” [18] by the

ISO 27000 standard. The Integrity property ensures that the information is

protected from unauthorized parties, and it also ensures that no accidental deletion

or modification of information is made by authorized parties. An example of an

information integrity attack would be gaining unauthorized access to the in vehicle

network. A malicious attacker can gain access to the in-vehicle network through the

infotainment systems or wireless interfaces to modify the contents of the network

and gain control of the vehicle. Moreover, information can be changed by non-

human caused events such as server crash or electromagnetic pulse. Integrity

property is commonly ensured using checksums, encryption, and hashing

techniques. Redundant systems and backup procedures are important security

mechanisms to ensure data integrity.

 Availability: It is defined as the “property of being accessible and usable on

demand by an authorized entity” [18] by the ISO 27000 standard. The information

which is not available at the right time can have serious consequences. Denial of

Service (DoS) or Distributed Denial of Service (DDoS) attacks are common attacks

against availability. For example, the attackers try to flood the in-vehicle network

with malicious messages rendering the ECUs connected in the network useless for

legitimate users. This malicious traffic is often detected and blocked by security

mechanisms such as firewalls and Intrusion Detection Systems (IDSs).

12

Figure 4 IDS Classification

Monitoring network traffic to detect malicious or unauthorized activities is a process called

“intrusion detection” and the system that is used to monitor the network for intrusions is called

the intrusion detection system (IDS). An IDS can be a hardware or software-based system that

continuously monitors the in-vehicle network to detect attacks without any human supervision.

An IDS transforms monitored activities into alerts using its knowledge (database, statistics,

artificial intelligence, etc.). IDSs can be classified according to the detection method they use.

They fall into three categories: signature-based detection, anomaly-based detection, and hybrid

detection as shown in Figure 4.

 Signature-based detection (also known as “heuristic based detection”) comes with a

database of known attack signatures. It compares monitored data with previously

observed attack patterns from the signature database. A signature-based IDS checks the

input stream for the presence of an attack pattern. To be efficient, the database of this

kind of IDSs must be updated regularly. However, even with the latest updates, only

known attacks can be detected using this method.

13

 Anomaly-based detection tries to learn a “normal” or “expected” behavior of the

system. Any deviation from this behavior is considered a potential attack and will

generate an alarm. This method does not require updates or even the presence of a

database. It can identify unknown attacks but also creates a lot of false positives that are

difficult to process. It is also more difficult to collect information about the attack since it

is not clearly identified by a signature.

 Hybrid detection combines the two solutions to mitigate weaknesses of each category:

anomaly detection then misuse detection, misuse detection then anomaly detection, or

both at the same time. The goal is to detect known attacks with their signatures and to use

anomaly detection to identify unknown intrusions.

An efficient IDS needs to be reliable, lightweight, robust, and scalable with different

system sizes. Moreover, a pragmatic IDS needs to have a large coverage of attacks (able to detect

both known and unknown attacks), high confidence in detection, and a low false positive rate as

recovery from false positives can be expensive. Since getting the signature of every possible

attack is impractical and would limit us to only detecting known attacks and a hybrid detection

system suffer slower detection latency with large computational overhead on the ECU, we

conjecture that using anomaly-based IDS is a more practical approach to this problem.

Additionally, due to the ease of in vehicle network data acquisition (from test driving), there can

be a large amount of in-vehicle message data to work with, which facilitates the use of advanced

deep learning models for detecting the presence of an attacker in the system. In the next

subsections, we discuss the design of modern automotive systems by providing an overview of

the system model, communication model, and attack model considered for our proposed IDSs.

14

2.1.2 SYSTEM OVERVIEW

We consider a generic automotive system consisting of multiple ECUs connected using an

in-vehicle network, as shown in Figure 5. Each ECU is responsible for running a set of

automotive applications that are hard-real time in nature, meaning they have strict timing and

deadline constraints. In addition, we assume that each ECU also executes intrusion detection

applications that are responsible for monitoring and detecting intrusions in the in-vehicle

network.

Figure 5 Overview of automotive system

We consider a distributed IDS approach (intrusion applications collocated with

automotive applications) as opposed to a centralized IDS approach where one central ECU

handles all intrusion detection tasks due to the following reasons:

 A centralized IDS approach is prone to single-point failures, which can completely

open up the system to the attacker.

15

 In extreme scenarios such as during a DDoS attack (explained in subsection 2.1.4),

the in-vehicle network can get highly congested, and the centralized system might

not be able to communicate with the victim ECUs.

 If an attacker succeeds in fooling the centralized IDS ECU, attacks can go

undetected by the other ECUs, resulting in compromising the entire system;

whereas with a distributed IDS, fooling multiple ECUs is required which is much

harder, and even if an ECU is compromised, this can still be detected by the

decentralized intelligence.

 In a distributed IDS, ECUs can stop accepting messages as soon as an intrusion is

detected without waiting for a centralized system to notify them, leading to faster

response.

 The computation load of IDS is split among the ECUs with a distributed IDS, and

the monitoring can be limited to only the required messages. Thus, multiple ECUs

can monitor a subset of messages independently, with lower overhead.

Many prior works, e.g., in [19] and [20], consider a distributed IDS approach for these

reasons. Moreover, with automotive ECUs becoming increasingly powerful, the collocation of

IDS applications with real-time automotive applications in a distributed manner should not be a

problem, provided the overhead from the IDS is minimal. The design of an IDS should have low

susceptibility to noise, low cost, and a low power/energy footprint.

2.1.3 COMMUNICATION MODEL

In this subsection, we discuss the vehicle communication model that was considered for

our proposed IDSs in chapters 3 and 4. We perform experimental analysis related to detecting

16

intrusions in a CAN bus-based automotive system, although our IDSs are broadly applicable to

any vehicle network protocol.

Controller Area Network (CAN) is the defacto industry standard in-vehicle network

protocol for automotive systems today. CAN is a lightweight, low-cost, and event-triggered

communication protocol that transmits messages in the form of frames. The structure of a

standard CAN frame is shown in Figure 6 and the length of each field (in bits) is shown on the

top.

Figure 6 CAN frame format.

 The standard CAN frame consists of a header, payload, and trailer segments. The header

consists of information such as the message identifier (ID) and the length of the message. The

actual data that needs to be transmitted is in the payload segment. The trailer section is mainly

used for error checking at the receiver. A variation of the standard CAN, called CAN-extended

or CAN 2.0B is also becoming increasingly common in modern vehicles. The major difference is

that CAN extended has a 29-bit identifier allowing for more number of message IDs. For the

proposed IDSs in chapters 3 and 4, we design with a focus on monitoring the message payload

and observing for anomalies to detect intrusions. This is because an attacker needs to modify the

message payload to accomplish a malicious activity. While an attacker could target the header or

trailer segments, it would result in the message getting rejected at the receiver. The payload

17

segment consists of multiple data entities called signals. An example real-world CAN message

with the signals is shown in Figure 7 [21]. Each signal has a fixed size (in bits), a particular data

type, and a start bit that specifies its location in the 64-bit payload segment of the CAN message.

In this thesis, all proposed IDSs focus on monitoring individual signals within message payloads

to observe for anomalies and detect intrusions. Signal level monitoring would give us the

capability to not only detect the presence of an intruder but also help in identifying the signal

within the message that is being targeted during an attack. This can be valuable information for

understanding the intentions of the attacker, which can be used for developing countermeasures.

Figure 7 Real-world CAN message with signal information.

2.1.4 ATTACK MODEL

We assume that attackers can gain access to the in-vehicle network using the most

common threat vectors such as connecting to the vehicle OBD-II port, probing into the in-vehicle

network, and via advanced threat vectors such as connected V2X ADAS systems, insecure

infotainment systems, or by replacing a trusted ECU with a malicious ECU. We also assume that

the attacker has access to the in-vehicle network parameters such as flow control, BAUD rate,

parity, channel information, etc. that can be obtained by a simple CAN data logger and can help

in the transmission of malicious messages. We further assume a pessimistic situation where the

attacker can access the in-vehicle network at any instance and try to send malicious messages.

18

Given the above assumptions, our proposed anomaly detection system tries to protect the in-

vehicle network from the multiple types of cyber-attacks listed below. These attacks are modeled

based on the most common and hard-to-detect attacks in the automotive domain.

 Constant attack (Plateau attack): In this attack, the attacker overwrites the signal

value to a constant value for the entire duration of the attack interval. The

complexity of detection of this attack depends on the change in magnitude of

signal value. Intuitively, a small change in the magnitude of the signal value is

harder to detect than larger changes.

 Continuous attack: In this attack, the attacker tries to trick the anomaly detection

system by continuously overwriting the signal value in small increments until a

target value is achieved. The complexity of detecting this attack depends on the

rate of change of the signal value. Larger change rates are easier to detect than

smaller rates.

 Replay attack (Playback attack): In this attack, the attacker plays back a valid

message transmission from the past, tricking the anomaly detector into believing it

to be a valid message. The complexity of detecting this attack depends mainly on

the frequency and sometimes on the duration of the playbacks. High-frequency

replays are easier to detect compared to low-frequency replays.

 Dropping attack (Suppress attack): In this attack, the attacker disables the

transmission of a message or group of messages resulting in missing or dropping

of communication frames. The complexity of detecting this attack depends on the

duration for which the messages are disabled. Longer durations are easier to detect

due to missing message frames for a prolonged time compared to shorter durations.

19

 Distributed Denial of Service (DDoS) attack (Flooding attack): In this attack,

the attacker floods the in-vehicle network with an arbitrary or specific message

with the goal of increasing the overall bus load and rendering the bus unusable for

other ECUs. This is the most common and easy-to-launch attack as it requires no

information about the nature of the message. These attacks are fairly simple to

detect even using a rule-based approach as the message frequencies are fixed and

known at design time for automotive systems. Any deviation in this message rate

can be used as an indicator for detecting this attack.

With the availability of large troves of data in vehicles from communication between

ECUs and the increased computing capabilities of ECUs, AI-based (deep learning) IDS solutions

can be leveraged to parse high dimensional vehicular network data to detect intrusions. In the

next subsection, we provide a background on some of the state-of-the-art deep learning

techniques employed in this domain.

2.1.5 NEURAL NETWORKS

A neural network is a computing system, inspired by the biological neural networks in the

human brain. It consists of a collection of simulated neurons, each of which is the basic unit of a

neural network. The neurons are arranged in multiple layers to form the multiple layers of the

neural network and can be divided into input, hidden, output layers as shown in Figure 8. A

neural network with many hidden layers is known as a deep neural network. A Feed Forward

neural network is the simplest form of artificial neural network in which the connections between

nodes do not form a cycle as information is only processed in one direction. While the data may

pass through multiple hidden nodes, it always moves in one direction and never backward. A

20

neural network interprets its input data in many ways, three of which are particularly interesting

for intrusion detection: classification, regression, and reconstruction.

Figure 8 Example of an artificial neural network with 2 hidden layers.

 Classification categorizes input samples into several classes, such as “normal” or

“anomalous”, or even different families of attacks. Regression (also called “prediction”) is used

to determine continuous values, including a probability that input is an attack. Finally,

reconstruction is specific to a certain type of neural network. This task tries to reconstruct the

input data by compressing and decompressing them to force the network to learn the features

(representation learning). The interpreting of data is known as learning and can be classified

into two categories: (i) supervised learning and (ii) unsupervised learning. In a former approach,

the neural network receives the input data with its corresponding label (in our case, anomalous or

normal). The neural network learns the distribution of the input data during training and tries to

predict the target output. Classification and regression are two classic supervised training tasks.

In unsupervised learning, the input data does not contain any labels and is classified by

understanding interesting patterns within the input data. Reconstruction is an example of an

unsupervised task. In a reconstruction-based anomaly detection task, the neural network learns to

21

replicate its inputs during training by minimizing the replication error. The replication error is

calculated in an unsupervised fashion by measuring the deviation between the input and the

replicated output. During runtime, the trained model tries to replicate its inputs and the

replication error is measured. If the replication error is higher than a threshold value, the

respective input sample is flagged as an anomaly.

Figure 9 A single artificial neural network neuron model.

 Each neuron in a neural network receives a set of inputs { , , , … , } where m is

the total number of inputs to the neuron and computes the predicted y value. Vector x contains

the values of the features in one of the examples from the input dataset. Each unit has its set of

parameters, normally known as W, column vector of weights { , , , … , }, and b (bias) as

shown in Figure 9. These parameters are updated during the learning process. In each iteration,

every neuron in a layer calculates a weighted average of the values of the vector x, based on its

current weight vector w, and adds bias b. The result of this calculation is passed through an

activation function to calculate the output y. In artificial neural networks, the activation function

of a node defines the output of that node given an input or set of inputs. Some examples of

22

activation functions are sigmoid, hyperbolic tangent (tanh), rectified linear unit (ReLU), softmax.

These activation functions induce nonlinearity in the network. The loss function is the function

that computes the distance between the current output of the algorithm and the expected output.

It’s a method to evaluate how your algorithm models the data, for example, mean squared error.

A neural network learns the input features by minimizing this loss function. Hence, to achieve

this goal the gradient of the loss function is calculated, and it is then used to update the weight of

each connection and the bias of each hidden neuron. This part of the learning is famously known

as the “backpropagation algorithm”. During backpropagation, these gradients are used to adjust

the w and b parameters of each neuron. This process of inputs traveling through the network is

called forward pass and the process of backpropagating the loss to update the weight parameters

is called the backward pass. In an in-vehicle network, the communication between ECUs

happens promptly. Hence, there exists a lot of temporal relationships between the messages that

can be exploited to detect intrusions. However, this cannot be achieved using the traditional feed-

forward neural networks as the output of any input is independent of other inputs. Thus, it makes

it harder to capture the temporal dependencies between the messages using feedforward neural

networks. This led to the study of sequence models that makes a perfect choice for handling

time-series data.

2.1.6 SEQUENCE MODELS

A sequence model can be thought of as a function that ensures that the output is dependent

not only on the current input but also on the previous inputs. The first sequence model called the

recurrent neural network (RNN) was introduced and implemented in [22].

23

Recurrent Neural Networks (RNN) is a type of neural network which makes use of

sequential information. RNNs have hidden states, which allows the information to persist. These

hidden states enable the RNN to connect previous information to their current inputs. Thus, it

provides us with a solution for our need for a model that can capture the relation between the

inputs of a sequence. The mathematical representation is shown in equation (1). A basic RNN is

a neural network with feedback (shown in Figure 10).

(a)

(b)

Figure 10 (a) A single RNN cell and (b) unrolled RNN unit; where, f-RNN cell, x-input, and

h-hidden state.

The output ℎ is a function of both the input and the previous output ℎ :

= (+ +) (1)

24

where W, U are weight matrices, b is a bias term, and f is a nonlinear activation function (e.g. the

sigmoid or hyperbolic-tangent function). One of the limitations of RNNs is that they are hard to

train. Since RNNs and other sequence models deal with sequence or time-series inputs, the back

propagation happens through various time samples and is hence known as back propagation

through time. During this process, the feedback loop in RNNs causes the errors to shrink or grow

rapidly (vanishing or exploding gradients respectively), destroying the information in the

backpropagation. This problem of vanishing gradients hampers the RNNs from learning long

term dependencies. This was solved in [23], by introducing additional states and gates in the

RNN cell to remember long term dependencies, which lead to the birth of Long Short-Term

Memory (LSTM) Networks.

To understand LSTMs, we first need to know what a cell state is and how the gates are

used to modify them. The cell state can be thought of as a transport highway, that carries relevant

information throughout the processing of a sequence to accommodate information from the

earlier time steps which can be used in the later time steps. This reduces the effects of short-term

memory. The information in the cell state is modified via gates. Hence, the gates in LSTM help

the model decide which information has to be retained and which information to forget. An

LSTM cell consists of three gates (i) forget gate (ii) input gate (iii) output gate as shown in

Figure 11 (a). The first gate is a binary gate; it chooses which information to retain from the

previous cell state. The second gate adds relevant information to the cell state.

= (+ +) (2)

= (+ +) (3)

Here , , , is the learned weight matrices and , are bias terms, ℎ is the output of

the previous hidden state and is the current state input. The subscript i, f, and o represent input

25

forget and output gates respectively. , ℎ is multiplied with weight matrices and added bias

in the input and forget gates, shown in equations (2) and (3).

= (+ +) (4)

= + ∗ (5)

 and determine the new cell state as a linear combination of the previous internal state

 and new candidate internal state ̃, shown in equations (4) and (5).

= (+ +) (6)

= () (7)

Here , , , is the learned weight matrices and , are bias terms. The output layer is

also controlled by a gate function and uses all the information from the last two layers to produce

an output. , ℎ is multiplied with weight matrices and added bias in the output gate, shown in

equation (6). The current hidden layer ℎ is the result of the multiplication of and tanh applied

current cell state as shown in equation (7).

(a)

26

(b)

Figure 11 (a) A single LSTM cell with different gates and (b) unrolled LSTM unit; where,

f-LSTM cell, x-input, c-cell state, and h-hidden state.

In conclusion, LSTMs can learn long term dependencies of a sequence. However, they are

not computationally efficient as the sequence path has become more complicated due to the

addition of gates. It also takes a lot of resources to train these networks faster and has a memory

component associated with it. In [24] the authors presented a simpler recurrent neural network

than LSTMs, which trains faster but also remembers long sequences of data with low memory

overhead and can solve the vanishing gradient problem and is called a Gated Recurrent Unit

(GRU).

A GRU cell uses an alternate route for gating information when compared to the LSTM

networks. It combines the Input and forget gate layers of the LSTM network into a solitary

update layer and furthermore combines hidden and cell state layers. Figure 12 shows a traditional

GRU cell has two gate layers (i) reset gate (ii) update gate. The reset gate combines new input

with past memory and the update layer chooses the amount of pertinent data that should be held.

= (+) (8)

= (+) (9)

27

= (+ (∗)) (10)

= (−) ∗ + ∗ (11)

where, W, U are the learned weight matrices and r, z is the reset and update layers of the GRU

cell. ℎ is the output of the previous hidden state and is the current state input. In the update

gate, z inputs are multiplied with weight matrix W, and the hidden state is also multiplied with

weight matrix U. A sigmoid function is applied to the sum of this multiplication. A similar

process happens in the rest gate with different weight matrices as shown in equations (8) and (9).

The current memory content ℎ, uses the reset gate to store the relevant information from the past.

This is performed by doing element-wise multiplication of ℎ and r and then the results are

summed with the input . Tanh activation is applied to the summed result to obtain ℎ as shown

in equation (10). In the last step, to calculate the current hidden state ℎ , the update gate is used

to collect important information from ℎ , and ℎ. This is done by applying element wise

multiplication between the update gates and ℎ , ℎ, shown in equation (11). These results are

summed to obtain the ℎ vector, which holds information for the current unit and passes to the

network. Thus, a GRU cell can control the data stream like an LSTM by uncovering its hidden

layer contents. Moreover, GRUs achieve this using fewer gates and states, which makes them

computationally more efficient with low memory overhead. As real-time automotive ECUs are

highly resource-constrained systems with tight energy and power budgets, it is critical to use

low overhead models for inferencing tasks.

28

(a)

(b)

Figure 12 (a) A single GRU cell with different gates and (b) unrolled GRU unit; where, f-

GRU cell, x-input, and h-hidden state.

Due to the increase in the number of sensors and ECUs in modern vehicles, the

complexity of the in-vehicle network has increased tremendously. This increased complexity

results in very long dependencies between the messages which cannot be effectively captured

using LSTMs and GRUs. This is mainly because the current time step output of both LSTMs and

GRUs is heavily influenced by the recent time steps compared to past time steps, which makes it

hard to capture very long term dependencies, e.g., for sequence lengths of 50 or more. Processing

very long sequences also exacerbate the memory overhead of LSTMs and GRUs. These

shortcomings have led to the exploration of novel sequence models using convolutional neural

networks (CNN) in recent years.

29

CNNs are widely used in the areas of computer vision and other image-based learning

applications. CNNs consist of convolutional layers and a set of filters for each convolution layer

that is used to identify various features in the input. A filter can be thought of as a tensor that is

multiplied with a subset of the input data to compute the convolution output. The filter is moved

over the inputs to compute many such convolution outputs, known as feature maps. The

dimension of the filter is known as kernel size and the number of steps moved by the filter due to

its sliding operation is called the stride. In the case where the inputs are an image, the subsequent

feature map values are calculated according to equation (12) , where the input image is denoted

by f and our kernel by h. The indexes of rows and columns of the result matrix are marked with

m and n respectively.

[,] = (∗)[,] = ∑ ∑ [,] [− , −] (12)

The dimensions of the received tensor meet equation (13), in which n is the input size, f is

the filter size, is the number of channels of the input, p is the padding value used, s is the

stride value, is the number of filters.

[, ,] ∗ [, ,] = [+ , + ,] (13)

An early adaptation of CNNs for sequence modeling tasks was presented in [25], where a

convolution based time-delay neural network (TDNN) was proposed for phoneme recognition

and compared against hidden markov models (HMM). To capture very-long term dependencies,

traditional CNNs need to employ a very deep network of CNN layers with large filters.

Consequently, this increases the number of convolutional operations incurring a high

computational overhead. Thus, adapting CNNs directly to sequence modeling tasks in resource

constrained automotive systems is not a feasible solution. However, recent promising advances

30

in this area have enabled the use of CNNs to capture very long term dependencies in time series

data.

Figure 13 Example CNN based sequence network using dilated causal convolutional layers

with dilation factors (d) of 1, 2, and 4.

The authors in [26] proposed a temporal convolutional network (TCN) architecture that

uses dilated causal convolution (DCC) layers for sequence modeling tasks. The operation of the

DCC layers in a simple network with two hidden layers is illustrated in Figure 13. The terms {x0,

x1, x2, …, xt} represents the input time series data, and {y0, y1, y2, …, yt} represents the output

sequence at the output layer. The subscript for each term in the input and output represents the

associated time step. Each DCC layer has a kernel size (k) of 2 indicated by the dotted lines, and

the dilation factor (d) of 1, 2, 4 for the hidden layers 1, 2, and the output DCC layer, respectively.

The dilation factor dictates the number of input samples to be skipped by each DCC filter. The

total number of samples influencing the output at a particular time step is called the receptive

31

field. In the network shown in Figure 13, the output at is influenced by 8 input samples, and

hence the receptive field is 8.

The TCN architecture has two interesting features. Firstly, the TCN uses a one-

dimensional (1-D) fully convolutional layer, where each hidden layer is the same length as the

input layer. Additionally, zero paddings are added to keep the subsequent layers the same length

as the previous layer. Thus the architecture produces an output that is of the same length as the

input which is required for sequence modeling tasks. Secondly, the output at time t is obtained by

performing the convolution operations on inputs at time t and outputs from earlier time steps.

This causal nature of the architecture ensures no information leakage from the future into the

past, during training. Formally, for a 1-D sequence of inputs, X = {x ∈ ℝ}, and a filter f: {0, …,

k-1}, the dilated convolution operation F on element s of the sequence is defined as in equation

(14):

() = ∑ (). (∗) (14)

where d is the dilation factor, k is the filter size and the subscript − (∗) represents the

number of elements in the sequence considered for computing the output. Moreover, the dilated

convolution behaves like a normal convolution operation when d=1. Using a larger dilation

value enables an output at the top level to represent a wider range of inputs, which helps the

TCN in effectively learning very-long term dependencies. Moreover, the receptive field of the

TCN can be increased either by changing the filter size k and dilation factor d or by increasing

the depth (number of DCC layers) of the network (l). Unlike recurrent architectures, CNNs do

not have to wait for the previous time step output to process the input at the current time step.

Thus, TCNs can process the input sequences in parallel as compared to sequential processing in

32

recurrent architectures. This makes TCN more computationally efficient while training and

testing when compared to recurrent networks.

2.2. RELATED WORK

Several techniques have been proposed to design IDS for time-critical automotive systems.

The goal of these works is to detect various types of attacks in automotive systems by monitoring

the in-vehicle network traffic. These works can be mainly classified into two groups (based on

the previously mentioned IDS categories): (i) signature-based IDS and (ii) anomaly-based IDS.

Signature-based IDS relies on detecting known and pre-modeled attack signatures. The

messages in the system are compared to the known attack signatures and observed for any

matching patterns to detect intrusions. The authors in [19], [27], used a language theory-based

model to derive attack signatures. However, this technique fails to detect intrusions when it

misses the packets transmitted during the early stages of an attack. In [28], the authors used

transition matrices that have the paired sequences of CAN IDs as the elements, to check for

mismatches between the incoming CAN packet and its sequence to detect intrusions. Despite

achieving a low false-positive rate for trivial attacks, this technique failed to detect more realistic

replay attacks. The authors in [29], [30] identify notable attack patterns such as an increase in

message frequency and missing messages to detect intrusions. The authors in [31] measured the

time interval between the request and response messages in the CAN bus to detect attacks.

However, the model is not scalable as different in-vehicle network protocols have different time

intervals. A specification-based methodology to detect intrusions is proposed in [32], where the

authors analyze the behavior of the system and compare it with the predefined attack patterns to

33

detect intrusions. Nonetheless, their system fails to detect unknown attacks. The authors in [33]

proposed an IDS technique using Myers algorithm [34] under the map-reduce framework to

speed up the pattern matching algorithm. The authors in [35] proposed a framework that utilizes

the frequency of CAN messages to perform a time-frequency analysis to detect multiple

intrusions. A message frequency-based in-vehicle network monitoring approach was proposed in

[20]. They define a rule-based regular operating mode region by analyzing the messages during

design time and observes for deviations to detect anomalies. In [36] the authors measured the

Hamming distance between messages to detect attacks. However, this approach incurs a high

computational overhead on the ECUs. In [37], ECUs were fingerprinted using their voltage

measurements during message transmission and reception. However, as this method is only

applied at the physical layer, it cannot detect attacks at the application layer. In [38], the authors

propose a fingerprinting based approach to model the relationship between the sender ECU’s

clock-skew and the messages and detect intrusions by observing for variations in the clock-skew

during runtime. In [39] the authors presented a formal analysis for clock-skew based IDS and

evaluated their approach on a real vehicle. In [40] a memory heat map based is used to

characterize the memory behavior of the operating system to detect intrusions. The authors in

[41] propose an entropy-based IDS, that observes for change in system entropy to detect

intrusions. However, the technique fails to detect small scale attacks where the entropy change is

minimal. The authors in [42] proposed a sliding window approach based on information entropy

to detect attacks. However, their approach fails to detect complex attacks that modify the

contents of a CAN message. In a nutshell, signature-based techniques offer a solution to the

intrusion detection problem with low false positive rates but cannot detect more complex and

novel attacks. Moreover, modeling signatures of every possible attack is impractical.

34

Anomaly-based IDS aims to learn the normal system behavior offline and observes for any

deviation from the learned normal system behavior to detect intrusions. This approach has been

widely adopted in many domains as it can detect both known and unknown attacks. However, in

recent years this is being increasingly explored in the automotive domain to detect the presence

of attackers in the in-vehicle networks. In [43], the authors propose a sensor-based IDS approach

that utilizes attack detection sensors to monitor various events in the system to observe

deviations from normal behavior. However, this approach is not only expensive but also suffers

from a poor detection ratio. A one-class support vector Machine (OCSVM) based IDS, was

proposed in [44] and was able to perfectly detect attacks that lasted more than 0.5s. However,

this approach suffers from poor detection latency. In [45], the authors used four different nearest

neighbor classifiers to distinguish between normal CAN payload and attack induced CAN

payload. This technique was evaluated on low priority messages and showed poor performance

for denial of service (DoS) and fuzzy attacks. In [46] the authors proposed a decision-tree based

detection model to monitor the physical features of the vehicle to detect intrusions. However, this

model is not realistic and suffers from high detection latencies. The authors in [47] proposed a

hidden markov model (HMM) based technique that monitors the temporal relationships between

messages to detect intrusions. They estimated log-likelihood based on the predictions of a

regression model that was built on those temporal features. However, the detection latency of

their model was not presented. A deep neural network (DNN) based approach was proposed to

examine the messages in the in-vehicle networks in [48]. The authors mainly evaluated their

approach on a low priority tire pressure monitoring system (TPMS), which makes it hard to

adapt to high priority safety-critical powertrain applications. A deep autoencoder approach was

proposed in [49] to detect attacks on the in-vehicle network. A LSTM based multi-message ID

35

detection model was proposed in [50]. However, the model architecture is highly complex,

which incurs high overhead on the ECUs. In [51], the authors used LSTM based IDS to detect

insertion and dropping attacks. The authors in [52] propose an LSTM based predictor model, that

predicts the next time step message value at a bit level and observes for large variations in loss to

detect intrusions. The authors in [53] proposed another LSTM based network to classify attacks

in the in-vehicle network. They used a supervised learning method to train their LSTM classifier.

However, their proposed model was not tested on complex attacks such as replay attacks. A

GRU based autoencoder architecture was proposed to learn the normal system behavior in [54].

However, they used a static threshold to classify the messages which may not be able to capture

non-linear behaviors. The authors in [55] proposed an LSTM based encoder-decoder architecture

with a hierarchical attention mechanism to reconstruct input messages. They used a kernel

density estimator (KDE) and k-nearest neighbors (KNN) to detect anomalies. However, the

model does not target CAN networks and incurs a high memory overhead on the ECU. In [56], a

replicator neural network based IDS was proposed to learn the normal patterns in CAN messages

in the in-vehicle networks. But their model doesn’t consider the correlation between message ids.

A hybrid IDS was proposed in [57], which utilizes a specification-based system in the first stage

and an RNN based model in the second stage to detect anomalies in time-series data. An LSTM

in combination with a convolutional neural network (CNN) based approach was proposed in [58]

to learn the dependencies between messages in a CAN network. However, the model was

trained on a labeled dataset in a supervised fashion; due to the large volume of in-vehicle CAN

message data, labeling the data is impractical.

36

2.3. LIMITATIONS OF EXISTING APPROACHES

Signature-based anomaly detection systems provide low-cost and high-speed detection

techniques but fail to detect complex and new attacks. Additionally, modeling every possible

attack signature is practically impossible, and hence these anomaly detection approaches have a

limited scope. On the other hand, most of the existing machine learning based works attempt to

increase the detection accuracy and attack coverage but, none of them offers a holistic system-

level solution that is lightweight, fast, scalable, and reliable to detect multiple types of attacks for

in-vehicle networks.

The following are some of the goals that we considered for our IDS:

 Lightweight: Intrusion detection tasks can incur overhead on the ECUs that could

result in poor application performance or missed deadlines for real-time

applications. This can be catastrophic in some cases. Hence, we aim to have a

lightweight IDS that incurs low overhead on the system.

 Few false positives: This is a highly desired quality in any kind of IDS (even

outside of the automotive domain), as handling false positives can become

expensive very quickly. A good IDS needs to have a few false positives or false

alarms.

 Coverage: This is the range of attacks an IDS can detect. A good IDS needs to be

able to detect more than one type of attack. High coverage for IDS will make the

system resilient to multiple attack surfaces.

 Scalability: This is an important requirement as emerging vehicles have increasing

numbers of ECUs, and high software and network complexity. A good IDS should

be highly scalable and be able to support multiple system sizes.

37

 Learn very long term dependencies: Due to the increase in the number of sensors

and ECUs in modern vehicles, the complexity of the in-vehicle network has

increased tremendously. This increased complexity has resulted in very long

dependencies between the in-vehicle messages. Therefore, a good IDS must have

the ability to process very long sequences with relatively low memory and runtime

overhead and still achieve reasonably high performance.

38

3. LATTE: LSTM SELF-ATTENTION BASED ANOMALY DETECTION IN

AUTOMOTIVE CYBER-PHYSICAL SYSTEMS

In this chapter, we present a novel anomaly detection framework called LATTE [16] to

detect attacks in CAN based automotive networks. Our proposed LATTE [16] framework uses

sequence models in deep learning in an unsupervised setting to learn the normal system

behavior. LATTE [16] leverages that information at runtime to detect anomalies by observing for

any deviations from the learned normal behavior. This is illustrated in Figure 14.

Figure 14 An example of an anomaly detection framework that monitors the network

traffic and detects deviations from expected normal behavior during the attack intervals

shown in red.

 The plot on the top right shows the expected deviation (computed using the model that

was trained at design time) vs the observed deviation. The divergence in signal values during the

attack intervals (shown in the red area) can be used as a metric to detect cyber-attacks as

anomalies. Our proposed LATTE [16] framework aims to maximize anomaly detection accuracy,

precision, and recall while minimizing the false-positive rate. Our novel contributions in this

work can be summarized as follows:

39

 We propose a stacked Long-Short Term Memory (LSTM) based predictor model

that integrates a novel self-attention mechanism to learn the normal automotive

system behavior at design time;

 We design a one class support vector machine (OCSVM) based detector that works

with the LSTM self-attention predictor model to detect different cyber-attacks at

runtime;

 We present modifications to existing vehicle communication controllers that can

help in realizing the proposed anomaly detection system on a real-world ECU;

 We perform a comprehensive analysis on the selection of deviation measures that

quantify the deviation from the normal system behavior;

 We explore several variants of our proposed LATTE framework and selected the

best performing one, which is then compared with the best-known prior works in

the area, to show LATTE’s effectiveness.

3.1 LATTE FRAMEWORK: OVERVIEW

An overview of our proposed LATTE framework is shown in Figure 15. Our framework

consists of a novel self-attention based LSTM deep learning model that is trained with data

obtained from a data acquisition step. The data acquisition step collects trusted in-vehicle

network data under a controlled environment. We then post-process and use this data to train the

stacked LSTM self-attention predictor model in an unsupervised setting to learn the normal

operating behavior of the system. We also developed a one class support vector machine

(OCSVM) based detector model that utilizes the predictions from the LSTM predictor to detect

40

cyber-attacks as anomalies at run-time. After training, the framework is tested by being subjected

to various attacks. The details of this framework are presented in the subsequent subsections.

Figure 15 Overview of proposed LATTE framework.

3.1.1 DATA COLLECTION

This is the first step of the LATTE framework and involves collecting the in-vehicle network

data from a trusted vehicle. It is important to ensure that the in-vehicle network and the ECUs in

the vehicle are free from attackers. This is because the presence of an attacker can result in

logging corrupt in-vehicle network data that falsely represents the normal operating conditions,

leading to learning an inaccurate representation of the normal system behavior with our proposed

models. Moreover, it is also crucial to cover a wide range of normal operating conditions and

have the data collected over multiple intervals, to ensure high confidence in the collected data.

The performance of the anomaly detection system is highly dependent on the quality of the

collected data, and thus this is a crucial step. Additionally, the type of data collected depends on

the functionalities or ECUs that are subjected to monitoring by the anomaly detection system.

The most common access point to collect the in-vehicle network data is the OBD-II port, which

gives access to the diagnostic and most commonly used messages. However, probing into the

41

CAN network and logging the messages is preferred, as it gives unrestricted access to the in-

vehicle network, unlike the OBD-II port.

After collecting the message data from the in-vehicle network, the data is prepared for pre-

processing to make it easier for the training models to learn the temporal relationships between

messages. The full dataset is split into groups based on the unique CAN message identifier and

each group is processed independently. The data entries in the dataset are arranged as rows and

columns with each row representing a single data sample corresponding to a particular

timestamp and each column representing a unique feature of the message. The columns consist

of the following features: (i) timestamp at which the message was logged, (ii) message identifier,

(iii) number of signals in the message, (iv) individual signal values (one per column), and (v) a

single bit representing the label of the message. The label column is 0 for non-anomalous

samples and 1 for anomalous samples. The label column is set to 0 for all samples in the training

and validation dataset as all the data samples are non-anomalous and collected in a trusted

environment. The label column will have a value of 1 for the samples in the test dataset during

the attack interval and 0 for the other cases. Moreover, for each signal type, the signal values are

scaled between 0 to 1 as there can be high variance in the signal magnitudes. Such high variance

in the input data can result in very slow or unstable training. Details related to the models and the

training procedure are discussed in the next subsections, while the dataset is discussed in

subsection 3.2.1 of this chapter.

3.1.2 PREDICTOR MODEL

We designed predictor and detector models that work in tandem to detect cyber-attacks as

anomalies in the in-vehicle network. The predictor model attempts to learn the normal system

42

behavior via an unsupervised learning approach to predict the next message instance with high

accuracy at design time using the normal (non-anomalous) data. During this process, the

predictor model learns the underlying distribution of the normal data and relates it to the normal

system behavior. This knowledge of the learned distribution is used to make accurate predictions

of the next message instances at runtime for normal messages. In the event of a cyber-attack, the

message values no longer represent the learned distribution or maintain the same temporal

relationships between messages, leading to large deviations between the predictions and the true

(observed) messages. These deviation patterns are then learned by the detector model, as

discussed in the next subsection, using a non-linear classifier to detect attacks.

Figure 16 Our proposed predictor model for the LATTE anomaly detection framework

showing the stacked LSTM encoder – decoder rolled out in time for t time steps along with

the self-attention mechanism generating context vector for time step t. The output at time

step t () is the prediction of the input at time step t+1 ().

Our proposed predictor model consists of a stacked LSTM based encoder-decoder

architecture with the self-attention mechanism. This is illustrated in Figure 16, The first linear

layer in the predictor model takes the time series CAN message data as the input and generates a

128-dimensional embedding for each input. Each input sample consists of k features where each

43

feature represents a particular signal value within that message. The output embedding from the

linear layer is passed to the stacked two-layer LSTM encoder to produce a 64-dimension encoder

output {ℎ ,ℎ , … ,ℎ }. The encoder output is the latent representation of the input time-series

signal values that encompass the temporal relationships between messages. The self-attention

block generates the context vector () by applying the self-attention mechanism to the encoder

outputs. The self-attention mechanism begins by applying a linear transformation to the

encoder’s current hidden state (ℎ) and multiplies the result with the encoder output. The output

from the multiplication is passed through a softmax activation to compute the attention weights.

The attention weights represent the importance of each hidden state information from the earlier

time steps, at the current time step. The attention weights are scalars multiplied with the encoder

outputs to compute the attention applied vector () which is then combined with the encoder

output to compute the input to the decoder (context vector ()). The context vector along with

the previous decoder's hidden state (ℎ) is given as input to the stacked two-layer decoder,

which produces a 64-dimension output that is passed to the last linear layer to obtain a k

dimensional output. This k dimension output represents the signal values of the next message

instance.

This predictor model is trained using non-anomalous (normal) data without any labels in an

unsupervised manner. To train the model with sequences, we employ a rolling window approach.

We consider a window of fixed size length (known as subsequence length) consisting of signal

values over time. The window with signal values is called a subsequence and has a subsequence

length number of samples of signal values. Our predictor model learns the temporal

dependencies that exist between the signal values within the subsequence and uses them to

predict the signal values in the next subsequence (i.e., window shifted to the right by one-time

44

step). The signal values corresponding to the last time step in the output subsequence represent

the final prediction, as the model consumes the entire input subsequence to generate them. We

compare this last time step in the output subsequence with the actual signal values and compute

the prediction error using the mean square error (MSE) loss function. This process is repeated

until the end of the training dataset. The predictor model is trained by splitting the dataset into

training (80%) and validation (20%) data without shuffling, as shuffling would destroy the

existing temporal relationships between messages. During the training process, the model tries to

minimize the prediction error in each iteration (a forward and backward pass) by adjusting the

weights of the neurons in each layer using backpropagation through time. At the end of each

training epoch, the model is validated (forward pass only) using the validation dataset to evaluate

the model performance. We employ mini-batches to speed up the training process and use an

early stopping mechanism to avoid overfitting. The details related to the non-anomalous dataset

and the hyperparameters selected for the model are presented in subsection 3.2.1 of this chapter.

3.1.3 DETECTOR MODEL

After training the predictor model, we train a separate classifier (detector model) that utilizes

the information from the predictor to detect attacks. The anomaly detection problem can be

treated as a binary classification problem as we are mainly interested in distinguishing between

normal and anomalous messages. In general, as the in-vehicle network data recordings can grow

in size very rapidly, labeling this data can get very expensive. Additionally, due to the nature of

the frequency of attack scenarios, the number of attack samples would be quite small compared

to normal samples even when the dataset is labeled. This results in having a highly imbalanced

dataset that would result in poor performance when trained with a traditional binary classifier in

45

a supervised learning setting. However, a popular non-linear classifier known as a support vector

machine (SVM) can be altered to make it work with unbalanced datasets where there is only one

class. Hence, in this work, we use a one class support vector machine (OCSVM) to classify the

messages as anomalous or normal. The OCSVM learns the distribution of the training dataset by

constructing the smallest hypersphere that contains the training data at design time and identifies

any sample outside the hypersphere as an anomaly at runtime.

Figure 17 OCSVM decision boundary shown in the blue sphere with the green dots

showing the normal samples from training data, and yellow and red dots showing the

normal and anomalous samples respectively from test data.

We train an OCSVM by using the output from the previously trained predictor model. We

begin by giving the previously used normal training dataset as the input to the predictor to

generate the predictions. We then compute the deviations (prediction errors) for all the training

data and pass it as input to the OCSVM. The OCSVM tries to generate the smallest hypersphere

46

that can fit most of the deviation points and uses it at runtime to detect anomalies. Figure 17

shows an example of a hypersphere generated by training an OCSVM for a message with three

signals. Each axis in the figure represents the relevant signal deviation and the dark blue sphere

represents the decision boundary. It can be observed that almost the entirety of training data

(shown via green dots) is confined to within the blue sphere.

In our work, the deviation of a message is represented as a vector where each element of

the vector corresponds to the difference between the true and predicted signal value. Therefore,

for a message m with number of signals, the deviation vector (∆ ,) computed at time step t

is given by equation (15). ∆ , = (, − ,) ∈ ℝ , ∀ ∈ [,] (15)

where , represent the prediction of the next true ith signal value (,) made at time step t. We

also experimented with other deviation measures that are given by equations (16), (17), and (18). ∆ , = ∑ |∆ , | ,∀ ∈ [,] (16) ∆ , = ∑ |∆ , | ,∀ ∈ [,] (17) ∆ , = (|∆ , |,∀ ∈ [,] (18)

Moreover, there can be situations where some of the signal deviations in a message can be

positive while others are negative. This could potentially result in making the sum or mean of

signal deviations zero or near zero, falsely representing no deviation or very small deviation. To

avoid these situations, we use the absolute signal deviations to compute the deviations for the

variants. Note: Unlike equation (15) that uses a vector of k dimensions to represent the message

deviation, equations (16), (17), and (18) reduce the vector to a single value using different

reduction operations. We explored these deviation measures to determine the best one, as

discussed in subsection 3.2.2 in this chapter.

47

In summary, our predictor model predicts the normal samples with very small deviations

and anomalous samples with high deviations. The OCSVM takes this predictor property into

account when constructing the hypersphere. In Figure 17, the yellow dots and red dots represent

the normal and anomalous samples respectively in the test dataset. It can be observed that when

the test data with anomalies is given as input to the OCSVM, it generally correctly classifies the

yellow samples within the hypersphere and red samples outside the hypersphere. Thus, both

predictor and detector models work collectively to detect attacks as anomalies. The details

related to the testing process are described in the next subsection.

3.1.4 MODEL TESTING

In the deployment/testing step, we present a test dataset consisting of anomalous samples

representing multiple attacks (outlined in chapter 2 subsection 2.1.4) along with the normal

samples to the LATTE framework. The normal messages have a label value of 0 and the attack

messages have a label value of 1. During this step, each sample (signal values in a message) is

first sent to the predictor model to predict the signal values of the next message instance, and the

deviation is computed based on the true message data. This deviation vector is passed to the

OCSVM detector model, to compute the position of the deviation vector in the k-dimensional

space, where k represents the number of signals in the message. The message is marked as non-

anomalous when the point corresponding to the deviation vector falls completely inside the

learned hypersphere. Otherwise, the message is marked as anomalous and an anomaly alert is

raised. This can be used to invoke an appropriate remedial action to suppress further actions from

the attacker. However, the design of remedial actions and response mechanisms falls outside the

48

scope of our work. The performance evaluation of our proposed LATTE framework under

various attack scenarios is presented in detail in subsections 3.2.2 and 3.2.3 of this chapter.

3.2 EXPERIMENTAL STUDIES

3.2.1 EXPERIMENTAL SETUP

To evaluate the effectiveness of our proposed LATTE framework, we first explored five

variants of the same framework with different deviation criteria: LATTE-ST, LATTE-Diff,

LATTE-Sum, LATTE-Avg, and LATTE-Max. LATTE-ST uses our proposed predictor model with a

static threshold (ST) value to determine whether a given message is anomalous or normal based

on the deviation. The other four variants use the same predictor model but different detection

criteria for computing the deviations for OCSVM. LATTE-Diff uses the difference in signal

values (equation (15)); LATTE-Sum and LATTE-Avg use a sum and mean of absolute signal

deviations respectively (equations (16), and (17)); and LATTE-Max uses the maximum absolute

signal deviation (equation (18)), as the input to the detector model.

Subsequently, we compare the best variant of our framework with three prior works:

Bitwise Message Predictor (BWMP [52]), Hierarchical Attention-based Anomaly Detection

(HAbAD [55]), and a variant of [55] called Stacked HAbAD (S-HAbAD [55]). BWMP [52]

trains an LSTM based neural network that aims to predict the next 64 bits of a CAN message by

minimizing the bitwise prediction error using a binary cross-entropy loss function. At runtime,

BWMP [52] uses the prediction loss as a measure to detect anomalies. HAbAD [55] uses an

LSTM based autoencoder model with hierarchical attention. The HAbAD model attempts to

recreate the input message sequences at the output and aims to minimize reconstruction loss.

49

Additionally, HAbAD uses supervised learning in the second step to model a detector using the

combination of a non-parametric kernel density estimator (KDE) and k-nearest neighbors (KNN)

algorithm to detect cyber-attacks at runtime. Lastly, S-HAbAD is a variant of HAbAD that uses

stacked LSTMs as autoencoders and uses the same detection logic used by the HAbAD. The S-

HAbAD variant is compared to show the effectiveness of using stacked LSTM layers. The

results of all experiments are discussed in detail in the next subsections 3.2.2 and 3.2.3.

We conducted all experiments using an open-source CAN message dataset developed by

ETAS and Robert Bosch GmbH [50]. The dataset consists of CAN message data for different

message IDs consisting of various fields such as timestamps, message ID, and individual signal

values. Additionally, the dataset consists of a training dataset with only normal data and a

labeled test dataset with multiple attacks (as discussed in chapter 2 subsection 2.1.4). It is

important to note that we do not use any labeled data during the training or validation of our

models and learn the normal system behavior in an unsupervised manner. The labeled data is

given to the models only during the testing phase and used to compute performance metrics.

We used PyTorch 1.5 to implement all of the machine learning models including LATTE

and its variants, and the models from the comparison works. Our proposed predictor model is

trained with 80% of the available normal data and the remaining 20% is used for validation. The

training phase is repeated for 500 epochs with an early stopping mechanism that monitors the

validation loss after the end of each epoch and stops if there is no improvement after 10

(patience) epochs. We used the ADAM optimizer with mean squared error (MSE) as the loss

function. Additionally, we employed a rolling window approach (discussed in subsection 3.1.2)

with a subsequence length of 32 time steps, a batch size of 256, and a starting learning rate of

0.0001. We used the scikit-learn package to implement the OCSVM in the detector model. We

50

used a radial basis function (RBF) kernel with a kernel coefficient (gamma) equal to the

reciprocal of the number of features (i.e., number of signals in the message). Moreover, to speed

up OCSVM training, we set the kernel cache size to 400 MB and enabled the shrinking

technique to avoid solving redundant optimizations. All the simulations are run on an AMD

Ryzen 9 3900X server with an Nvidia GeForce RTX 2080Ti GPU.

Before looking at the experimental results for various performance metrics, it is important

to understand some key definitions in the context of anomaly detection. We define a true positive

as the scenario when an actual attack is detected as an anomaly by the anomaly detection system

and a true negative as the situation where an actual normal message is detected as normal.

Additionally, a false positive would be a false alarm where a normal message is incorrectly

classified as an anomaly and a false negative would occur when an anomalous message is

incorrectly classified as normal. Using the above definitions, we evaluate our proposed

framework using four different metrics: (i) Detection accuracy: a measure of the anomaly

detection system’s ability to detect anomalies correctly, (ii) False positive rate: i.e., false alarm

rate, (iii) F1 score: a harmonic mean of precision and recall; we use the F1-score instead of

individual precision and recall values as it captures the combined effect of both precision and

recall metrics, and (iv) receiver operating characteristic (ROC) curve with area under the curve

(AUC): a popular measure of classifier performance. A highly efficient anomaly detection

system has high detection accuracy, F1 score, and ROC-AUC while having a very low false-

positive rate.

3.2.2 COMPARISON OF LATTE VARIANTS

In this subsection, we present the comparison results of the five variants LATTE-ST, LATTE-

51

Sum, LATTE-Avg, LATTE-Max, and LATTE-Diff. All the variants of LATTE use the trained

predictor model (discussed in subsection 3.1.3) to make the predictions and use OCSVM as a

detector except in the case of LATTE-ST, which uses a fixed threshold scheme introduced in [19]

to predict the given message as normal or anomalous. The main purpose of this experiment is to

analyze the impact of using a non-linear classifier such as OCSVM on the model performance

instead of a simple static threshold scheme (LATTE-ST). Additionally, with the last four variants,

we aim to study the effect of different deviation criteria on the OCSVM detection performance.

The deviations for any given message in LATTE-Diff (∆ ,), LATTE-Sum (∆ ,), LATTE-Avg

(∆ ,) and LATTE-Max (∆ ,) are computed using the equations (15), (16), (17), and (18)

respectively.

(a)

52

(b)

(c)

53

(d)

Figure 18 Comparison of (a) detection accuracy, (b) false-positive rates, (c) F1 score of

LATTE variants under different attack scenarios, and (d) ROC curve with AUC for

continuous attack.

3.2.3 COMPARISON OF LATTE WITH PRIOR WORKS

We compared our LATTE framework with BWMP [52], HAbAD [55], and a variant of

HAbAD called S-HAbAD [55]. Figure 19 (a)-(c) show the detection accuracy, false-positive

rate, and F1 score respectively for these frameworks under different attack scenarios. It can be

observed that LATTE outperforms all the prior works in terms of detection accuracy, false-

positive rate, and F1 score. This is due to three factors. Firstly, the stacked LSTM encoder-

decoder structure provides adequate depth to the model to learn complex time-series patterns.

This can be seen when comparing HAbAD with S-HAbAD, as the latter differs only in terms of

stacked LSTM layers in comparison to the former.

54

(a)

(b)

55

(c)

(d)

Figure 19 Comparison of (a) accuracy, (b) false-positive rates, (c) F1 score of LATTE and

the comparison works under different attack scenarios, and (c) ROC curve with AUC for

continuous attack.

56

Second, the self-attention mechanism helps LATTE in learning message sequences that

have very long-term dependencies. Lastly, the use of powerful OCSVMs as non-linear classifiers

helps in constructing a highly efficient classifier. These factors together resulted in the superior

performance of LATTE compared to all the comparison works. On average across all attacks,

LATTE was able to achieve up to 66.7% improvement in accuracy, 120.2% improvement in F1

score, 76% improvement in AUC.

3.2.4 LATTE OVERHEAD ANALYSIS

In this subsection, we present an overhead analysis of our LATTE framework. We quantify

the overhead of our LATTE framework and the comparison works using memory footprint, the

number of model parameters, and the inference time metrics. We profiled each framework on a

dual core ARM Cortex-A57 CPU on an Nvidia Jetson Tx2 board, which has similar

specifications to that of a real-world ECU. We repeated the inference time experiment 10 times

and computed the average inference time.

Table 1 Memory, model and runtime overhead of LATTE in comparison with BWMP [52], HAbAD
[55], and S-HAbAD [55]

Framework Memory footprint

(KB)

Number of Model parameters

(x103)

Average

inference

time (µs)

BWMP [52] 13,147 3435 644.76

HAbAD [55] 4558 64 685.05

S-HAbAD [55] 5600 325 976.65

LATTE 1439 331 193.90

From Table 1, we can observe that our LATTE framework has minimal overhead compared

to both attention-based prior works (HAbAD and S-HAbAD) and the non-attention based work

(BWMP). The high runtime and memory overhead in HAbAD and S-HAbAD is associated with

57

the use of KNNs. KNN does not generalize the data in advance, but rather scans through each

training data sample to make a prediction. This makes it very slow and consumes high memory

overhead (due to the requirement of having training data available at runtime).

3.3 CONCLUSION

In this chapter, we proposed a novel stacked LSTM with a self-attention framework called

LATTE that learns the normal system behavior by learning to predict the next message instance

under normal operating conditions. We presented a one class support vector (OCSVM) based

detector model to detect cyber-attacks by monitoring the message deviations from the normal

behavior. We presented a detailed analysis by comparing our proposed model with multiple

variants of our model and the best-known prior works in this area. Our LATTE framework

surpasses all the variants and the best-known prior works under different attack scenarios while

having a relatively low memory and runtime overhead.

58

4. TENET: TEMPORAL CNN WITH ATTENTION FOR ANOMALY DETECTION IN

AUTOMOTIVE CYBER-PHYSICAL SYSTEMS

In this chapter, we propose an anomaly detection framework called TENET that uses a

novel TCNA (temporal CNN with attention) model to monitor the in-vehicle network and detect

various real-world attacks. During learning, our proposed TCNA network is able to efficiently

capture very long-term dependencies between in-vehicle network messages in an unsupervised

manner. In the evaluation phase, we employ our trained TCNA network to reliably detect

multiple real-world attack scenarios with a low memory overhead. TENET attempts to increase

the detection accuracy, receiver operating characteristic curve with area under the curve (ROC-

AUC), false positive rate (FPR), false negative rate (FNR) and mathews correlation coefficient

(MCC) metrics (defined in subsection 4.2.1) with minimal overhead. Our novel contributions in

this work can be summarized as follows:

 We present a novel temporal convolutional neural attention (TCNA) network

architecture to learn very-long term temporal dependencies between messages in the

in-vehicle network;

 We introduce a metric called divergence score to quantify the deviation from

expected behavior;

 We present a decision tree based classifier to detect various attacks at runtime using

the proposed divergence score metric;

 We present a comprehensive analysis on the selection of key parameters to

effectively capture very-long term dependencies and analyzed different classifiers

to detect anomalies;

59

 We compare our TENET framework with various state-of-the-art IDS frameworks

to demonstrate its effectiveness.

4.1 TENET FRAMEWORK: OVERVIEW

Our proposed TENET framework consists of three phases: (i) data collection and

preprocessing, (ii) learning, and (iii) evaluation. The first phase involves collecting in-vehicle

network data from a trusted vehicle and preprocessing the collected data. In the learning phase

(offline), the preprocessed data is used to train a novel Temporal Convolutional Neural Attention

(TCNA) network in an unsupervised manner to learn the normal behavior of the system. Lastly,

in the evaluation phase (online), the trained TCNA network is used to calculate a divergence

score (DS), which is then used by a decision tree-based classifier to detect attacks. The overview

of our proposed TENET framework is shown in Figure 20. The following subsections describe

the three phases of the framework.

Figure 20 Different phases of our proposed TENET framework

60

4.1.1 DATA COLLECTION

This first phase of the TENET framework involves collecting in-vehicle network data from

a trusted vehicle. During the data collection step, it is crucial to ensure that the in-vehicle

network and the associated ECUs are trusted and free from any malware. Otherwise, the model

learns the incorrect representation of the normal operation of the in-vehicle network. Moreover,

it is important to collect data from a variety of normal operating conditions, and for different

durations. This provides a rich collection of the in-vehicle network data that captures various

normal operating conditions of the vehicle, which can then be used to train better models. One of

the ways to collect the in-vehicle network data is by using the OBD-II port which gives access to

most of the commonly used messages in addition to the unified diagnostic service (UDS)

messages. However, we recommended splicing into the CAN network and directly logging the

messages using a standard logger such as Vector GL 1000 [59]. This provides full access to the

CAN network and allows us to record any CAN message traversing the network.

After the data collection, the data is prepared for pre-processing to facilitate easy and

efficient training of the models. Every CAN message has a unique identifier and each message in

the dataset is grouped by the unique identifier and processed independently. The processed

entries are arranged in a tabular format where each row represents a single data sample and each

column represents various unique attributes of the message. Each message has the following

attributes (columns): (i) unique timestamp corresponding to the log time of the message, (ii)

message identifier, (iii) number of signals in the message, (iv) individual signal values in the

message (which together constitute the CAN message payload), and (v) label of the message (‘0’

for no-attack and ‘1’ for attack). The learning phase and evaluation phases of our TENET

61

framework involve different datasets. Therefore, we split the collected data into training and

testing data. Labels of all collected samples in the training dataset are set to 0 to represent no-

attack data. The test data will have a label value of 1 for attack samples and a label value of 0 for

no-attack samples. Furthermore, the original training data is split into training (85%) and

validation (15%) data for training and evaluating the trained model respectively. Due to the

possibility of high variance in CAN signal values, all signal values of each signal type are scaled

between 0 and 1. In this work, we primarily focus on monitoring the payload of the CAN

message i.e., signal values within each message. This is because an attacker needs to modify the

bits in the payload to launch most attacks. As our proposed TENET framework relies primarily

on monitoring the message payload it can also be adapted to other in-vehicle network protocols

such as FlexRay, LIN, CAN-FD, etc. with minimal changes. More details about the training

procedure and the model architecture are discussed next.

4.1.2 TENET LEARNING PHASE

In this subsection, we present our proposed novel TCNA network architecture and the

training procedure we employed to train the TCNA network. TENET uses the TCNA network to

learn the normal system behavior of the in-vehicle network in an unsupervised manner. The

proposed TCNA model takes the series of signal values in a message as the input and tries to

predict the signal values of the next message instance. The TCNA network achieves this by

trying to learn the underlying probability distribution of the normal data while attempting to

minimize the prediction error during training.

62

(a)

(b)

(c)

Figure 21 (a) TCNA network architecture with the internal structure of the TCNA block,

(b) TCN residual block showing the various layers of transformation and, (c) the attention

mechanism.

63

The proposed TCNA network consists of three stacked TCNA blocks and a final linear

layer before the output as shown in Figure 21 (a). A TCNA block consists of an attention block

and a TCN residual block (TRB). The TRB is adopted from [26] and employs a residual

architecture containing two DCC layers, two weight normalization layers, and two ReLU

nonlinearity layers stacked together as shown in Figure 21 (b). This residual architecture helps to

efficiently backpropagate the gradients and encourages the reuse of learned features. The input to

the first TCNA block is a time series of CAN message data with n signal values as features. This

partial sequence from the complete time-series dataset, which is given as the input to the model

every time, is called a subsequence. Since padding zeros to the input subsequence will distort the

sequential nature of time series data, we avoid zero-padding to the input time-series by

computing the length of the subsequence using (2).

= (−) ∗ (19)

where R is the subsequence length, k is the kernel size, and l is the number of DCC layers in the

networks. The first TCNA block does not contain an attention block, and the inputs are directly

fed to the TRB as shown in Figure 21 (a), where { , , … , } represents multiple channels of

the TRB and k is the number of channels of TRB inputs. The first DCC layer inside the TRB

processes each feature of the input sequence as separate channels. A 1-D dilated causal

convolution operation is performed using a kernel of size two and the number of filters is three

times the input features (n) in each DCC layer. The input and output dimensions are the same

except for the first TRB. The output from the DCC layer is weight normalized for faster

convergence and avoids explosion of weight values. The weight normalized outputs are passed

through a non-linear ReLU activation function. This process is repeated one more time inside the

64

TRB. A convolution layer with a filter size of 1x1 is added to make the dimensions of the outputs

from the last ReLU activation and the input of the TRB consistent with each other. Each DCC

layer in the TRB tries to learn the temporal relationship between messages by applying various

filters to its inputs and updating the filter weight values accordingly.

The output feature maps of the TRB are given as the input to the attention block, shown in

Figure 21 (c). The attention block repeats its inputs to obtain the query (Q), key (K), and value

(V) vectors. A scalar-dot product is performed between Q and transpose of key () to calculate

the similarities between each Q and K vectors. The resultant dot product is scaled by a factor of

1 and passed through a softmax layer to calculate the attention weights, as shown in

equation (20).

(, ,) = () (20)

where the term represents the dimension of the K vector. The attention weights represent the

importance of each feature map of the previous DCC layer. The attention weights are then scalar

multiplied with V to produce the output of the attention block. Thus, the attention block uses a

self-attention mechanism to improve the quality of feature maps that will be received by the

subsequent TRBs. Similarly, the input sequence flows through the TCNA network and is fed to

the final linear layer which produces an output of n dimensions. The n-dimensional output

represents the predicted signal values of each dimension.

The TCNA network model is trained in an unsupervised manner using the training data that

has no-attack samples and label information. We employ a rolling window approach to train the

TCNA network. Each window consists of signal values corresponding to the current

subsequence. Our TCNA network learns the temporal dependencies between messages inside a

65

subsequence and tries to predict the signal values of the subsequence that is shifted by one time

step to the right. We employ a mean squared error (MSE) loss function to compute the prediction

error by comparing the signal values of the last time step in the predicted subsequence with the

last time step of the input subsequence. The error is propagated backward to update the weights

for the filters. This process is repeated for each subsequence until the end of the training data,

which constitutes one epoch. We train the model for multiple epochs and employ a mini-batch

training approach to speed up the training. At the end of each epoch, the model is evaluated using

the unseen validation data. Additionally, we employed an early stopping mechanism to prevent

the model from overfitting. The details related to the model hyperparameters are discussed later

in subsection 4.2.1.

4.1.3 TENET EVALUATION PHASE

We use the trained TCNA network in conjunction with a detection classifier to efficiently

detect in-vehicle network attacks at runtime. As we are mainly interested in distinguishing

between attack and no-attack samples, we transform the detection problem into a binary

classification problem. The high frequency of messages in the in-vehicle network requires a

detection classifier that is lightweight and can classify messages quickly with high detection

accuracy and minimal overhead. Hence, we use a categorical variable decision tree based

classifier to detect between normal and attack samples due to their simpler nature, speed, and

precise classification capabilities.

A decision tree starts with a single node (root node), which branches into possible

outcomes. Each of those outcomes leads to additional nodes called branch nodes. Each branch

node branches off into other possibilities and ends in a leaf node giving it a treelike structure.

66

During training, the decision creates the tree structure by determining the set of rules in each

branch node based on its input. During testing, the decision tree takes the input and traverses the

tree structure until it reaches a leaf node, which classifies the input as either a no-attack or attack

sample.

The evaluation phase begins by splitting the test data with attacks into two parts: (i)

calibration data, and (ii) evaluation data. In the first part, only the calibration data is fed to the

trained TCNA network to generate the predicted sequences. We then compute the divergence

score (DS) for each signal in every message using equation (21).

() = () − (+) ∀ ∈ [,], ∈ [,] (21)

where m represents the mth message sample and M represents the total number of message

samples, i represents the ith signal of the mth message sample and Nm represents the total number

of signals in the mth message, t represents the current time step, () represents the ith predicted

signal value of the mth message at time step t, and (+ 1) represents the true ith signal value

of the mth message sample at time step t + 1.

The divergence score is higher during an attack as the TCNA model is trained on the no-

attack data and fails to predict the signal values correctly in the event of an attack. This sensitive

nature of the DS to attacks makes it a good candidate for the input to our detection classifier.

Moreover, the group of signal level DS for each message sample is stacked together to obtain the

DS vector. Thus, we train the decision tree classifier using the DS vector as input to learn the

distribution of both no-attack samples and attack samples. We use the unseen evaluation data

(that has both attack and no-attack samples) to evaluate the performance of TENET.

67

4.2 EXPERIMENTS

4.2.1 EXPERIMENTAL SETUP

To evaluate the effectiveness of the TENET framework, we conducted various experiments.

We compare TENET against three state-of-the-art prior works on automotive IDS: RN [56],

INDRA [54], HABAD [55], and LATTE [16]. Together, these approaches reflect a wide range of

sequence modeling architectures. RN [56] uses vanilla RNNs to increase the dimensionality of

input signal values and reconstruct the input signal at the output by minimizing MSE. The

trained RN model scans continuously for large reconstruction errors at runtime to detect

anomalies over in-vehicle networks. HABAD [55] uses an LSTM based autoencoder model with

attention to detect anomalies in real-time CPS. This model reduces the MSE reconstruction loss

by trying to replicate the input message signal at the output. HABAD uses a supervised learning

detector that combines a kernel density estimator (KDE) and k-nearest neighbors (KNN)

algorithm to detect anomalies. LATTE [16] uses a LSTM based predictor model with a novel

self-attention mechanism to predict the next time step message signal value in an unsupervised

fashion. A one class support vector machine (OCSVM) based detector works together with the

LSTM self-attention predictor model to detect different cyber-attacks at runtime. Lastly, INDRA

[54] uses a GRU-based autoencoder that reconstructs input sequences at the output by reducing

the MSE reconstruction loss. At runtime, INDRA utilizes a pre-computed static threshold to flag

68

anomalous messages. The comparisons of TENET with the above-mentioned IDS are presented

in subsections 4.2.2 and 4.2.3.

We adopted an open-source CAN message dataset developed by ETAS and Robert Bosch

GmbH [50] to train our model, and the comparison works. The dataset consists of multiple CAN

messages with a different number of signals that were modeled after real-world vehicular

network information. Moreover, the dataset has a distinct training set that has normal CAN

messages and a labeled testing dataset for different types of attacks. For training and validation,

we used the training dataset from [50] without any attack scenarios in an unsupervised manner.

We tested our proposed TENET framework, and all comparison works by modeling various real-

world attacks (discussed in chapter 2 subsection 2.1.4) using the test dataset in [50]. Note that

TENET can be easily adapted to other in-vehicle network protocols such as Flexray and Ethernet,

as it relies only on the message payload information. However, the lack of any openly available

datasets for these protocols prevents us from showing results on them.

We used PyTorch 1.8 to model and train various machine learning models including

TENET, and the comparison works. Our framework uses 85% of data for training and the

remaining 15% for validation. We trained TENET for 200 epochs with an early stopping

mechanism that constantly monitors the validation loss after each epoch. If no improvement in

validation loss is observed in the past 10 (patience) epochs, training is terminated. We used MSE

to compute the prediction error and the ADAM optimizer with a learning rate of 1e-4. We

employed a rolling window approach (discussed in subsection 4.1.2) with a batch size of 256 and

a subsequence length of 64. We used scikit-learn to implement the decision tree classifier, with

the gini-criterion, and best splitter to detect anomalies based on the divergence score.

69

Before discussing the results, we define performance metrics in the context of anomaly

detection. We classify a message as a true positive (TP) only if the model detects a true attack as

an anomaly, and a true negative (TN) is when a normal message is detected as a no-attack

message. When the model detects a normal message as an anomalous message it is defined as a

false positive (FP), whereas an actual anomalous message which is not detected is a false

negative (FN). Using these definitions, we evaluate our framework based on four different

performance metrics:

 Detection Accuracy: which quantifies the ability of the IDS to detect an anomaly

correctly, as defined in equation (22).

 =
()

()
 (22)

 Receiver Operating Characteristic (ROC) curve with area under the curve (AUC):

which measures the classifier’s performance as the area under the curve in A plot

between the true positive rate (TPR) and false positive rate (FPR) as shown in

equation (23):

 =
()

 =
()

 (23)

 False Negative Rate (FNR): which quantifies the probability that a TP will be

missed by the model (a lower value is better). It is calculated as shown in equation

(24):

=
()

 (24)

 False Positive Rate (FPR): which quantifies the probability that a TN will be

missed by the model (a lower value is better). It is calculated as shown in equation

(25):

70

=
()

 (25)

 Mathews Correlation Coefficient (MCC): which provides an accurate evaluation of

the model performance while working with imbalanced datasets, as defined as

equation (26):

=
((∗) (∗))

(()()()())
 (26)

Another metric that is sometimes used is the F-1 score, which is the harmonic mean of

precision and recall. As both precision and recall do not include the true negatives in their

computation, the F-1 score metric fails to represent the true performance of the classifier. Unlike

the F-1 score metric, the MCC metric that we consider includes all the cells of the confusion

matrix, thus providing a much more accurate evaluation of the frameworks.

4.2.2 RECEPTIVE FIELD LENGTH ANALYSIS

In the first experiment, we compare the performance of our TCNA architecture with four

different receptive field lengths while the remaining hyperparameters are unchanged. We

conduct this analysis to evaluate whether very long receptive lengths can help with a better

understanding of normal system behavior. All the variants are evaluated based on their

performance on two training metrics: average training loss and average validation loss, and the

best model is selected for further comparisons.

Table 2 TCNA variants with different receptive field lengths

Framework Receptive Field Lengths

16 32 64 128

Avg training loss 4.1e-4 3e-4 2.5e-4 6.8e-4

Avg validation loss 5.5e-4 4.3e-4 2.9e-4 9.3e-4

71

The average training loss value represents the average loss between the predicted behavior

and observed behavior of each iteration in the training data. In contrast, the average validation

loss represents the average loss between the predicted behavior and the observed behavior of

each iteration in the validation data. Table 2 shows the average training and validation loss of the

three variants of TCNA. We can observe that a receptive length of 64 has the lowest average

training and validation loss. Therefore, we select 64 as our receptive field value, which is twice

the maximum receptive field length presented in the comparison works (sequence length of 32 in

[55]). This long receptive field length enables us to effectively learn very long-term

dependencies in the input time series data and allows us to better understand the normal vehicle

operating behavior.

4.2.3 COMPARISON OF TENET CLASSIFIER VARIANTS

Next, we compare three different variants of TENET to study the impact of different

classification techniques on TENET’s anomaly detection capabilities. We considered non-linear

classifiers such as decision trees (DT) and K-Nearest Neighbors (KNN), and a static threshold

technique to classify a message as anomalous or normal. The three variants are labeled as

TENET-ST, TENET-KNN, and TENET-DT. TENET-ST predicts whether a given message is

normal or anomalous using the 99.99th percentile of final validation loss as the threshold (as

suggested in [54]). TENET-KNN uses a KNN classifier along with a kernel density estimator

(KDE) to detect anomalies [55]. And lastly, TENET-DT uses our proposed decision tree based

approach to detect anomalous messages. All variants utilize the same TCNA architecture we

propose (presented in section 4.1) and the best performing TENET configuration from subsection

4.2.2 is used to predict the signal values of the next message instance. The detection accuracy,

72

ROC curves with AUC, and MCC metrics for the three variants under four different attack

scenarios are shown in Figure 22.

(a)

(b)

73

(c)

Figure 22 Comparison of (a) detection accuracy and (b) MCC of TENET variants under

various attack scenarios, and (c) ROC with AUC for the playback attack.

In Figure 22(a), we can observe that the TENET-DT variant outperforms all the other

variants for all attack scenarios by achieving an average accuracy of over 96% which is around

6.1% higher than the other two variants. Moreover, TENET-DT achieves an average of 19.7%

increase in MCC metric compared to the other two variants for all attack scenarios, as can be

seen in Figure 22(b). Figure 22(c) illustrates the ROC curves (with the area under the curve

(AUC) in the legend) for the three variants in a playback attack scenario. The black dotted line in

Figure 22(c) represents an AUC of 0.5 which is as good as random guessing. For brevity, we

only show a playback attack for representing the ROC-AUC since it is the most difficult attack to

detect. Recall that in a playback attack, the attacker tries to trick the IDS by replaying the

previously observed messages. An IDS cannot easily detect these attacks unless it was properly

trained to comprehend the normal sequence of messages. We can see that TENET-DT

74

outperforms other variants with an AUC of 0.96 along with the lowest false positive rate.

Moreover, decision trees are a simple rule-based approach and can be trained quickly even if the

input data size increases and produces fast results. Hence, we select the decision tree based

classifier to detect anomalous messages in the in-vehicle network. Henceforth, we refer to

TENET-DT as TENET.

4.2.4 PRIOR WORK COMPARISON

In this subsection, we compare our proposed TENET framework with various state-of-the-art

prior works RN [56], INDRA [54], HABAD [55], and LATTE [16]. We evaluated the

performance of the TENET framework, and the comparison works using detection accuracy,

FPR, ROC curves with AUC, and MCC metrics, under various attack scenarios, and the results

are as shown in Figure 23. From Figure 23 (a)-(e), we can observe that our TENET framework

outperforms all comparison works in detection accuracy and MCC metrics for all attack

scenarios except plateau attack. Moreover, LATTE [16] and TENET shows similar performance

for the ROC-AUC metric. In addition, it can be observed that TENET achieves the second

lowest FPR and FNR.

 LATTE [16] shows better performance for detection accuracy, MCC, FPR, and FNR metrics

only for plateau attack. However, LATTE [16] has relatively large memory footprint and model

parameter (discussed in detail in subsection 4.2.5) compared to TENET. Moreover, INDRA [54]

outperforms TENET for the FPR metric for all attack scenarios. However, the model shows poor

performance for the FNR metric which is equally important because it tells the probability of an

IDS to miss an actual attack. Table 3 summarizes the average percentage improvement of our

TENET framework over the comparison works for all attack scenarios. A negative percentage

75

value indicated that TENET has underperformed for that metric and work. From Table 3, we can

notice that our TENET framework achieves an improvement of up to 69.47% for the FNR metric,

up to 64.30% for the MCC metric, up to 37.25% for the ROC-AUC metric, up to 9.48% for the

detection accuracy, and up to 5.19% for the FPR metric for all attack scenarios.

Table 3 Average percentage improvement of TENET over comparison works

Prior Works Detection

accuracy

ROC-AUC MCC FPR FNR

LATTE [16] 1.26 0.00 3.95 1.96 -6.63

INDRA [54] 3.32 17.25 19.14 -1.33 32.70

HABAD [55] 9.07 26.50 49.26 5.19 44.05

RN [56] 9.48 37.25 64.30 1.41 69.47

(a)

76

(b)

(c)

77

(d)

(e)

Figure 23 Comparison of (a) detection accuracy, (b) MCC, (c) FNR, (d) FPR of TENET and

comparison works under various attack scenarios, and (e) ROC with AUC for playback

attack.

78

In a nutshell, our TENET framework with a novel TCNA network outperforms all the

recurrent architectures without attention in detection accuracy and MCC metrics (from Table 3),

due to its ability to capture very-long term dependencies in time-series data. Moreover, the

attention mechanism within the TCNA improves the quality of the outputs of the TRB enabling

efficient learning of very-long term dependencies. Thus, our novel TCNA network with the

decision tree classifier results in a formidable anomaly detection framework.

4.2.5 TENET MEMORY OVERHEAD ANALYSIS

Lastly, we compare the number of trainable parameters and the memory footprint of the

TENET framework, and the comparison works to evaluate the memory overhead of these models.

It is important to consider the memory overhead of IDS models because automotive ECUs are

resource constrained and it is crucial to have a model that does not interfere with the normal

operation of safety-critical applications. Figure 24 illustrates the fast and lightweight nature of

TENET and the earlier mentioned comparison works with the number of model parameters (on

the x-axis), the memory footprint (on the y-axis), and the color bar represents the detection

latency of comparison works in microseconds (). It can be seen from Figure 24 that TENET

has the second lowest number of model parameters and memory footprint over all the other

comparison works except RN [56]. Even though RN [56] has the least number of model

parameters and memory footprint, it fails to capture the temporal dependencies between

messages effectively, resulting in poor performance as seen in Figure 23 (a)-(e). Moreover,

TENET (grey color) achieves the least detection latency among all compared works, shown in

Figure 24.

79

Figure 24 Comparison of memory overhead of TENET and the comparison works.

TENET achieves an average of 86.73% reduction in memory footprint against all

comparison works, up to 98.17% reduction in the number of trainable model parameters.

Moreover, the model memory footprint of TENET is 86.95% smaller compared to the model

memory footprint of INDRA [54]. TENET achieves high performance with a very lower number

of trainable parameters because of the fewer filters used by each DCC layer in the TCNA

network. The attention block improves the quality of the outputs of each TRB thus eliminating

the need for more filters, which in turn reduces the number of trainable parameters required by

the model. Moreover, TENET also has the lowest inference time with an average of 34.24%

reduction against all comparison works. TENET is able to achieve faster inferencing because,

unlike recurrent architectures, TENET employs CNNs to process multiple subsequences in

parallel, which helps reduce the inference time. Thus, TENET is able to achieve superior

performance across various attack scenarios in automotive platforms with minimal memory and

computational overhead.

80

4.3 CONCLUSION

In this chapter, we proposed a novel Temporal Convolutional Neural Attention (TCNA)

network based anomaly detection framework called TENET for automotive cyber-physical

systems. We also proposed a metric called the divergence score (DS), which measures the

deviation of the predicted signal value from the actual signal value. We presented a sensitivity

analysis for the selection of receptive field size and the detection classifier. We then compared

the best variant of our proposed framework with the best-known prior works that employ a

variety of sequence model architectures. TENET achieves up to 69.47% improvement in the FNR

metric, up to 64.30% improvement in the MCC and up to 37.25% increment in the ROC-AUC

metric over all the comparison works and for all attack scenarios. Moreover, TENET achieves up

to 98.17% reduction in the number of model parameters and an average of 86.73% decrease in

model memory footprint over all the comparison works. Therefore, these promising results

indicate a compelling potential for utilizing our proposed approach in emerging automotive

platforms.

81

5. CONCLUSION AND FUTURE WORK

5.1. RESEARCH CONCLUSION

In this thesis, we proposed efficient techniques to deploy machine learning based IDSs for

in-vehicle network security. We started by conducting a comprehensive survey on state of art on

different types of in-vehicle network IDSs. This survey determined that machine learning based

IDSs were a realizable solution to the automotive security problem.

These findings were used to design two solutions for in-vehicle network security. The first

technique uses a novel stacked LSTM with a self-attention framework called LATTE that learns

the normal system behavior by learning to predict the next message instance under normal

operating conditions. It also used a one class support vector (OCSVM) based detector model to

detect cyber-attacks by monitoring the message deviations from the normal behavior. LATTE

was able to achieve an average of 18.94% improvement in accuracy, 19.5% improvement in F1

score, 37% improvement in AUC and 79% reduction in false positive rate, and up to 47.8%

improvement in accuracy, 37.5% improvement in F1 score, 76% improvement in AUC and 95%

reduction in false positive rate. Therefore, LATTE offers a lightweight, scalable, and reliable

solution to the intrusion detection problem.

 Nonetheless, the increased automotive system complexity today has resulted in very long-

term dependencies between messages exchanged between ECUs that cannot be effectively

captured using LSTMs. This is mainly because the current time step output of LSTMs is heavily

influenced by the recent time steps compared to past time steps, which makes it hard to capture

82

very long-term dependencies, e.g., for sequence lengths of 50 or more. Processing very long

sequences also exacerbate the memory overhead of LSTMs. We want an IDS to efficiently

capture and understand the very long-term dependencies to accurately detect anomalies in the

network. Therefore, in the second technique we propose a novel anomaly detection framework

called TENET based on Temporal Convolutional Neural Attention (TCNA) networks to learn

very-long term temporal dependencies between messages in the in-vehicle network with low

memory and computational overhead. TENET achieves an average improvement of 1.8% in

FNR, 5.78% in detection accuracy, 20.25% in ROC-AUC, 34.16% in MCC, and 34.89% in FNR

metric with 95.01% fewer model parameters, 86.73% decrease in memory footprint, and 34.24%

lower inference time.

5.2. FUTURE WORK

Despite the many promising state-of-the-art AI-based IDS techniques that show compelling

results, several issues still need to be addressed to make future autonomous vehicles truly secure.

We present some key open challenges that represent promising opportunities for researchers to

assist with achieving security goals in future autonomous vehicles.

5.2.1 INTRUSION RESPONSE SYSTEMS (IRS)

Detecting intrusions is the first step in the process of providing complete security to the in

vehicle network. To achieve total security the identified threat needs to be handled in such a way

that it does not cause any further undesirable events. Therefore, we need a response mechanism

in place to handle the operation of the vehicle after detecting intrusion. One such mechanism is

called an intrusion response system (IRS). IRSs have been employed in various fields to add an

83

extra layer of security. In the automotive domain, few works focus on intrusion response. In [60]

authors proposed an intrusion tolerant architecture for autonomous driving. Their proposed

approach used a simplex architecture to tolerate partially compromised automotive software on

the ECU by extensively replicating critical services to hide the actions of a minority of

compromised components. However, this work cannot handle a fully compromised ECU. A

three-layer intrusion response framework was proposed in [61]. The proposed IRS module works

in combination with the intrusion prevention system (IPS) in the first layer and IDS in the second

layer. Their IRS is designed to use a unique predefined security strategy for different types of

threats. However, this may fail to handle a novel threat scenario. With the increasing complexity

of automotive cyber-physical systems and attack vectors, more comprehensive response

strategies are required for future vehicles. Therefore, this domain represents a research gap that

can be explored more in the future.

5.2.2 DATA PROTECTION AND PRIVACY

Data theft is a rapidly growing concern in today’s world and is a prevalent issue across

various industries. In 2020 alone, the average cost of a single data breach was around $3.86

million [1]. This is also a concern in future autonomous vehicles as the vehicles collect and

operate on large volumes of data of different types. Data thefts have varying levels of safety,

security, and economic impacts depending on the type and severity of the breach. Such thefts can

compromise individual user data as well as intellectual property data of vehicle OEMs. With the

recent introduction of next-generation driverless ridesharing services in places such as Phoenix

and San Francisco, the stakes for user data privacy now is higher than ever. For instance,

attackers can use stolen user information to launch more effective socially engineered attacks.

84

The issues of security, trust, and privacy in autonomous vehicles are presented in detail in [62].

Techniques such as Confidentiality Integrity Availability (CIA) and Distributed Immutable

Ephemeral (DIE) models need to be adopted in the automotive domain to ensure data protection

and privacy of future autonomous vehicles.

5.2.2 TAMPER-PROOF AI

AI algorithms have shown superior performance in IDS and ADAS subsystems for

autonomous vehicles. However, these algorithms are vulnerable to carefully crafted adversarial

attacks [8]. Moreover, with the rollout of increasingly connected vehicles, we envision that

Black-hole DDoS attacks (where communication between vehicles is blocked) and Sybil attacks

(where a vehicle operates with multiple identities) will become increasingly common. Such

attacks will result in confusing AI algorithms, potentially causing failure across vehicle

subsystems. Recent model inversion attacks [63] that try to reconstruct training data from the

model parameters are gaining popularity. Such attacks pose a great threat to the proprietary data

of the automakers that are used to train the AI models. Moreover, with newer and scalable

learning approaches for large AI algorithms such as with federated learning in datacenter

environments, the need for creating new approaches for tamper-proof and adversarial attack-

resilient AI algorithms becomes even more imperative.

5.2.3 SECURING AUTOMOTIVE IC SUPPLY CHAINS

As different semiconductor integrated circuit (IC) components in a vehicle are

manufactured in different parts of the world today, it is crucial to have a secure supply chain.

Any vulnerability induced from the supply chain in any component of the vehicle will have

85

disastrous effects on autonomous vehicles. This issue is further exacerbated with the increasing

demand for the RSUs and 5G infrastructure to enable intelligent transportation systems. A

comprehensive list of IC supply chain concerns and a logic obfuscation technique to overcome

them is presented in [64]. Techniques such as digital watermarking, IC fingerprinting, IC

metering, etc., need to be further explored to ensure a secure supply chain.

5.2.4 ADOPTING EMERGING TECHNOLOGIES

In recent years, researchers have started looking into using WiGig networks that use IEEE

802.11ad multiple gigabit wireless system (MGWS) standard at 60 GHz frequency for in-vehicle

network communication. The ability to support high data rates and enable low latency

applications can transform the prospect of both in-vehicle networks and future self-driving

applications. Another disruptive technology that could revolutionize future autonomous vehicles

is blockchain technology. The blockchain’s decentralized ledger provides accurate and

simultaneous access to different types of data, such as traffic information and better vehicle

tracking information for ride-sharing applications. However, as these technologies are still in

their infancy in the automotive domain, they need to be meticulously scrutinized by

characterizing vulnerabilities and exploring security mechanisms to enhance security.

86

BIBLIOGRAPHY

[1] "Upstream Security's 2021 Global Automotive Cybersecurity Report," 2021. [Online].

Available: https://upstream.auto/2021report/.

[2] V. K. Kukkala, J. Tunnell, S. Pasricha and T. Bradley, "Advanced Driver-Assistance

Systems: A Path Toward Autonomous Vehicles," IEEE Consumer Electronics Magazine,

vol. 7, pp. 18-25, 2018.

[3] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B.

Kantor, D. Anderson, H. Shacham, and S. Savage, "Experimental Security Analysis of a

Modern Automobile," in IEEE Symposium on Security and Privacy, 2010.

[4] C. Valasek, and C. Miller, "Remote Exploitation of an Unaltered Passenger Vehicle," Black

Hat USA, 2015.

[5] F. D. Garcia, D. Oswald, T. Kasper, and P. Pavlidès, "Lock it and still lose it—on the (in)

security of automotive remote keyless entry systems," in USENIX security symposium,

2016.

[6] L. Wouters, E. Marin, T. Ashur, B. Gierlichs, and B. Preneel, "Fast, Furious and Insecure:

Passive Keyless Entry and Start Systems in Modern Supercars," IACR Transactions on

Cryptographic Hardware and Embedded Systems, vol. 2019, no. 3, pp. 66-85, 2019.

[7] L. Wouters, B. Gierlichs, and B. Preneel, "My other car is your car: compromising the Tesla

Model X keyless entry system," IACR Transactions on Cryptographic Hardware and

Embedded Systems, vol. 2021, no. 4, pp. 149-172, 2021.

87

[8] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno,

and D. Song, "Robust Physical-World Attacks on Deep Learning Visual Classification," in

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2008.

[9] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, "Remote Attacks on Automated Vehicles

Sensors: Experiments on Camera and LiDAR," Black Hat Europe, 2015.

[10] "Experimental Security Research of Tesla Autopilot," 2019. [Online]. Available:

https://keenlab.tencent.com/en/2019/03/29/Tencent-Keen-Security-Lab-Experimental-

Security-Research-of-Tesla-Autopilot/.

[11] Z. Hau, K. T. Co, S. Demetriou, and E. C. Lupu, "Object removal attacks on lidar-based 3d

object detectors," 2021. [Online]. Available: https://arxiv.org/abs/2102.03722.

[12] R.P Weinmann and B. Schmotzle, "TBONE – A zero-click exploit for Tesla MCUs," 2020.

[Online]. Available: https://kunnamon.io/tbone/tbone-v1.0-redacted.pdf.

[13] "Kia Motors America suffers ransomware attack, $20 million ransom," 2021. [Online].

Available: https://www.cpomagazine.com/cyber-security/kia-motors-america-suffers-a-20-

million-suspected-doppelpaymer-ransomware-attack/.

[14] C. Sitawarin, A.N. Bhagoji, A. Mosenia, M. Chiang, and P. Mittal, "DARTS: Deceiving

Autonomous Cars with Toxic Signs," 2018. [Online]. Available:

https://arxiv.org/abs/1802.06430.

[15] J. Dürrwang, J. Braun, M. Rumez, R. Kriesten, and A. Pretschner, "Enhancement of

Automotive Penetration Testing with Threat Analyses Results," in Society of Automotive

Engineers (SAE), 2018.

[16] V. K. Kukkala, S. V. Thiruloga, and S. Pasricha, "LATTE: LSTM Self-Attention based

88

Anomaly Detection in Embedded Automotive Platforms," in ACM Transactions on

Embedded Computing Systems (TECS), vol. 20, no. 5s, pp. 1-23, 2021.

[17] S. V. Thiruloga, V. K. Kukkala, and S. Pasricha, "TENET: Temporal CNN with Attention

for Anomaly Detection in Automotive Cyber-Physical Systems," in IEEE/ACM Asia &

South Pacific Design Automation Conference (ASPDAC), 2022.

[18] "Isms family of standards," International Organization for Standardization, Geneva, 2015.

[19] I. Studnia, E. Alata, V. Nicomette, M. Kaâniche, and Y. Laarouchi, "A language-based

intrusion detection approach for automotive embedded networks," International Journal of

Embedded Systems (IJES), vol. 10, 2018.

[20] P. Waszecki, P. Mundhenk, S. Steinhorst, M. Lukasiewycz, R. Karri and S. Chakraborty,

"Automotive Electrical and Electronic Architecture Security via Distributed In-Vehicle

Traffic Monitoring," IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 36, pp. 1790-1803, 2017.

[21] G. C. DiDomenico, J. Bair, V. K. Kukkala, J. Tunnell, M. Peyfuss, M. Kraus, J. Ax, J.

Lazarri, M. Munin, C. Cooke, E. Christensen, L. Peltz, N. Peterson, L. Wolfe, Z. Vinski,

and D. Norris, "Colorado State University EcoCAR 3 Final Technical Report," in Society of

Automotive Engineers (SAE), 2019.

[22] J. Schmidhuber, "Habilitation thesis: System modeling and optimization," 1993.

[23] J. F. Kolen and S. C. Kremer,, "Gradient Flow in Recurrent Nets: The Difficulty of Learning

LongTerm Dependencies," in A Field Guide to Dynamical Recurrent Networks, Wiley-

IEEE Press, 2001, pp. 237-243.

[24] K. Cho, B. V. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y.

89

Bengio, "Learning phrase representations using RNN encoderdecoder for statistical machine

translation," in Empirical Methods in Natural Language Processing (EMNLP), 2014.

[25] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano and K. J. Lang, "Phoneme recognition

using time-delay neural networks," IEEE Transactions on Acoustics, Speech, and Signal

Processing, vol. 37, pp. 328-339, 1989.

[26] S. Bai, J. Z. Kolter, and V. Koltun, "An Empirical Evaluation of Generic Convolutional and

Recurrent Networks for Sequence Modeling," 2018. [Online]. Available:

https://arxiv.org/abs/1803.01271.

[27] H. M. Song, H. R. Kim and H. K. Kim, "Intrusion detection system based on the analysis of

time intervals of CAN messages for in-vehicle network," in International Conference on

Information Networking (ICOIN), 2016.

[28] M. Marchetti and D. Stabili, "Anomaly detection of CAN bus messages through analysis of

ID sequences," in IEEE Intelligent Vehicles Symposium (IV), 2017.

[29] T. Hoppe, S. Kiltz, and J. Dittmann, "Security threats to automotive CAN networks—

Practical examples and selected short-term countermeasures," Reliability Engineering &

System Safety, vol. 96, no. 11, pp. 11-25, 2011.

[30] M. Gmiden, M. H. Gmiden and H. Trabelsi, "An intrusion detection method for securing in-

vehicle CAN bus," in International Conference on Sciences and Techniques of Automatic

Control and Computer Engineering (STA), 2016.

[31] H. Lee, S. H. Jeong and H. K. Kim, "OTIDS: A Novel Intrusion Detection System for In-

vehicle Network by Using Remote Frame," in Annual Conference on Privacy, Security and

Trust (PST), 2017.

90

[32] U. E. Larson, D. K. Nilsson and E. Jonsson, "An approach to specification-based attack

detection for in-vehicle networks," in IEEE Intelligent Vehicles Symposium, 2008.

[33] M. Aldwairi , A. M.Abu-Dalo and M. Jarrah, "Pattern matching of signature-based IDS

using Myers algorithm under MapReduce framework," EURASIP Journal on Information

Security, 2017.

[34] E. W. Myers, "An O(ND) difference algorithm and its variations," Algorithmica, vol. 1, pp.

251-266, 1986.

[35] T. Hoppe, S. Kiltz, and J. Dittmann, "Applying intrusion detection to automotive IT-early

insights and remaining challenges," Journal of Information Assurance and Security (JIAS),

pp. 226-235, 2009.

[36] D. Stabili, M. Marchetti and M. Colajanni, "Detecting attacks to internal vehicle networks

through Hamming distance," in AEIT International Annual Conference, 2017.

[37] K. T. Cho and K. G. Shin, "Viden: Attacker identification on in-vehicle networks," in ACM

SIGSAC Conference on Computer and Communications Security, 2017.

[38] K. T. Cho and K. G. Shin, "Fingerprinting Electronic Control Units for Vehicle Intrusion

Detection," in 25th USENIX Security Symposium, 2016.

[39] X. Ying, S. U. Sagong, A. Clark, L. Bushnell and R. Poovendran, "Shape of the Cloak:

Formal Analysis of Clock Skew-Based Intrusion Detection System in Controller Area

Networks," IEEE Transactions on Information Forensics and Security, vol. 14, pp. 2300-

2314, 2019.

[40] M. Yoon, S. Mohan, J. Choi and L. Sha, "Memory Heat Map: Anomaly detection in real-

time embedded systems using memory behavior," in IEEE Design Automation Conference

91

(DAC), 2015.

[41] M. Müter and N. Asaj, "Entropy-based anomaly detection for in-vehicle networks," in IEEE

Intelligent Vehicles Symposium (IV), 2011.

[42] W. Wu, Y. Huang, R. Kurachi, G. Zeng, G. Xie, R. Li, and K. Li, "Sliding window

optimized information entropy analysis method for intrusion detection on in-vehicle

networks," IEEE Access, vol. 6, pp. 45233-45245, 2018.

[43] M. Müter, A. Groll and F. C. Freiling, "A structured approach to anomaly detection for in-

vehicle networks," in International Conference on Information Assurance and Security,

2010.

[44] A. Taylor, N. Japkowicz and S. Leblanc, "Frequency-based anomaly detection for the

automotive CAN bus," in World Congress on Industrial Control Systems Security

(WCICSS), 2015.

[45] F. Martinelli, F. Mercaldo, V. Nardone and A. Santone, "Car hacking identification through

fuzzy logic algorithms," in IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),

2017.

[46] T. P. Vuong, G. Loukas and D. Gan, "Performance Evaluation of Cyber-Physical Intrusion

Detection on a Robotic Vehicle," in IEEE International Conference on Computer and

Information Technology; Ubiquitous Computing and Communications; Dependable,

Autonomic and Secure Computing; Pervasive Intelligence and Computing, 2015.

[47] M. Levi, Y. Allouche and A. Kontorovich, "Advanced analytics for connected cars cyber

security," in IEEE Vehicular Technology Conference (VTC Spring), 2017.

[48] M. Kang and J. Kang, "A novel intrusion detection method using deep neural network for

92

in-vehicle network security," in IEEE 83rd Vehicular Technology Conference (VTC Spring),

2016.

[49] S. F. Lokman, A. T. Othman, S. Musa, and M. H. Abu Bakar, "Deep contractive

autoencoder-based anomaly detection for in-vehicle controller area network (CAN),"

Progress in Engineering Technology. Advanced Structured Materials, vol. 119, 2019.

[50] M. Hanselmann, T. Strauss, K. Dormann and H. Ulmer, "CANet: An Unsupervised

Intrusion Detection System for High Dimensional CAN Bus Data," IEEE Access, vol. 8, pp.

58194-58205, 2020.

[51] G. Loukas, T. Vuong, R. Heartfield, G. Sakellari, Y. Yoon and D. Gan, "Cloud-Based

Cyber-Physical Intrusion Detection for Vehicles Using Deep Learning," IEEE Access, vol.

6, pp. 3491-3508, 2018.

[52] A. Taylor, S. Leblanc and N. Japkowicz, "Anomaly detection in automobile control network

data with long short-term memory networks," in IEEE International Conference on Data

Science and Advanced Analytics (DSAA), 2016.

[53] M. D. Hossain, H. Inoue, H. Ochiai, D. Fall and Y. Kadobayashi, "LSTM-based intrusion

detection system for in-vehicle can bus communications," IEEE Access, vol. 8, pp. 185489-

185502, 2020.

[54] V. K. Kukkala, S. V. Thiruloga and S. Pasricha, "INDRA: Intrusion Detection using

Recurrent Autoencoders in Automotive Embedded Systems," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol. 39, 2020.

[55] M. O. Ezeme, Q. H. Mahmoud and A. Azim, "Hierarchical Attention-Based Anomaly

Detection Model for Embedded Operating Systems," in IEEE International Conference on

93

Embedded and Real-Time Computing Systems and Applications (RTCSA), 2018.

[56] M. Weber, G. Wolf, B. Zimmer, and E. Sax., "Online Detection of Anomalies in Vehicle

Signals using Replicator Neural Networks," in ESCAR USA, 2018.

[57] M. Weber, S. Klug, B. Zimmer, and E. Sax, "Embedded Hybrid Anomaly Detection for

Automotive CAN Communication," in European Congress on Embedded Real Time

Software and Systems (ERTS), 2018.

[58] S. Tariq, S. lee, and S. S. Woo, "CANTransfer: Transfer learning based intrusion detection

on a controller area network using convolutional lstm network," ACM Symposium on

Applied Computing, pp. 1048-1055, 2020.

[59] 2018. [Online]. Available:

https://assets.vector.com/cms/content/products/gl_logger/Docs/GL1000_Manual_EN.pdf.

[60] M. Vöelp and P. Esteves-Verissimo, "Intrusion-Tolerant Autonomous Driving," in IEEE

21st International Symposium on Real-Time Distributed Computing (ISORC), 2018.

[61] M. Hamad, M. Tsantekidis, and V. Prevelakis, "Intrusion Response System for Vehicles:

Challenges and Vision," in International Conference on Vehicle Technology and Intelligent

Transport Systems, 2021.

[62] G. Muhammad and M. Alhussein, "Security, Trust, and Privacy for the Internet of Vehicles:

A Deep Learning Approach," in IEEE Consumer Electronics Magazine, 2021.

[63] S. Chen, M. Kahla, R. Jia, and G. J. Qi, "Knowledge-Enriched Distributional Model

Inversion Attacks," in IEEE/CVF International Conference on Computer Vision (ICCV),

2021.

[64] K. Shamsi, M. Li, K. Plaks, S. Fazzari, D. Z. Pan, and Y. Jin, "IP protection and supply

94

chain security through logic obfuscation: A systematic overview," ACM Transactions on

Design Automation of Electronic Systems (TODAES), vol. 24, pp. 1-36, 2019.

	OLE_LINK2
	ABSTRACT
	_Ref11889252
	_Toc89555264
	ACKNOWLEDGEMENTS
	_Ref11889333
	_Toc505673037
	_Toc89555265
	TABLE OF CONTENTS
	_Toc89555266
	LIST OF TABLES
	_Toc505673039
	_Toc89555267
	LIST OF FIGURES
	_Ref468813244
	_Ref468813250
	_Toc89555268
	LIST OF RESEARCH PUBLICATIONS
	JOURNAL PUBLICATIONS:
	CONFERENCE PUBLICATIONS:
	BOOK CHAPTER:

	_Toc14524701
	_Toc14524702
	_Toc505673042
	_Toc88764074
	_Toc88764075
	_Toc88764076
	_Toc88764153
	_Toc88764154
	_Toc88764155
	_Toc88767766
	_Toc88767767
	_Toc88767768
	_Toc89555269
	_Toc89555270
	_Toc89555271
	_Toc89555272
	1. INTRODUCTION
	1.1. OVERVIEW AND MOTIVATION

	_Toc89555273
	_Toc89555274
	_Toc89554177
	1.2. HISTORY OF AUTOMOTIVE CYBER-ATTACKS

	_Toc89555275
	_Ref12123436
	_Toc89554178
	1.3. THESIS OVERVIEW

	_Toc505673054
	_Toc89555276
	2. BACKGROUND AND RELATED WORK
	2.1. BACKGROUND
	2.1.1 INTRUSION DETECTION SYSTEM (IDS)

	_Toc13303091
	_Toc13515491
	_Toc13993104
	_Toc13993307
	_Toc13995905
	_Toc14020923
	_Toc14021248
	_Toc14021846
	_Toc14524718
	_Toc89555277
	_Toc89555278
	_Toc89555279
	_Ref12132769
	_Toc89554179
	_Ref12200021
	_Toc89554180
	
	2.1.2 SYSTEM OVERVIEW

	_Toc89554181
	_Toc89555280
	
	2.1.3 COMMUNICATION MODEL

	_Toc89555281
	_Ref12390559
	_Toc89554182
	
	2.1.4 ATTACK MODEL

	_Ref12396351
	_Toc89554183
	_Toc89555282
	
	2.1.5 NEURAL NETWORKS

	_Toc89555283
	_Toc89554184
	_Toc89554185
	
	2.1.6 SEQUENCE MODELS

	_Toc89555284
	_Ref13223795
	_Ref13223906
	_Ref13223918
	_Toc89554186
	_Toc89554187
	_Toc89554188
	_Toc89554189
	2.2. RELATED WORK

	_Toc89555285
	2.3. LIMITATIONS OF EXISTING APPROACHES

	_Toc13303099
	_Toc13303100
	_Toc13303101
	_Toc13303102
	_Toc13303103
	_Toc13303104
	_Toc13515499
	_Toc13515500
	_Toc13515501
	_Toc13515502
	_Toc13515503
	_Toc13515504
	_Toc13993112
	_Toc13993113
	_Toc13993114
	_Toc13993115
	_Toc13993116
	_Toc13993117
	_Toc13993315
	_Toc13993316
	_Toc13993317
	_Toc13993318
	_Toc13993319
	_Toc13993320
	_Toc13995913
	_Toc13995914
	_Toc13995915
	_Toc13995916
	_Toc13995917
	_Toc13995918
	_Toc14020931
	_Toc14020932
	_Toc14020933
	_Toc14020934
	_Toc14020935
	_Toc14020936
	_Toc14021256
	_Toc14021257
	_Toc14021258
	_Toc14021259
	_Toc14021260
	_Toc14021261
	_Toc14021854
	_Toc14021855
	_Toc14021856
	_Toc14021857
	_Toc14021858
	_Toc14021859
	_Toc14524726
	_Toc14524727
	_Toc14524728
	_Toc14524729
	_Toc14524730
	_Toc14524731
	_Toc14524738
	_Toc88764090
	_Toc88764091
	_Toc88764092
	_Toc88764093
	_Toc88764094
	_Toc88764095
	_Toc88764169
	_Toc88764170
	_Toc88764171
	_Toc88764172
	_Toc88764173
	_Toc88764174
	_Toc88767782
	_Toc88767783
	_Toc88767784
	_Toc88767785
	_Toc88767786
	_Toc88767787
	_Toc89436596
	_Toc89436597
	_Toc89436598
	_Toc89436599
	_Toc89436600
	_Toc89436601
	_Toc89536688
	_Toc89536689
	_Toc89536690
	_Toc89536691
	_Toc89536692
	_Toc89536693
	_Toc89555286
	_Toc89555287
	_Toc89555288
	_Toc89555289
	_Toc89555290
	_Toc89555291
	_Toc89555292
	_Toc88764097
	_Toc88764098
	_Toc88764176
	_Toc88764177
	_Toc88767789
	_Toc88767790
	_Toc89436603
	_Toc89436604
	_Toc89536695
	_Toc89536696
	_Toc89555293
	_Toc89555294
	3. LATTE: LSTM SELF-ATTENTION BASED ANOMALY DETECTION IN AUTOMOTIVE CYBER-PHYSICAL SYSTEMS
	_Ref13250108
	_Toc89554190
	_Toc89555295
	3.1 LATTE FRAMEWORK: OVERVIEW

	_Ref13514916
	_Toc89555296
	
	3.1.1 DATA COLLECTION

	_Ref13226103
	_Toc88764102
	_Toc88764103
	_Toc88764104
	_Toc88764105
	_Toc88764106
	_Toc88764181
	_Toc88764182
	_Toc88764183
	_Toc88764184
	_Toc88764185
	_Toc88767794
	_Toc88767795
	_Toc88767796
	_Toc88767797
	_Toc88767798
	_Toc89554191
	_Toc89555297
	
	3.1.2 PREDICTOR MODEL

	_Toc89555298
	_Ref13226170
	_Toc89554192
	
	3.1.3 DETECTOR MODEL

	_Toc89555299
	_Ref13249808
	_Toc89554193
	
	3.1.4 MODEL TESTING

	_Toc89555300
	3.2 EXPERIMENTAL STUDIES
	3.2.1 EXPERIMENTAL SETUP

	_Toc12838489
	_Toc14524706
	_Toc89436612
	_Toc89436613
	_Toc89436614
	_Toc89436615
	_Toc89536704
	_Toc89536705
	_Toc89536706
	_Toc89536707
	_Toc89555301
	_Toc89555302
	_Toc89555303
	_Toc89555304
	_Toc89555305
	_Toc89555306
	
	3.2.2 COMPARISON OF LATTE VARIANTS

	_Toc89555307
	
	3.2.3 COMPARISON OF LATTE WITH PRIOR WORKS

	_Toc89554194
	_Toc89555308
	_Toc89554195
	
	3.2.4 LATTE OVERHEAD ANALYSIS

	_Ref13769505
	_Toc89555309
	_Toc89555350
	3.3 CONCLUSION

	4. �TENET: TEMPORAL CNN WITH ATTENTION FOR ANOMALY DETECTION IN AUTOMOTIVE CYBER-PHYSICAL SYSTEMS
	_Toc89555310
	_Toc89555311
	4.1 TENET FRAMEWORK: OVERVIEW

	_Toc89554196
	_Toc89555312
	
	4.1.1 DATA COLLECTION

	_Toc88764116
	_Toc88764117
	_Toc88764118
	_Toc88764119
	_Toc88764120
	_Toc88764121
	_Toc88764195
	_Toc88764196
	_Toc88764197
	_Toc88764198
	_Toc88764199
	_Toc88764200
	_Toc88767808
	_Toc88767809
	_Toc88767810
	_Toc88767811
	_Toc88767812
	_Toc88767813
	_Toc89555313
	
	4.1.2 TENET LEARNING PHASE

	_Toc89555314
	_Toc89554197
	
	4.1.3 TENET EVALUATION PHASE

	_Toc89555315
	4.2 EXPERIMENTS
	4.2.1 EXPERIMENTAL SETUP

	_Toc14524762
	_Toc89436627
	_Toc89436628
	_Toc89436629
	_Toc89436630
	_Toc89436631
	_Toc89436632
	_Toc89536719
	_Toc89536720
	_Toc89536721
	_Toc89536722
	_Toc89536723
	_Toc89536724
	_Toc89555316
	_Toc89555317
	_Toc89555318
	_Toc89555319
	_Toc89555320
	_Toc89555321
	_Toc89555322
	_Toc89555323
	
	4.2.2 RECEPTIVE FIELD LENGTH ANALYSIS

	_Ref13512989
	_Ref13773044
	_Toc14524826
	_Toc89555324
	_Toc89555351
	
	4.2.3 COMPARISON OF TENET CLASSIFIER VARIANTS

	_Toc89555325
	_Toc89554198
	
	4.2.4 PRIOR WORK COMPARISON

	_Toc89555326
	_Ref13770150
	_Toc89555352
	_Ref13511865
	_Toc89554199
	
	4.2.5 TENET MEMORY OVERHEAD ANALYSIS

	_Toc89555327
	_Ref13512259
	_Toc89554200
	4.3 CONCLUSION

	_Toc14524765
	_Toc89555328
	5. CONCLUSION AND FUTURE WORK
	5.1. RESEARCH CONCLUSION

	_Ref502303472
	_Toc505673215
	_Toc505673216
	_Toc89555329
	_Toc89555330
	_Toc89555331
	5.2. FUTURE WORK
	5.2.1 INTRUSION RESPONSE SYSTEMS (IRS)

	_Toc89536734
	_Toc89536735
	_Toc89536736
	_Toc89555332
	_Toc89555333
	_Toc89555334
	_Toc89555335
	_Toc89555336
	
	5.2.2 DATA PROTECTION AND PRIVACY

	_Toc88764130
	_Toc88764209
	_Toc88767822
	_Toc89436642
	_Toc89555337
	
	5.2.2 TAMPER-PROOF AI
	5.2.3 SECURING AUTOMOTIVE IC SUPPLY CHAINS

	_Toc88764134
	_Toc88764135
	_Toc88764136
	_Toc88764137
	_Toc88764138
	_Toc88764139
	_Toc88764140
	_Toc88764141
	_Toc88764213
	_Toc88764214
	_Toc88764215
	_Toc88764216
	_Toc88764217
	_Toc88764218
	_Toc88764219
	_Toc88764220
	_Toc88767826
	_Toc88767827
	_Toc88767828
	_Toc88767829
	_Toc88767830
	_Toc88767831
	_Toc88767832
	_Toc88767833
	_Toc89436646
	_Toc89436647
	_Toc89436648
	_Toc89436649
	_Toc89436650
	_Toc89436651
	_Toc89436652
	_Toc89436653
	_Toc89536739
	_Toc89536740
	_Toc89536741
	_Toc89536742
	_Toc89536743
	_Toc89536744
	_Toc89536745
	_Toc89536746
	_Toc89555338
	_Toc89555339
	_Toc89555340
	_Toc89555341
	_Toc89555342
	_Toc89555343
	_Toc89555344
	_Toc89555345
	_Toc89555346
	_Toc89555347
	
	5.2.4 ADOPTING EMERGING TECHNOLOGIES

	_Toc89555348
	BIBLIOGRAPHY
	_Toc89555349

