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ABSTRACT 

 
 

ANOMALY DETECTION WITH MACHINE LEARNING FOR AUTOMOTIVE CYBER-

PHYSICAL SYSTEMS 

 

Today’s automotive systems are evolving at a rapid pace and there has been a seismic shift 

in automotive technology in the past few years. Automakers are racing to redefine the 

automobile as a fully autonomous and connected system. As a result, new technologies such as 

advanced driver assistance systems (ADAS), vehicle-to-vehicle (V2V), 5G vehicle to 

infrastructure (V2I), and vehicle to everything (V2X), etc. have emerged in recent years. These 

advances have resulted in increased responsibilities for the electronic control units (ECUs) in the 

vehicles, requiring a more sophisticated in-vehicle network to address the growing 

communication needs of ECUs with each other and external subsystems. This in turn has 

transformed modern vehicles into a complex distributed cyber-physical system. The ever-

growing connectivity to external systems in such vehicles is introducing new challenges, related 

to the increasing vulnerability of such vehicles to various cyber-attacks. A malicious actor can 

use various access points in a vehicle, e.g., Bluetooth and USB ports, telematic systems, and 

OBD-II ports, to gain unauthorized access to the in-vehicle network. These access points are 

used to gain access to the network from the vehicle’s attack surface. After gaining access to the 

in-vehicle network through an attack surface, a malicious actor can inject or alter messages on 

the network to try to take control of the vehicle.  

Traditional security mechanisms such as firewalls only detect simple attacks as they do not 

have the ability to detect more complex attacks. With the increasing complexity of vehicles, the 
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attack surface increases, paving the way for more complex and novel attacks in the future. Thus, 

there is a need for an advanced attack detection solution that can actively monitor the in-vehicle 

network and detect complex cyber-attacks. One of the many approaches to achieve this is by 

using an intrusion detection system (IDS). Many state-of-the-art IDS employ machine learning 

algorithms to detect cyber-attacks for its ability to detect both previously observed as well as 

novel attack patterns. Moreover, the large availability of in-vehicle network data and increasing 

computational power of the ECUs to handle emerging complex automotive tasks facilitates the 

use of machine learning models. Therefore, due to its large spectrum of attack coverage and 

ability to detect complex attack patterns, we adopt and propose two novel machine learning 

based IDS frameworks (LATTE and TENET) for in-vehicle network anomaly detection. 

Our proposed LATTE framework uses sequence models, such as LSTMs, in an 

unsupervised setting to learn the normal system behavior. LATTE leverages the learned 

information at runtime to detect anomalies by observing for any deviations from the learned 

normal behavior. Our proposed LATTE framework aims to maximize the anomaly detection 

accuracy, precision, and recall while minimizing the false-positive rate.  

The increased complexity of automotive systems has resulted in very long term 

dependencies between messages which cannot be effectively captured by LSTMs. Hence to 

overcome this problem, we proposed a novel IDS framework called TENET.  TENET employs a 

novel convolutional neural attention (TCNA) based architecture to effectively learn very-long 

term dependencies between messages in an in-vehicle network during the training phase and 

leverage the learned information in combination with a decision tree classifier to detect 

anomalous messages. Our work aims to efficiently detect a multitude of attacks in the in-vehicle 

network with low memory and computational overhead on the ECU.   
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1. INTRODUCTION 

 

This chapter provides an overview of the ongoing transformation of the automotive 

industry and the necessity for securing future vehicles. Autonomous vehicles are on the horizon 

and will be transforming transportation safety and comfort. These vehicles will be connected to 

various external systems and utilize advanced cyber-physical systems (CPS) to perceive their 

environment and make intelligent decisions. However, this increased connectivity makes these 

vehicles vulnerable to various cyber-attacks that can have catastrophic effects. Attacks on 

automotive systems are already on the rise in today’s vehicles and are expected to become more 

commonplace in future autonomous vehicles. Thus, there is a need to strengthen cybersecurity in 

future autonomous vehicles. This chapter also gives a general overview of the contributions of 

this thesis. 

 

1.1. OVERVIEW AND MOTIVATION  

The aggressive attempts of automakers to make vehicles fully autonomous have resulted in 

increased software and hardware complexity across automotive subsystems. Many state-of-the-

art automotive subsystems for collision avoidance, lane keep assist, pedestrian and traffic sign 

detection, etc., demand powerful CPS, typically referred to as Electronic Control Units (ECUs), 

to be integrated into the vehicles. To meet the needs across various subsystems, a diverse set of 

ECUs consisting of different compute and memory capacities are used in today’s vehicles. The 

ECUs are distributed across the vehicle and communicate using an in-vehicle network. Several 

in-vehicle network protocols are used in modern vehicles to meet the data rate, timing, and 

reliability requirements of automotive subsystems. Some of the most commonly used in-vehicle 
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network protocols include controller area network (CAN), local interconnect network (LIN), 

FlexRay, and Ethernet. Both ECUs and in-vehicle networks are becoming more complex to 

satisfy emerging autonomy needs.  

 
Figure 1 Illustration of an in-vehicle network connecting different ECUs using isolated 

networks that are connected to a gateway (GW), and external connectivity of modern 

vehicles with various systems in the environment.  

 

Additionally, a variety of automotive subsystems rely heavily on the data from external 

systems as shown in Figure 1, which makes modern vehicles highly vulnerable to various 

security attacks. In the past decade (2010 onwards), nearly 79.6% of all automotive attacks have 

been remote attacks, which do not require the attacker to be within the vicinity of the vehicle [1]. 

A variety of attack vectors have been used including wireless fidelity (WiFi), telematics, 

Bluetooth, keyless entry systems, and mobile applications. We discuss many of these attacks in 

the next subsection, as well as techniques that have been proposed to protect vehicles from 

cyber-attacks. However, due to the overall increase of the automotive system complexity 
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(heterogeneous ECUs, network architectures/protocols, and applications), detecting cyber-attacks 

is not easy, which poses a major challenge for emerging connected and autonomous vehicles 

(CAVs). There is a critical need for a monitoring solution that can serve as an intrusion detection 

system (IDS) to detect cyber-attacks in vehicles. Traditionally, such IDSs in computing systems 

have relied on using firewalls, or rule-based systems to detect cyber-attacks. These simple 

systems cannot detect highly complex modern automotive attacks. 

Another interesting trend in modern vehicles is the widespread adoption of artificial 

intelligence (AI) techniques for advanced driver assistance subsystems (ADAS), where 

environmental perception is required [2]. Such AI techniques can also be deployed in powerful 

automotive ECUs to monitor and detect cyber-attacks. AI-based solutions are well known to be 

highly efficient in learning the complex patterns that exist in high dimensional time-series 

vehicular network data. They can observe anomalous patterns on in-vehicle networks that 

connect all in-vehicle and external subsystems, to detect cyber-attacks. With fully autonomous 

vehicles supporting increased connectivity to external subsystems on the horizon, having an 

efficient IDS that can detect a variety of cyber-attacks using AI techniques is crucial and an 

urgent requirement. 

 

1.2. HISTORY OF AUTOMOTIVE CYBER-ATTACKS 

Several automotive attacks have been observed in the past that ranged from targeting a 

single stationary vehicle to a fleet of vehicles on the road. Here we present a timeline of the 

major automotive attacks, in Figure 2, and discuss their impacts. The researchers at the 

University of California at San Diego and the University of Washington demonstrated one of the 

first vehicle hacks in 2010 [3]. They exploited the onboard telematics system and reverse-
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engineered the system and were able to gain full control of the vehicle. The researchers however 

worked with the manufacturer and did not disclose the full details of the vulnerability. Needless 

to say, this hack opened up a Pandora's box. Several other works followed this approach and 

tried to reverse engineer the ECUs in the vehicles in the following years. However, all of these 

attacks required the attacker to be physically present inside the target vehicle, which resulted in 

dismissing as an unlikely situation and these hacks not gaining much traction in the media.  

 

Figure 2 Timeline of major automotive cyber-attacks  

 

This changed in 2015 when the first major remote attack was demonstrated on an unaltered 

2014 Jeep Cherokee [4] by two security researchers. The researchers identified a software bug in 

the vehicle’s infotainment system that would allow them to connect to the vehicle remotely over 

the 4G LTE and send CAN messages to the ECUs in the vehicle. They demonstrated a wide 

range of attacks ranging from remotely controlling simple functionality such as the vehicle radio, 

A/C, and windshield wipers to more critical functionality such as controlling brakes, 

transmission, and even killing the engine while the vehicle was on a freeway. The attackers were 

able to launch these attacks on a remote vehicle from their homes. This hack created a huge 

media outburst and the manufacturer had to issue a patch to fix the bug. The same researchers in 

2016 exposed another bug that let them remotely control the acceleration, steering wheel, and 

cruise control systems. Similar attacks came into light in 2016, where an attacker was able to 
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remotely control a Nissan Leaf in England from Australia. These attacks changed the landscape 

of how automotive cyber-attacks were carried out and highlighted the urgency to address 

cybersecurity in vehicles. 

Starting around 2016, a new type of attack emerged that focused on hacking the keyless 

entry system in vehicles. The goal of these attacks was to steal the vehicle rather than remotely 

control it. The researchers at the University of Birmingham showed how they were able to 

recover the cryptographic algorithms and keys from the ECUs and clone the Volkswagen group 

remote control by eavesdropping on a single signal sent by the original remote [5]. Several other 

attacks have emerged that targeted mobile applications that were used for remote start and 

immobilizer systems in vehicles. Some of the recent attacks in this class include cloning the 

Tesla model S key fob in 2018 [6] and the model X key fob in 2019 [7]. Researchers were able 

to clone key fobs by capturing the Bluetooth communication between the key fob and the body 

control module (BCM) and were able to use a bootleg BCM to replay it and steal the vehicle in 

under 90 seconds.  

A different class of attacks has gained popularity since 2018, mainly targeting the ADAS 

systems and the onboard sensors used for perception. In [8], researchers generated various robust 

visual adversarial perturbations to a stop sign that resulted in it being misidentified as a 45-mph 

speed limit sign. A few years before this, researchers were able to blind a Mobileye C2-270 

camera and demonstrate jamming, spoofing, and relay attacks on an Ibeo LUX3 LiDAR sensor 

[9]. More recent attacks include tricking lane change system of a Tesla Model S with bright 

stickers on the road by Tencent Keen security lab in 2019 [10] and object removal attacks on 

LiDAR sensors in 2021 [11]. Another recent attack that made the headlines was the T-BONE 

attack [12] where researchers were able to gain remote code execution (RCE) over WiFi on the 
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infotainment system in a Tesla Model 3 using a drone. They were able to remotely open doors 

and trunk, change seat positions, steering, and acceleration modes. However, this exploit does 

not provide driving control of the vehicle. The researchers also highlighted that adding a 

privilege escalation exploit such as CVE-2021-3347 to T-BONE would weaponize this exploit 

and turn it into a worm. This would allow them to load new WiFi firmware and exploit other 

Tesla cars in the victim car’s proximity. More recently, at the beginning of 2021, an online 

hacking group by the name Doppel Paymer claimed to conduct a ransomware attack on KIA 

motors America and have stolen unencrypted confidential data [13].  

 

1.3. THESIS OVERVIEW 

In summary, there is a crucial need for a holistic framework as an IDS that can learn the 

normal vehicle behavior at design time and monitor the network for anomalies at runtime. Such a 

framework is not easy to conceptualize because of the increasing complexity of automotive 

systems. With the increasing complexity, the attack surface is only going to increase, paving the 

way for more complex and novel attacks in the future. Traditional security mechanisms such as 

firewalls only detect simple attacks and do not have the ability to detect more complex attacks 

such as those in [14], [15]. To address the above-mentioned problems, the main contribution of 

this thesis is the design of two novel IDS frameworks called LATTE [16] and TENET [17] to 

actively monitor the in-vehicle network and observe for any deviation from the normal behavior 

to detect novel and complex attack patterns. The rest of this thesis is organized as follows: 

In chapter 2, we start by introducing essential concepts to intrusion detection. We define 

what a network attack is, what an intrusion detection system is. Different types of IDSs are 

detailed, with their strengths and weaknesses. We provide an overview of the automotive system 
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and formally define the communication model considered in this thesis. We then define the 

different types of complex attacks that can occur in an automotive network. Moreover, we 

explain the contributions of deep learning in this field and provide a background of state-of-the-

art deep learning techniques for intrusion detection. We present existing works related to 

intrusion detection for automotive systems. Following this, we identify the limitations of existing 

works and provide ideas on how to improve. The insights gathered in this chapter are used in the 

design of the IDSs in the following chapters.  

In chapter 3, we present a novel anomaly detection framework called LATTE to detect 

cyber-attacks in the Controller Area Network (CAN) based automotive networks [16]. LATTE 

uses a novel stacked LSTM with self-attention architecture that learns the normal system 

behavior by learning to predict the next message instance under normal operating conditions. We 

presented a one class support vector (OCSVM) based detector model to detect cyber-attacks by 

monitoring the message deviations from the normal behavior. We present a detailed analysis by 

comparing our proposed model with multiple variants of our model and the best-known prior 

works in this area. 

In chapter 4, we present another novel anomaly detection framework called TENET [17] 

for automotive systems based on Temporal Convolutional Neural Attention (TCNA) networks to 

efficiently learn very long-term dependencies between in-vehicle network messages with low 

memory and computational overhead and accurately detect a multitude of simple, complex, and 

novel attacks. We also proposed a metric called the divergence score (DS), which measures the 

deviation of the predicted signal value from the actual signal value. A decision tree (DT) based 

classifier was used to learn the model deviations that correspond to the normal vehicle operation 

at design time. At runtime, the trained TCNA and DT models were used to observe for deviations 
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using the deviation score metric to detect cyber-attacks. We compared our framework with the 

best-known prior works that employ a variety of sequence model architectures for anomaly 

detection.   

Chapter 5 concludes this thesis. We summarize our research in this chapter and also make 

recommendations for future work. 
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2. BACKGROUND AND RELATED WORK 

 

This chapter is divided into three major sections. In section 2.1, we provide a background 

on (i) basic concepts of intrusion detection systems, (ii) automotive system and communication 

model considered for our proposed frameworks in chapters 3 and 4, (iii) complex attacks 

considered for evaluating our proposed works, and (iii) advanced deep learning based techniques 

for modeling complex data. In section 2.2, we present multiple existing IDS solutions proposed 

by researchers to detect attacks on automotive networks. Finally, section 2.3 addresses the 

limitations of the existing IDS solutions and presents a set of goals that need to be achieved to 

overcome those limitations. 

  

2.1. BACKGROUND 

In this section, we start by introducing the essential concepts of the intrusion detection 

system in the context of in vehicle networks in subsection 2.1.1. We provide a complete picture 

of the automotive system (subsection 2.1.2); communication model (subsection 2.1.3) considered 

for our works and discuss how IDSs can be deployed for anomaly detection in the automotive 

network. Subsection 2.1.4 defines the different types of complex attacks that can occur in an 

automotive network. In subsections 2.1.5 and 2.1.6, we explore state-of-the-art deep learning 

techniques for intrusion detection.  

 

2.1.1 INTRUSION DETECTION SYSTEM (IDS) 

A cyber-attack (or an intrusion) is defined as all unauthorized activities that compromise one, 

two, or all of these three fundamental components of an information system. The three 
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components are (i) confidentiality, (ii) integrity, and (iii) availability. It is also known as the CIA 

triad as shown in Figure 4. 

 

Figure 3 CIA Triad 

 

 Confidentiality: it is defined as the “property that information is not made 

available or disclosed to unauthorized individuals, entities, or processes” [18] by 

the ISO 27000 standard. This information could be credit card numbers, personal 

data, or any information considered private. The challenge of confidentiality is to 

allow legitimate users to access this information while preventing others from 

doing so. An example of a confidentiality attack would be when a malicious 

attacker executes a ransomware attack [13] to gain access to confidential data from 

the vehicle. Failure of confidentiality results in a data breach that cannot be 

remedied but can be managed in a way that minimizes its impact on users. To 

ensure the confidentiality property different security mechanisms are implemented 

such as encryption, two-factor authentication, passwords, etc. Depending on the 

level of confidentiality of the information, the strength of the security measure is 
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decided. Confidential information can also be protected by staking multiple layers 

of protection.  

 Integrity: It is defined as the “property of accuracy and completeness” [18] by the 

ISO 27000 standard. The Integrity property ensures that the information is 

protected from unauthorized parties, and it also ensures that no accidental deletion 

or modification of information is made by authorized parties. An example of an 

information integrity attack would be gaining unauthorized access to the in vehicle 

network. A malicious attacker can gain access to the in-vehicle network through the 

infotainment systems or wireless interfaces to modify the contents of the network 

and gain control of the vehicle. Moreover, information can be changed by non-

human caused events such as server crash or electromagnetic pulse. Integrity 

property is commonly ensured using checksums, encryption, and hashing 

techniques. Redundant systems and backup procedures are important security 

mechanisms to ensure data integrity. 

 Availability: It is defined as the “property of being accessible and usable on 

demand by an authorized entity” [18] by the ISO 27000 standard. The information 

which is not available at the right time can have serious consequences. Denial of 

Service (DoS) or Distributed Denial of Service (DDoS) attacks are common attacks 

against availability. For example, the attackers try to flood the in-vehicle network 

with malicious messages rendering the ECUs connected in the network useless for 

legitimate users. This malicious traffic is often detected and blocked by security 

mechanisms such as firewalls and Intrusion Detection Systems (IDSs).  
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Figure 4 IDS Classification  

 

Monitoring network traffic to detect malicious or unauthorized activities is a process called 

“intrusion detection” and the system that is used to monitor the network for intrusions is called 

the intrusion detection system (IDS). An IDS can be a hardware or software-based system that 

continuously monitors the in-vehicle network to detect attacks without any human supervision. 

An IDS transforms monitored activities into alerts using its knowledge (database, statistics, 

artificial intelligence, etc.). IDSs can be classified according to the detection method they use. 

They fall into three categories: signature-based detection, anomaly-based detection, and hybrid 

detection as shown in Figure 4. 

 Signature-based detection (also known as “heuristic based detection”) comes with a 

database of known attack signatures. It compares monitored data with previously 

observed attack patterns from the signature database. A signature-based IDS checks the 

input stream for the presence of an attack pattern. To be efficient, the database of this 

kind of IDSs must be updated regularly. However, even with the latest updates, only 

known attacks can be detected using this method. 
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 Anomaly-based detection tries to learn a “normal” or “expected” behavior of the 

system. Any deviation from this behavior is considered a potential attack and will 

generate an alarm. This method does not require updates or even the presence of a 

database. It can identify unknown attacks but also creates a lot of false positives that are 

difficult to process. It is also more difficult to collect information about the attack since it 

is not clearly identified by a signature. 

 Hybrid detection combines the two solutions to mitigate weaknesses of each category: 

anomaly detection then misuse detection, misuse detection then anomaly detection, or 

both at the same time. The goal is to detect known attacks with their signatures and to use 

anomaly detection to identify unknown intrusions.  

An efficient IDS needs to be reliable, lightweight, robust, and scalable with different 

system sizes. Moreover, a pragmatic IDS needs to have a large coverage of attacks (able to detect 

both known and unknown attacks), high confidence in detection, and a low false positive rate as 

recovery from false positives can be expensive. Since getting the signature of every possible 

attack is impractical and would limit us to only detecting known attacks and a hybrid detection 

system suffer slower detection latency with large computational overhead on the ECU, we 

conjecture that using anomaly-based IDS is a more practical approach to this problem. 

Additionally, due to the ease of in vehicle network data acquisition (from test driving), there can 

be a large amount of in-vehicle message data to work with, which facilitates the use of advanced 

deep learning models for detecting the presence of an attacker in the system. In the next 

subsections, we discuss the design of modern automotive systems by providing an overview of 

the system model, communication model, and attack model considered for our proposed IDSs.  
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2.1.2 SYSTEM OVERVIEW 

We consider a generic automotive system consisting of multiple ECUs connected using an 

in-vehicle network, as shown in Figure 5. Each ECU is responsible for running a set of 

automotive applications that are hard-real time in nature, meaning they have strict timing and 

deadline constraints. In addition, we assume that each ECU also executes intrusion detection 

applications that are responsible for monitoring and detecting intrusions in the in-vehicle 

network.  

 

 

Figure 5 Overview of automotive system 

 

We consider a distributed IDS approach (intrusion applications collocated with 

automotive applications) as opposed to a centralized IDS approach where one central ECU 

handles all intrusion detection tasks due to the following reasons: 

 A centralized IDS approach is prone to single-point failures, which can completely 

open up the system to the attacker. 
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 In extreme scenarios such as during a DDoS attack (explained in subsection 2.1.4), 

the in-vehicle network can get highly congested, and the centralized system might 

not be able to communicate with the victim ECUs. 

 If an attacker succeeds in fooling the centralized IDS ECU, attacks can go 

undetected by the other ECUs, resulting in compromising the entire system; 

whereas with a distributed IDS, fooling multiple ECUs is required which is much 

harder, and even if an ECU is compromised, this can still be detected by the 

decentralized intelligence. 

 In a distributed IDS, ECUs can stop accepting messages as soon as an intrusion is 

detected without waiting for a centralized system to notify them, leading to faster 

response. 

 The computation load of IDS is split among the ECUs with a distributed IDS, and 

the monitoring can be limited to only the required messages. Thus, multiple ECUs 

can monitor a subset of messages independently, with lower overhead.  

Many prior works, e.g., in [19] and [20], consider a distributed IDS approach for these 

reasons. Moreover, with automotive ECUs becoming increasingly powerful, the collocation of 

IDS applications with real-time automotive applications in a distributed manner should not be a 

problem, provided the overhead from the IDS is minimal. The design of an IDS should have low 

susceptibility to noise, low cost, and a low power/energy footprint.  

 

2.1.3 COMMUNICATION MODEL 

In this subsection, we discuss the vehicle communication model that was considered for 

our proposed IDSs in chapters 3 and 4. We perform experimental analysis related to detecting 
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intrusions in a CAN bus-based automotive system, although our IDSs are broadly applicable to 

any vehicle network protocol.  

Controller Area Network (CAN) is the defacto industry standard in-vehicle network 

protocol for automotive systems today. CAN is a lightweight, low-cost, and event-triggered 

communication protocol that transmits messages in the form of frames. The structure of a 

standard CAN frame is shown in Figure 6 and the length of each field (in bits) is shown on the 

top. 

 

Figure 6 CAN frame format. 

 

 The standard CAN frame consists of a header, payload, and trailer segments. The header 

consists of information such as the message identifier (ID) and the length of the message. The 

actual data that needs to be transmitted is in the payload segment. The trailer section is mainly 

used for error checking at the receiver. A variation of the standard CAN, called CAN-extended 

or CAN 2.0B is also becoming increasingly common in modern vehicles. The major difference is 

that CAN extended has a 29-bit identifier allowing for more number of message IDs. For the 

proposed IDSs in chapters 3 and 4, we design with a focus on monitoring the message payload 

and observing for anomalies to detect intrusions. This is because an attacker needs to modify the 

message payload to accomplish a malicious activity. While an attacker could target the header or 

trailer segments, it would result in the message getting rejected at the receiver. The payload 
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segment consists of multiple data entities called signals. An example real-world CAN message 

with the signals is shown in Figure 7 [21]. Each signal has a fixed size (in bits), a particular data 

type, and a start bit that specifies its location in the 64-bit payload segment of the CAN message. 

In this thesis, all proposed IDSs focus on monitoring individual signals within message payloads 

to observe for anomalies and detect intrusions. Signal level monitoring would give us the 

capability to not only detect the presence of an intruder but also help in identifying the signal 

within the message that is being targeted during an attack. This can be valuable information for 

understanding the intentions of the attacker, which can be used for developing countermeasures. 

 

Figure 7 Real-world CAN message with signal information. 

 

2.1.4 ATTACK MODEL 

We assume that attackers can gain access to the in-vehicle network using the most 

common threat vectors such as connecting to the vehicle OBD-II port, probing into the in-vehicle 

network, and via advanced threat vectors such as connected V2X ADAS systems, insecure 

infotainment systems, or by replacing a trusted ECU with a malicious ECU. We also assume that 

the attacker has access to the in-vehicle network parameters such as flow control, BAUD rate, 

parity, channel information, etc. that can be obtained by a simple CAN data logger and can help 

in the transmission of malicious messages. We further assume a pessimistic situation where the 

attacker can access the in-vehicle network at any instance and try to send malicious messages. 
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Given the above assumptions, our proposed anomaly detection system tries to protect the in-

vehicle network from the multiple types of cyber-attacks listed below. These attacks are modeled 

based on the most common and hard-to-detect attacks in the automotive domain.  

 Constant attack (Plateau attack): In this attack, the attacker overwrites the signal 

value to a constant value for the entire duration of the attack interval. The 

complexity of detection of this attack depends on the change in magnitude of 

signal value. Intuitively, a small change in the magnitude of the signal value is 

harder to detect than larger changes. 

 Continuous attack: In this attack, the attacker tries to trick the anomaly detection 

system by continuously overwriting the signal value in small increments until a 

target value is achieved. The complexity of detecting this attack depends on the 

rate of change of the signal value. Larger change rates are easier to detect than 

smaller rates. 

 Replay attack (Playback attack): In this attack, the attacker plays back a valid 

message transmission from the past, tricking the anomaly detector into believing it 

to be a valid message. The complexity of detecting this attack depends mainly on 

the frequency and sometimes on the duration of the playbacks. High-frequency 

replays are easier to detect compared to low-frequency replays.  

 Dropping attack (Suppress attack): In this attack, the attacker disables the 

transmission of a message or group of messages resulting in missing or dropping 

of communication frames. The complexity of detecting this attack depends on the 

duration for which the messages are disabled. Longer durations are easier to detect 

due to missing message frames for a prolonged time compared to shorter durations.  
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 Distributed Denial of Service (DDoS) attack (Flooding attack): In this attack, 

the attacker floods the in-vehicle network with an arbitrary or specific message 

with the goal of increasing the overall bus load and rendering the bus unusable for 

other ECUs. This is the most common and easy-to-launch attack as it requires no 

information about the nature of the message. These attacks are fairly simple to 

detect even using a rule-based approach as the message frequencies are fixed and 

known at design time for automotive systems. Any deviation in this message rate 

can be used as an indicator for detecting this attack. 

With the availability of large troves of data in vehicles from communication between 

ECUs and the increased computing capabilities of ECUs, AI-based (deep learning) IDS solutions 

can be leveraged to parse high dimensional vehicular network data to detect intrusions. In the 

next subsection, we provide a background on some of the state-of-the-art deep learning 

techniques employed in this domain. 

 

2.1.5 NEURAL NETWORKS 

A neural network is a computing system, inspired by the biological neural networks in the 

human brain. It consists of a collection of simulated neurons, each of which is the basic unit of a 

neural network. The neurons are arranged in multiple layers to form the multiple layers of the 

neural network and can be divided into input, hidden, output layers as shown in Figure 8. A 

neural network with many hidden layers is known as a deep neural network. A Feed Forward 

neural network is the simplest form of artificial neural network in which the connections between 

nodes do not form a cycle as information is only processed in one direction. While the data may 

pass through multiple hidden nodes, it always moves in one direction and never backward.  A 



20 
 

neural network interprets its input data in many ways, three of which are particularly interesting 

for intrusion detection: classification, regression, and reconstruction. 

 

Figure 8 Example of an artificial neural network with 2 hidden layers. 

 

 Classification categorizes input samples into several classes, such as “normal” or 

“anomalous”, or even different families of attacks. Regression (also called “prediction”) is used 

to determine continuous values, including a probability that input is an attack. Finally, 

reconstruction is specific to a certain type of neural network. This task tries to reconstruct the 

input data by compressing and decompressing them to force the network to learn the features 

(representation learning).  The interpreting of data is known as learning and can be classified 

into two categories: (i) supervised learning and (ii) unsupervised learning. In a former approach, 

the neural network receives the input data with its corresponding label (in our case, anomalous or 

normal). The neural network learns the distribution of the input data during training and tries to 

predict the target output. Classification and regression are two classic supervised training tasks. 

In unsupervised learning, the input data does not contain any labels and is classified by 

understanding interesting patterns within the input data. Reconstruction is an example of an 

unsupervised task. In a reconstruction-based anomaly detection task, the neural network learns to 
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replicate its inputs during training by minimizing the replication error. The replication error is 

calculated in an unsupervised fashion by measuring the deviation between the input and the 

replicated output.   During runtime, the trained model tries to replicate its inputs and the 

replication error is measured. If the replication error is higher than a threshold value, the 

respective input sample is flagged as an anomaly. 

 

Figure 9 A single artificial neural network neuron model. 

 

   Each neuron in a neural network receives a set of inputs { , , , … , } where m is 

the total number of inputs to the neuron and computes the predicted y value. Vector x contains 

the values of the features in one of the examples from the input dataset. Each unit has its set of 

parameters, normally known as W, column vector of weights { , , , … , }, and b (bias) as 

shown in Figure 9. These parameters are updated during the learning process. In each iteration, 

every neuron in a layer calculates a weighted average of the values of the vector x, based on its 

current weight vector w, and adds bias b. The result of this calculation is passed through an 

activation function to calculate the output y. In artificial neural networks, the activation function 

of a node defines the output of that node given an input or set of inputs. Some examples of 



22 
 

activation functions are sigmoid, hyperbolic tangent (tanh), rectified linear unit (ReLU), softmax. 

These activation functions induce nonlinearity in the network. The loss function is the function 

that computes the distance between the current output of the algorithm and the expected output. 

It’s a method to evaluate how your algorithm models the data, for example, mean squared error. 

A neural network learns the input features by minimizing this loss function. Hence, to achieve 

this goal the gradient of the loss function is calculated, and it is then used to update the weight of 

each connection and the bias of each hidden neuron. This part of the learning is famously known 

as the “backpropagation algorithm”. During backpropagation, these gradients are used to adjust 

the w and b parameters of each neuron. This process of inputs traveling through the network is 

called forward pass and the process of backpropagating the loss to update the weight parameters 

is called the backward pass. In an in-vehicle network, the communication between ECUs 

happens promptly. Hence, there exists a lot of temporal relationships between the messages that 

can be exploited to detect intrusions. However, this cannot be achieved using the traditional feed-

forward neural networks as the output of any input is independent of other inputs. Thus, it makes 

it harder to capture the temporal dependencies between the messages using feedforward neural 

networks. This led to the study of sequence models that makes a perfect choice for handling 

time-series data. 

 

2.1.6 SEQUENCE MODELS 

A sequence model can be thought of as a function that ensures that the output is dependent 

not only on the current input but also on the previous inputs. The first sequence model called the 

recurrent neural network (RNN) was introduced and implemented in [22].  
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Recurrent Neural Networks (RNN) is a type of neural network which makes use of 

sequential information. RNNs have hidden states, which allows the information to persist. These 

hidden states enable the RNN to connect previous information to their current inputs. Thus, it 

provides us with a solution for our need for a model that can capture the relation between the 

inputs of a sequence. The mathematical representation is shown in equation (1). A basic RNN is 

a neural network with feedback (shown in Figure 10). 

 

(a) 

 

 

(b) 

Figure 10 (a) A single RNN cell and (b) unrolled RNN unit; where, f-RNN cell, x-input, and 

h-hidden state. 

 

The output ℎ  is a function of both the input  and the previous output ℎ :  

= ( + + )                   (1) 
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where W, U are weight matrices, b is a bias term, and f is a nonlinear activation function (e.g. the 

sigmoid or hyperbolic-tangent function). One of the limitations of RNNs is that they are hard to 

train. Since RNNs and other sequence models deal with sequence or time-series inputs, the back 

propagation happens through various time samples and is hence known as back propagation 

through time. During this process, the feedback loop in RNNs causes the errors to shrink or grow 

rapidly (vanishing or exploding gradients respectively), destroying the information in the 

backpropagation. This problem of vanishing gradients hampers the RNNs from learning long 

term dependencies. This was solved in [23], by introducing additional states and gates in the 

RNN cell to remember long term dependencies, which lead to the birth of Long Short-Term 

Memory (LSTM) Networks. 

To understand LSTMs, we first need to know what a cell state is and how the gates are 

used to modify them. The cell state can be thought of as a transport highway, that carries relevant 

information throughout the processing of a sequence to accommodate information from the 

earlier time steps which can be used in the later time steps. This reduces the effects of short-term 

memory. The information in the cell state is modified via gates. Hence, the gates in LSTM help 

the model decide which information has to be retained and which information to forget. An 

LSTM cell consists of three gates (i) forget gate (ii) input gate (iii) output gate as shown in 

Figure 11 (a). The first gate is a binary gate; it chooses which information to retain from the 

previous cell state. The second gate adds relevant information to the cell state. 

= ( + + )                   (2) 

= ( + + )                   (3) 

Here , , ,  is the learned weight matrices and ,  are bias terms, ℎ  is the output of 

the previous hidden state and  is the current state input. The subscript i, f, and o represent input 
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forget and output gates respectively. , ℎ  is multiplied with weight matrices and added bias 

in the input and forget gates, shown in equations (2) and (3).  

= ( + + )                   (4) 

= + ∗                   (5) 

 and  determine the new cell state as a linear combination of the previous internal state 

 and new candidate internal state ̃, shown in equations (4) and (5).  

= ( + + )                   (6) 

=  ( )                   (7) 

Here , , ,  is the learned weight matrices and ,  are bias terms. The output layer is 

also controlled by a gate function and uses all the information from the last two layers to produce 

an output. , ℎ  is multiplied with weight matrices and added bias in the output gate, shown in 

equation (6). The current hidden layer ℎ  is the result of the multiplication of  and tanh applied 

current cell state  as shown in equation (7). 

 

(a) 
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(b) 

Figure 11 (a) A single LSTM cell with different gates and (b) unrolled LSTM unit; where, 

f-LSTM cell, x-input, c-cell state, and h-hidden state. 

 

In conclusion, LSTMs can learn long term dependencies of a sequence. However, they are 

not computationally efficient as the sequence path has become more complicated due to the 

addition of gates. It also takes a lot of resources to train these networks faster and has a memory 

component associated with it. In [24] the authors presented a simpler recurrent neural network 

than LSTMs, which trains faster but also remembers long sequences of data with low memory 

overhead and can solve the vanishing gradient problem and is called a Gated Recurrent Unit 

(GRU). 

A GRU cell uses an alternate route for gating information when compared to the LSTM 

networks. It combines the Input and forget gate layers of the LSTM network into a solitary 

update layer and furthermore combines hidden and cell state layers. Figure 12 shows a traditional 

GRU cell has two gate layers (i) reset gate (ii) update gate. The reset gate combines new input 

with past memory and the update layer chooses the amount of pertinent data that should be held. 

= ( + )                   (8) 

= ( + )                   (9) 
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= ( + ( ∗ ) )                (10) 

= ( − ) ∗  + ∗                           (11) 

where, W, U are the learned weight matrices and r, z is the reset and update layers of the GRU 

cell. ℎ  is the output of the previous hidden state and  is the current state input. In the update 

gate, z inputs are multiplied with weight matrix W, and the hidden state is also multiplied with 

weight matrix U. A sigmoid function is applied to the sum of this multiplication. A similar 

process happens in the rest gate with different weight matrices as shown in equations (8) and (9). 

The current memory content ℎ, uses the reset gate to store the relevant information from the past. 

This is performed by doing element-wise multiplication of ℎ  and r and then the results are 

summed with the input . Tanh activation is applied to the summed result to obtain ℎ as shown 

in equation (10). In the last step, to calculate the current hidden state ℎ , the update gate is used 

to collect important information from ℎ , and ℎ. This is done by applying element wise 

multiplication between the update gates and ℎ , ℎ, shown in equation (11). These results are 

summed to obtain the ℎ  vector, which holds information for the current unit and passes to the 

network. Thus, a GRU cell can control the data stream like an LSTM by uncovering its hidden 

layer contents. Moreover, GRUs achieve this using fewer gates and states, which makes them 

computationally more efficient with low memory overhead. As real-time automotive ECUs are 

highly resource-constrained  systems with tight energy and power budgets, it is critical to use 

low overhead models for inferencing tasks. 



28 
 

 

(a) 

 

(b) 

Figure 12 (a) A single GRU cell with different gates and (b) unrolled GRU unit; where, f-

GRU cell, x-input, and h-hidden state. 

 

Due to the increase in the number of sensors and ECUs in modern vehicles, the 

complexity of the in-vehicle network has increased tremendously. This increased complexity 

results in very long dependencies between the messages which cannot be effectively captured 

using LSTMs and GRUs. This is mainly because the current time step output of both LSTMs and 

GRUs is heavily influenced by the recent time steps compared to past time steps, which makes it 

hard to capture very long term dependencies, e.g., for sequence lengths of 50 or more. Processing 

very long sequences also exacerbate the memory overhead of LSTMs and GRUs. These 

shortcomings have led to the exploration of novel sequence models using convolutional neural 

networks (CNN) in recent years. 
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CNNs are widely used in the areas of computer vision and other image-based learning 

applications. CNNs consist of convolutional layers and a set of filters for each convolution layer 

that is used to identify various features in the input. A filter can be thought of as a tensor that is 

multiplied with a subset of the input data to compute the convolution output. The filter is moved 

over the inputs to compute many such convolution outputs, known as feature maps. The 

dimension of the filter is known as kernel size and the number of steps moved by the filter due to 

its sliding operation is called the stride. In the case where the inputs are an image, the subsequent 

feature map values are calculated according to equation (12) , where the input image is denoted 

by f and our kernel by h. The indexes of rows and columns of the result matrix are marked with 

m and n respectively.  

[ , ] = ( ∗ )[ , ] =  ∑ ∑ [ , ] [ −  , − ]                   (12) 

The dimensions of the received tensor meet equation (13), in which n is the input size, f is 

the filter size,  is the number of channels of the input, p is the padding value used, s is the 

stride value,  is the number of filters. 

[ , , ] ∗ [ , , ] = [ + , + , ]           (13) 

 

An early adaptation of CNNs for sequence modeling tasks was presented in [25], where a 

convolution based time-delay neural network (TDNN) was proposed for phoneme recognition 

and compared against hidden markov models (HMM). To capture very-long term dependencies, 

traditional CNNs need to employ a very deep network of CNN layers with large filters. 

Consequently, this increases the number of convolutional operations incurring a high 

computational overhead. Thus, adapting CNNs directly to sequence modeling tasks in resource 

constrained automotive systems is not a feasible solution. However, recent promising advances 
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in this area have enabled the use of CNNs to capture very long term dependencies in time series 

data. 

 

Figure 13 Example CNN based sequence network using dilated causal convolutional layers 

with dilation factors (d) of 1, 2, and 4. 

 

The authors in [26] proposed a temporal convolutional network (TCN) architecture that 

uses dilated causal convolution (DCC) layers for sequence modeling tasks. The operation of the 

DCC layers in a simple network with two hidden layers is illustrated in Figure 13. The terms {x0, 

x1, x2, …, xt} represents the input time series data, and {y0, y1, y2, …, yt} represents the output 

sequence at the output layer. The subscript for each term in the input and output represents the 

associated time step. Each DCC layer has a kernel size (k) of 2 indicated by the dotted lines, and 

the dilation factor (d) of 1, 2, 4 for the hidden layers 1, 2, and the output DCC layer, respectively. 

The dilation factor dictates the number of input samples to be skipped by each DCC filter. The 

total number of samples influencing the output at a particular time step is called the receptive 
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field.  In the network shown in Figure 13, the output at  is influenced by 8 input samples, and 

hence the receptive field is 8. 

The TCN architecture has two interesting features. Firstly, the TCN uses a one-

dimensional (1-D) fully convolutional layer, where each hidden layer is the same length as the 

input layer. Additionally, zero paddings are added to keep the subsequent layers the same length 

as the previous layer. Thus the architecture produces an output that is of the same length as the 

input which is required for sequence modeling tasks. Secondly, the output at time t is obtained by 

performing the convolution operations on inputs at time t and outputs from earlier time steps. 

This causal nature of the architecture ensures no information leakage from the future into the 

past, during training. Formally, for a 1-D sequence of inputs, X = {x ∈ ℝ}, and a filter f: {0, …, 

k-1}, the dilated convolution operation F on element s of the sequence is defined as in equation 

(14):  

( ) = ∑ ( ). ( ∗ )           (14) 

where d is the dilation factor, k is the filter size and the subscript − ( ∗ ) represents the 

number of elements in the sequence considered for computing the output. Moreover, the dilated 

convolution behaves like a normal convolution operation when d=1. Using a larger dilation 

value enables an output at the top level to represent a wider range of inputs, which helps the 

TCN in effectively learning very-long term dependencies. Moreover, the receptive field of the 

TCN can be increased either by changing the filter size k and dilation factor d or by increasing 

the depth (number of DCC layers) of the network (l). Unlike recurrent architectures, CNNs do 

not have to wait for the previous time step output to process the input at the current time step. 

Thus, TCNs can process the input sequences in parallel as compared to sequential processing in 
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recurrent architectures. This makes TCN more computationally efficient while training and 

testing when compared to recurrent networks. 

 

2.2. RELATED WORK 

Several techniques have been proposed to design IDS for time-critical automotive systems. 

The goal of these works is to detect various types of attacks in automotive systems by monitoring 

the in-vehicle network traffic. These works can be mainly classified into two groups (based on 

the previously mentioned IDS categories): (i) signature-based IDS and (ii) anomaly-based IDS. 

Signature-based IDS relies on detecting known and pre-modeled attack signatures. The 

messages in the system are compared to the known attack signatures and observed for any 

matching patterns to detect intrusions. The authors in [19], [27], used a language theory-based 

model to derive attack signatures. However, this technique fails to detect intrusions when it 

misses the packets transmitted during the early stages of an attack. In [28], the authors used 

transition matrices that have the paired sequences of CAN IDs as the elements, to check for 

mismatches between the incoming CAN packet and its sequence to detect intrusions. Despite 

achieving a low false-positive rate for trivial attacks, this technique failed to detect more realistic 

replay attacks. The authors in [29], [30] identify notable attack patterns such as an increase in 

message frequency and missing messages to detect intrusions. The authors in [31] measured the 

time interval between the request and response messages in the CAN bus to detect attacks. 

However, the model is not scalable as different in-vehicle network protocols have different time 

intervals. A specification-based methodology to detect intrusions is proposed in [32], where the 

authors analyze the behavior of the system and compare it with the predefined attack patterns to 
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detect intrusions. Nonetheless, their system fails to detect unknown attacks. The authors in [33] 

proposed an IDS technique using Myers algorithm [34] under the map-reduce framework to 

speed up the pattern matching algorithm. The authors in [35] proposed a framework that utilizes 

the frequency of CAN messages to perform a time-frequency analysis to detect multiple 

intrusions. A message frequency-based in-vehicle network monitoring approach was proposed in 

[20]. They define a rule-based regular operating mode region by analyzing the messages during 

design time and observes for deviations to detect anomalies. In [36] the authors measured the 

Hamming distance between messages to detect attacks. However, this approach incurs a high 

computational overhead on the ECUs. In [37], ECUs were fingerprinted using their voltage 

measurements during message transmission and reception. However, as this method is only 

applied at the physical layer, it cannot detect attacks at the application layer. In [38], the authors 

propose a fingerprinting based approach to model the relationship between the sender ECU’s 

clock-skew and the messages and detect intrusions by observing for variations in the clock-skew 

during runtime. In [39] the authors presented a formal analysis for clock-skew based IDS and 

evaluated their approach on a real vehicle. In [40] a memory heat map based is used to 

characterize the memory behavior of the operating system to detect intrusions. The authors in 

[41] propose an entropy-based IDS, that observes for change in system entropy to detect 

intrusions. However, the technique fails to detect small scale attacks where the entropy change is 

minimal. The authors in [42] proposed a sliding window approach based on information entropy 

to detect attacks. However, their approach fails to detect complex attacks that modify the 

contents of a CAN message. In a nutshell, signature-based techniques offer a solution to the 

intrusion detection problem with low false positive rates but cannot detect more complex and 

novel attacks. Moreover, modeling signatures of every possible attack is impractical. 
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Anomaly-based IDS aims to learn the normal system behavior offline and observes for any 

deviation from the learned normal system behavior to detect intrusions. This approach has been 

widely adopted in many domains as it can detect both known and unknown attacks. However, in 

recent years this is being increasingly explored in the automotive domain to detect the presence 

of attackers in the in-vehicle networks. In [43], the authors propose a sensor-based IDS approach 

that utilizes attack detection sensors to monitor various events in the system to observe 

deviations from normal behavior. However, this approach is not only expensive but also suffers 

from a poor detection ratio. A one-class support vector Machine (OCSVM) based IDS, was 

proposed in [44] and was able to perfectly detect attacks that lasted more than 0.5s. However, 

this approach suffers from poor detection latency. In [45], the authors used four different nearest 

neighbor classifiers to distinguish between normal CAN payload and attack induced CAN 

payload. This technique was evaluated on low priority messages and showed poor performance 

for denial of service (DoS) and fuzzy attacks. In [46] the authors proposed a decision-tree based 

detection model to monitor the physical features of the vehicle to detect intrusions. However, this 

model is not realistic and suffers from high detection latencies. The authors in [47] proposed a 

hidden markov model (HMM) based technique that monitors the temporal relationships between 

messages to detect intrusions. They estimated log-likelihood based on the predictions of a 

regression model that was built on those temporal features. However, the detection latency of 

their model was not presented. A deep neural network (DNN) based approach was proposed to 

examine the messages in the in-vehicle networks in [48]. The authors mainly evaluated their 

approach on a low priority tire pressure monitoring system (TPMS), which makes it hard to 

adapt to high priority safety-critical powertrain applications. A deep autoencoder approach was 

proposed in [49] to detect attacks on the in-vehicle network. A LSTM based multi-message ID 
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detection model was proposed in [50]. However, the model architecture is highly complex, 

which incurs high overhead on the ECUs. In [51], the authors used LSTM based IDS to detect 

insertion and dropping attacks. The authors in [52] propose an LSTM based predictor model, that 

predicts the next time step message value at a bit level and observes for large variations in loss to 

detect intrusions. The authors in [53] proposed another LSTM based network to classify attacks 

in the in-vehicle network. They used a supervised learning method to train their LSTM classifier. 

However, their proposed model was not tested on complex attacks such as replay attacks. A 

GRU based autoencoder architecture was proposed to learn the normal system behavior in [54]. 

However, they used a static threshold to classify the messages which may not be able to capture 

non-linear behaviors. The authors in [55] proposed an LSTM based encoder-decoder architecture 

with a hierarchical attention mechanism to reconstruct input messages. They used a kernel 

density estimator (KDE) and k-nearest neighbors (KNN) to detect anomalies. However, the 

model does not target CAN networks and incurs a high memory overhead on the ECU. In [56], a 

replicator neural network based IDS was proposed to learn the normal patterns in CAN messages 

in the in-vehicle networks. But their model doesn’t consider the correlation between message ids. 

A hybrid IDS was proposed in [57], which utilizes a specification-based system in the first stage 

and an RNN based model in the second stage to detect anomalies in time-series data. An LSTM 

in combination with a convolutional neural network (CNN) based approach was proposed in [58] 

to learn the dependencies between messages in a CAN network.  However, the model was 

trained on a labeled dataset in a supervised fashion; due to the large volume of in-vehicle CAN 

message data, labeling the data is impractical. 
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2.3. LIMITATIONS OF EXISTING APPROACHES 

Signature-based anomaly detection systems provide low-cost and high-speed detection 

techniques but fail to detect complex and new attacks. Additionally, modeling every possible 

attack signature is practically impossible, and hence these anomaly detection approaches have a 

limited scope. On the other hand, most of the existing machine learning based works attempt to 

increase the detection accuracy and attack coverage but, none of them offers a holistic system-

level solution that is lightweight, fast, scalable, and reliable to detect multiple types of attacks for 

in-vehicle networks.  

The following are some of the goals that we considered for our IDS: 

 Lightweight: Intrusion detection tasks can incur overhead on the ECUs that could 

result in poor application performance or missed deadlines for real-time 

applications. This can be catastrophic in some cases. Hence, we aim to have a 

lightweight IDS that incurs low overhead on the system. 

 Few false positives: This is a highly desired quality in any kind of IDS (even 

outside of the automotive domain), as handling false positives can become 

expensive very quickly. A good IDS needs to have a few false positives or false 

alarms. 

 Coverage: This is the range of attacks an IDS can detect. A good IDS needs to be 

able to detect more than one type of attack. High coverage for IDS will make the 

system resilient to multiple attack surfaces. 

 Scalability: This is an important requirement as emerging vehicles have increasing 

numbers of ECUs, and high software and network complexity. A good IDS should 

be highly scalable and be able to support multiple system sizes. 
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 Learn very long term dependencies: Due to the increase in the number of sensors 

and ECUs in modern vehicles, the complexity of the in-vehicle network has 

increased tremendously. This increased complexity has resulted in very long 

dependencies between the in-vehicle messages. Therefore, a good IDS must have 

the ability to process very long sequences with relatively low memory and runtime 

overhead and still achieve reasonably high performance. 
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3. LATTE: LSTM SELF-ATTENTION BASED ANOMALY DETECTION IN 

AUTOMOTIVE CYBER-PHYSICAL SYSTEMS 

 

In this chapter, we present a novel anomaly detection framework called LATTE [16] to 

detect attacks in CAN based automotive networks. Our proposed LATTE [16] framework uses 

sequence models in deep learning in an unsupervised setting to learn the normal system 

behavior. LATTE [16] leverages that information at runtime to detect anomalies by observing for 

any deviations from the learned normal behavior. This is illustrated in Figure 14. 

 

Figure 14 An example of an anomaly detection framework that monitors the network 

traffic and detects deviations from expected normal behavior during the attack intervals 

shown in red. 

 

 The plot on the top right shows the expected deviation (computed using the model that 

was trained at design time) vs the observed deviation. The divergence in signal values during the 

attack intervals (shown in the red area) can be used as a metric to detect cyber-attacks as 

anomalies. Our proposed LATTE [16] framework aims to maximize anomaly detection accuracy, 

precision, and recall while minimizing the false-positive rate. Our novel contributions in this 

work can be summarized as follows: 



39 
 

 We propose a stacked Long-Short Term Memory (LSTM) based predictor model 

that integrates a novel self-attention mechanism to learn the normal automotive 

system behavior at design time; 

 We design a one class support vector machine (OCSVM) based detector that works 

with the LSTM self-attention predictor model to detect different cyber-attacks at 

runtime; 

 We present modifications to existing vehicle communication controllers that can 

help in realizing the proposed anomaly detection system on a real-world ECU; 

 We perform a comprehensive analysis on the selection of deviation measures that 

quantify the deviation from the normal system behavior; 

 We explore several variants of our proposed LATTE framework and selected the 

best performing one, which is then compared with the best-known prior works in 

the area, to show LATTE’s effectiveness.  

 

3.1 LATTE FRAMEWORK: OVERVIEW 

An overview of our proposed LATTE framework is shown in Figure 15. Our framework 

consists of a novel self-attention based LSTM deep learning model that is trained with data 

obtained from a data acquisition step. The data acquisition step collects trusted in-vehicle 

network data under a controlled environment. We then post-process and use this data to train the 

stacked LSTM self-attention predictor model in an unsupervised setting to learn the normal 

operating behavior of the system. We also developed a one class support vector machine 

(OCSVM) based detector model that utilizes the predictions from the LSTM predictor to detect 
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cyber-attacks as anomalies at run-time. After training, the framework is tested by being subjected 

to various attacks. The details of this framework are presented in the subsequent subsections.  

 

Figure 15 Overview of proposed LATTE framework. 

 

3.1.1 DATA COLLECTION 

This is the first step of the LATTE framework and involves collecting the in-vehicle network 

data from a trusted vehicle. It is important to ensure that the in-vehicle network and the ECUs in 

the vehicle are free from attackers. This is because the presence of an attacker can result in 

logging corrupt in-vehicle network data that falsely represents the normal operating conditions, 

leading to learning an inaccurate representation of the normal system behavior with our proposed 

models. Moreover, it is also crucial to cover a wide range of normal operating conditions and 

have the data collected over multiple intervals, to ensure high confidence in the collected data. 

The performance of the anomaly detection system is highly dependent on the quality of the 

collected data, and thus this is a crucial step. Additionally, the type of data collected depends on 

the functionalities or ECUs that are subjected to monitoring by the anomaly detection system. 

The most common access point to collect the in-vehicle network data is the OBD-II port, which 

gives access to the diagnostic and most commonly used messages. However, probing into the 
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CAN network and logging the messages is preferred, as it gives unrestricted access to the in-

vehicle network, unlike the OBD-II port. 

After collecting the message data from the in-vehicle network, the data is prepared for pre-

processing to make it easier for the training models to learn the temporal relationships between 

messages. The full dataset is split into groups based on the unique CAN message identifier and 

each group is processed independently. The data entries in the dataset are arranged as rows and 

columns with each row representing a single data sample corresponding to a particular 

timestamp and each column representing a unique feature of the message. The columns consist 

of the following features: (i) timestamp at which the message was logged, (ii) message identifier, 

(iii) number of signals in the message, (iv) individual signal values (one per column), and (v) a 

single bit representing the label of the message. The label column is 0 for non-anomalous 

samples and 1 for anomalous samples. The label column is set to 0 for all samples in the training 

and validation dataset as all the data samples are non-anomalous and collected in a trusted 

environment. The label column will have a value of 1 for the samples in the test dataset during 

the attack interval and 0 for the other cases. Moreover, for each signal type, the signal values are 

scaled between 0 to 1 as there can be high variance in the signal magnitudes. Such high variance 

in the input data can result in very slow or unstable training. Details related to the models and the 

training procedure are discussed in the next subsections, while the dataset is discussed in 

subsection 3.2.1 of this chapter. 

 

3.1.2 PREDICTOR MODEL 

We designed predictor and detector models that work in tandem to detect cyber-attacks as 

anomalies in the in-vehicle network. The predictor model attempts to learn the normal system 
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behavior via an unsupervised learning approach to predict the next message instance with high 

accuracy at design time using the normal (non-anomalous) data. During this process, the 

predictor model learns the underlying distribution of the normal data and relates it to the normal 

system behavior. This knowledge of the learned distribution is used to make accurate predictions 

of the next message instances at runtime for normal messages. In the event of a cyber-attack, the 

message values no longer represent the learned distribution or maintain the same temporal 

relationships between messages, leading to large deviations between the predictions and the true 

(observed) messages. These deviation patterns are then learned by the detector model, as 

discussed in the next subsection, using a non-linear classifier to detect attacks. 

 

 

Figure 16 Our proposed predictor model for the LATTE anomaly detection framework 

showing the stacked LSTM encoder – decoder rolled out in time for t time steps along with 

the self-attention mechanism generating context vector for time step t. The output at time 

step t ( ) is the prediction of the input at time step t+1 ( ). 

 

Our proposed predictor model consists of a stacked LSTM based encoder-decoder 

architecture with the self-attention mechanism. This is illustrated in Figure 16, The first linear 

layer in the predictor model takes the time series CAN message data as the input and generates a 

128-dimensional embedding for each input. Each input sample consists of k features where each 
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feature represents a particular signal value within that message. The output embedding from the 

linear layer is passed to the stacked two-layer LSTM encoder to produce a 64-dimension encoder 

output {ℎ ,ℎ , … ,ℎ }. The encoder output is the latent representation of the input time-series 

signal values that encompass the temporal relationships between messages. The self-attention 

block generates the context vector ( ) by applying the self-attention mechanism to the encoder 

outputs. The self-attention mechanism begins by applying a linear transformation to the 

encoder’s current hidden state (ℎ ) and multiplies the result with the encoder output. The output 

from the multiplication is passed through a softmax activation to compute the attention weights. 

The attention weights represent the importance of each hidden state information from the earlier 

time steps, at the current time step. The attention weights are scalars multiplied with the encoder 

outputs to compute the attention applied vector ( ) which is then combined with the encoder 

output to compute the input to the decoder (context vector ( )). The context vector along with 

the previous decoder's hidden state (ℎ ) is given as input to the stacked two-layer decoder, 

which produces a 64-dimension output that is passed to the last linear layer to obtain a k 

dimensional output. This k dimension output represents the signal values of the next message 

instance. 

This predictor model is trained using non-anomalous (normal) data without any labels in an 

unsupervised manner. To train the model with sequences, we employ a rolling window approach. 

We consider a window of fixed size length (known as subsequence length) consisting of signal 

values over time. The window with signal values is called a subsequence and has a subsequence 

length number of samples of signal values. Our predictor model learns the temporal 

dependencies that exist between the signal values within the subsequence and uses them to 

predict the signal values in the next subsequence (i.e., window shifted to the right by one-time 
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step). The signal values corresponding to the last time step in the output subsequence represent 

the final prediction, as the model consumes the entire input subsequence to generate them. We 

compare this last time step in the output subsequence with the actual signal values and compute 

the prediction error using the mean square error (MSE) loss function. This process is repeated 

until the end of the training dataset. The predictor model is trained by splitting the dataset into 

training (80%) and validation (20%) data without shuffling, as shuffling would destroy the 

existing temporal relationships between messages. During the training process, the model tries to 

minimize the prediction error in each iteration (a forward and backward pass) by adjusting the 

weights of the neurons in each layer using backpropagation through time. At the end of each 

training epoch, the model is validated (forward pass only) using the validation dataset to evaluate 

the model performance. We employ mini-batches to speed up the training process and use an 

early stopping mechanism to avoid overfitting. The details related to the non-anomalous dataset 

and the hyperparameters selected for the model are presented in subsection 3.2.1 of this chapter. 

 

3.1.3 DETECTOR MODEL 

After training the predictor model, we train a separate classifier (detector model) that utilizes 

the information from the predictor to detect attacks. The anomaly detection problem can be 

treated as a binary classification problem as we are mainly interested in distinguishing between 

normal and anomalous messages. In general, as the in-vehicle network data recordings can grow 

in size very rapidly, labeling this data can get very expensive. Additionally, due to the nature of 

the frequency of attack scenarios, the number of attack samples would be quite small compared 

to normal samples even when the dataset is labeled. This results in having a highly imbalanced 

dataset that would result in poor performance when trained with a traditional binary classifier in 
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a supervised learning setting. However, a popular non-linear classifier known as a support vector 

machine (SVM) can be altered to make it work with unbalanced datasets where there is only one 

class. Hence, in this work, we use a one class support vector machine (OCSVM) to classify the 

messages as anomalous or normal. The OCSVM learns the distribution of the training dataset by 

constructing the smallest hypersphere that contains the training data at design time and identifies 

any sample outside the hypersphere as an anomaly at runtime. 

 

 

Figure 17 OCSVM decision boundary shown in the blue sphere with the green dots 

showing the normal samples from training data, and yellow and red dots showing the 

normal and anomalous samples respectively from test data. 

 

We train an OCSVM by using the output from the previously trained predictor model. We 

begin by giving the previously used normal training dataset as the input to the predictor to 

generate the predictions. We then compute the deviations (prediction errors) for all the training 

data and pass it as input to the OCSVM. The OCSVM tries to generate the smallest hypersphere 
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that can fit most of the deviation points and uses it at runtime to detect anomalies. Figure 17 

shows an example of a hypersphere generated by training an OCSVM for a message with three 

signals. Each axis in the figure represents the relevant signal deviation and the dark blue sphere 

represents the decision boundary. It can be observed that almost the entirety of training data 

(shown via green dots) is confined to within the blue sphere.  

In our work, the deviation of a message is represented as a vector where each element of 

the vector corresponds to the difference between the true and predicted signal value. Therefore, 

for a message m with  number of signals, the deviation vector (∆ , ) computed at time step t 

is given by equation (15). ∆ , = ( , −  , )  ∈  ℝ , ∀  ∈ [ , ]                (15) 

where ,  represent the prediction of the next true ith signal value ( , ) made at time step t. We 

also experimented with other deviation measures that are given by equations (16), (17), and (18). ∆ , = ∑ |∆ , |  ,∀  ∈ [ , ]                (16) ∆ , = ∑ |∆ , |  ,∀  ∈ [ , ]             (17) ∆ , = (|∆ , |,∀  ∈ [ , ]                (18) 

Moreover, there can be situations where some of the signal deviations in a message can be 

positive while others are negative. This could potentially result in making the sum or mean of 

signal deviations zero or near zero, falsely representing no deviation or very small deviation. To 

avoid these situations, we use the absolute signal deviations to compute the deviations for the 

variants. Note: Unlike equation (15) that uses a vector of k dimensions to represent the message 

deviation, equations (16), (17), and (18) reduce the vector to a single value using different 

reduction operations. We explored these deviation measures to determine the best one, as 

discussed in subsection 3.2.2 in this chapter. 
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In summary, our predictor model predicts the normal samples with very small deviations 

and anomalous samples with high deviations. The OCSVM takes this predictor property into 

account when constructing the hypersphere. In Figure 17, the yellow dots and red dots represent 

the normal and anomalous samples respectively in the test dataset. It can be observed that when 

the test data with anomalies is given as input to the OCSVM, it generally correctly classifies the 

yellow samples within the hypersphere and red samples outside the hypersphere. Thus, both 

predictor and detector models work collectively to detect attacks as anomalies. The details 

related to the testing process are described in the next subsection.  

 

3.1.4 MODEL TESTING 

In the deployment/testing step, we present a test dataset consisting of anomalous samples 

representing multiple attacks (outlined in chapter 2 subsection 2.1.4) along with the normal 

samples to the LATTE framework. The normal messages have a label value of 0 and the attack 

messages have a label value of 1. During this step, each sample (signal values in a message) is 

first sent to the predictor model to predict the signal values of the next message instance, and the 

deviation is computed based on the true message data. This deviation vector is passed to the 

OCSVM detector model, to compute the position of the deviation vector in the k-dimensional 

space, where k represents the number of signals in the message. The message is marked as non-

anomalous when the point corresponding to the deviation vector falls completely inside the 

learned hypersphere. Otherwise, the message is marked as anomalous and an anomaly alert is 

raised. This can be used to invoke an appropriate remedial action to suppress further actions from 

the attacker. However, the design of remedial actions and response mechanisms falls outside the 
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scope of our work. The performance evaluation of our proposed LATTE framework under 

various attack scenarios is presented in detail in subsections 3.2.2 and 3.2.3 of this chapter. 

 

3.2 EXPERIMENTAL STUDIES 

 

3.2.1 EXPERIMENTAL SETUP  

To evaluate the effectiveness of our proposed LATTE framework, we first explored five 

variants of the same framework with different deviation criteria: LATTE-ST, LATTE-Diff, 

LATTE-Sum, LATTE-Avg, and LATTE-Max. LATTE-ST uses our proposed predictor model with a 

static threshold (ST) value to determine whether a given message is anomalous or normal based 

on the deviation. The other four variants use the same predictor model but different detection 

criteria for computing the deviations for OCSVM. LATTE-Diff uses the difference in signal 

values (equation (15)); LATTE-Sum and LATTE-Avg use a sum and mean of absolute signal 

deviations respectively (equations (16), and (17)); and LATTE-Max uses the maximum absolute 

signal deviation (equation (18)), as the input to the detector model.  

Subsequently, we compare the best variant of our framework with three prior works: 

Bitwise Message Predictor (BWMP [52]), Hierarchical Attention-based Anomaly Detection 

(HAbAD [55]), and a variant of [55] called Stacked HAbAD (S-HAbAD [55]). BWMP [52] 

trains an LSTM based neural network that aims to predict the next 64 bits of a CAN message by 

minimizing the bitwise prediction error using a binary cross-entropy loss function. At runtime, 

BWMP [52] uses the prediction loss as a measure to detect anomalies. HAbAD [55] uses an 

LSTM based autoencoder model with hierarchical attention. The HAbAD model attempts to 

recreate the input message sequences at the output and aims to minimize reconstruction loss. 
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Additionally, HAbAD uses supervised learning in the second step to model a detector using the 

combination of a non-parametric kernel density estimator (KDE) and k-nearest neighbors (KNN) 

algorithm to detect cyber-attacks at runtime. Lastly, S-HAbAD is a variant of HAbAD that uses 

stacked LSTMs as autoencoders and uses the same detection logic used by the HAbAD. The S-

HAbAD variant is compared to show the effectiveness of using stacked LSTM layers. The 

results of all experiments are discussed in detail in the next subsections 3.2.2 and 3.2.3. 

We conducted all experiments using an open-source CAN message dataset developed by 

ETAS and Robert Bosch GmbH [50]. The dataset consists of CAN message data for different 

message IDs consisting of various fields such as timestamps, message ID, and individual signal 

values. Additionally, the dataset consists of a training dataset with only normal data and a 

labeled test dataset with multiple attacks (as discussed in chapter 2 subsection 2.1.4). It is 

important to note that we do not use any labeled data during the training or validation of our 

models and learn the normal system behavior in an unsupervised manner. The labeled data is 

given to the models only during the testing phase and used to compute performance metrics.  

We used PyTorch 1.5 to implement all of the machine learning models including LATTE 

and its variants, and the models from the comparison works. Our proposed predictor model is 

trained with 80% of the available normal data and the remaining 20% is used for validation. The 

training phase is repeated for 500 epochs with an early stopping mechanism that monitors the 

validation loss after the end of each epoch and stops if there is no improvement after 10 

(patience) epochs. We used the ADAM optimizer with mean squared error (MSE) as the loss 

function. Additionally, we employed a rolling window approach (discussed in subsection 3.1.2) 

with a subsequence length of 32 time steps, a batch size of 256, and a starting learning rate of 

0.0001. We used the scikit-learn package to implement the OCSVM in the detector model. We 
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used a radial basis function (RBF) kernel with a kernel coefficient (gamma) equal to the 

reciprocal of the number of features (i.e., number of signals in the message). Moreover, to speed 

up OCSVM training, we set the kernel cache size to 400 MB and enabled the shrinking 

technique to avoid solving redundant optimizations. All the simulations are run on an AMD 

Ryzen 9 3900X server with an Nvidia GeForce RTX 2080Ti GPU. 

Before looking at the experimental results for various performance metrics, it is important 

to understand some key definitions in the context of anomaly detection. We define a true positive 

as the scenario when an actual attack is detected as an anomaly by the anomaly detection system 

and a true negative as the situation where an actual normal message is detected as normal. 

Additionally, a false positive would be a false alarm where a normal message is incorrectly 

classified as an anomaly and a false negative would occur when an anomalous message is 

incorrectly classified as normal. Using the above definitions, we evaluate our proposed 

framework using four different metrics: (i) Detection accuracy: a measure of the anomaly 

detection system’s ability to detect anomalies correctly, (ii) False positive rate: i.e., false alarm 

rate, (iii) F1 score: a harmonic mean of precision and recall; we use the F1-score instead of 

individual precision and recall values as it captures the combined effect of both precision and 

recall metrics, and (iv) receiver operating characteristic (ROC) curve with area under the curve 

(AUC): a popular measure of classifier performance. A highly efficient anomaly detection 

system has high detection accuracy, F1 score, and ROC-AUC while having a very low false-

positive rate. 

 

3.2.2 COMPARISON OF LATTE VARIANTS  

In this subsection, we present the comparison results of the five variants LATTE-ST, LATTE-



51 
 

Sum, LATTE-Avg, LATTE-Max, and LATTE-Diff. All the variants of LATTE use the trained 

predictor model (discussed in subsection 3.1.3) to make the predictions and use OCSVM as a 

detector except in the case of LATTE-ST, which uses a fixed threshold scheme introduced in [19] 

to predict the given message as normal or anomalous. The main purpose of this experiment is to 

analyze the impact of using a non-linear classifier such as OCSVM on the model performance 

instead of a simple static threshold scheme (LATTE-ST). Additionally, with the last four variants, 

we aim to study the effect of different deviation criteria on the OCSVM detection performance. 

The deviations for any given message in LATTE-Diff (∆ , ), LATTE-Sum (∆ , ), LATTE-Avg 

(∆ , ) and LATTE-Max (∆ , ) are computed using the equations (15), (16), (17), and (18) 

respectively. 

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 18 Comparison of (a) detection accuracy, (b) false-positive rates, (c) F1 score of 

LATTE variants under different attack scenarios, and (d) ROC curve with AUC for 

continuous attack. 

 

3.2.3 COMPARISON OF LATTE WITH PRIOR WORKS 

We compared our LATTE framework with BWMP [52], HAbAD [55], and a variant of 

HAbAD called S-HAbAD [55]. Figure 19 (a)-(c) show the detection accuracy, false-positive 

rate, and F1 score respectively for these frameworks under different attack scenarios. It can be 

observed that LATTE outperforms all the prior works in terms of detection accuracy, false-

positive rate, and F1 score. This is due to three factors. Firstly, the stacked LSTM encoder-

decoder structure provides adequate depth to the model to learn complex time-series patterns. 

This can be seen when comparing HAbAD with S-HAbAD, as the latter differs only in terms of 

stacked LSTM layers in comparison to the former.  
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(a) 

 

 

(b) 
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(c) 

 

 

(d) 

Figure 19 Comparison of (a) accuracy, (b) false-positive rates, (c) F1 score of LATTE and 

the comparison works under different attack scenarios, and (c) ROC curve with AUC for 

continuous attack. 
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Second, the self-attention mechanism helps LATTE in learning message sequences that 

have very long-term dependencies. Lastly, the use of powerful OCSVMs as non-linear classifiers 

helps in constructing a highly efficient classifier. These factors together resulted in the superior 

performance of LATTE compared to all the comparison works. On average across all attacks, 

LATTE was able to achieve up to 66.7% improvement in accuracy, 120.2% improvement in F1 

score, 76% improvement in AUC. 

 

3.2.4 LATTE OVERHEAD ANALYSIS  

In this subsection, we present an overhead analysis of our LATTE framework. We quantify 

the overhead of our LATTE framework and the comparison works using memory footprint, the 

number of model parameters, and the inference time metrics. We profiled each framework on a 

dual core ARM Cortex-A57 CPU on an Nvidia Jetson Tx2 board, which has similar 

specifications to that of a real-world ECU. We repeated the inference time experiment 10 times 

and computed the average inference time.  

Table 1 Memory, model and runtime overhead of LATTE in comparison with BWMP [52], HAbAD 
[55], and S-HAbAD [55] 

Framework Memory footprint 

(KB) 

Number of Model parameters 

(x103) 

Average 

inference 

time (µs) 

BWMP [52]  13,147 3435 644.76 

HAbAD [55] 4558 64 685.05 

S-HAbAD [55] 5600 325 976.65 

LATTE 1439 331 193.90 

 

From Table 1, we can observe that our LATTE framework has minimal overhead compared 

to both attention-based prior works (HAbAD and S-HAbAD) and the non-attention based work 

(BWMP). The high runtime and memory overhead in HAbAD and S-HAbAD is associated with 
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the use of KNNs. KNN does not generalize the data in advance, but rather scans through each 

training data sample to make a prediction. This makes it very slow and consumes high memory 

overhead (due to the requirement of having training data available at runtime).  

 

3.3 CONCLUSION 

In this chapter, we proposed a novel stacked LSTM with a self-attention framework called 

LATTE that learns the normal system behavior by learning to predict the next message instance 

under normal operating conditions. We presented a one class support vector (OCSVM) based 

detector model to detect cyber-attacks by monitoring the message deviations from the normal 

behavior. We presented a detailed analysis by comparing our proposed model with multiple 

variants of our model and the best-known prior works in this area. Our LATTE framework 

surpasses all the variants and the best-known prior works under different attack scenarios while 

having a relatively low memory and runtime overhead. 
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4. TENET: TEMPORAL CNN WITH ATTENTION FOR ANOMALY DETECTION IN 

AUTOMOTIVE CYBER-PHYSICAL SYSTEMS 

 

In this chapter, we propose an anomaly detection framework called TENET that uses a 

novel TCNA (temporal CNN with attention) model to monitor the in-vehicle network and detect 

various real-world attacks. During learning, our proposed TCNA network is able to efficiently 

capture very long-term dependencies between in-vehicle network messages in an unsupervised 

manner. In the evaluation phase, we employ our trained TCNA network to reliably detect 

multiple real-world attack scenarios with a low memory overhead. TENET attempts to increase 

the detection accuracy, receiver operating characteristic curve with area under the curve (ROC-

AUC), false positive rate (FPR), false negative rate (FNR) and mathews correlation coefficient 

(MCC) metrics (defined in subsection 4.2.1) with minimal overhead. Our novel contributions in 

this work can be summarized as follows:  

 We present a novel temporal convolutional neural attention (TCNA) network 

architecture to learn very-long term temporal dependencies between messages in the 

in-vehicle network; 

 We introduce a metric called divergence score to quantify the deviation from 

expected behavior; 

 We present a decision tree based classifier to detect various attacks at runtime using 

the proposed divergence score metric; 

 We present a comprehensive analysis on the selection of key parameters to 

effectively capture very-long term dependencies and analyzed different classifiers 

to detect anomalies; 
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 We compare our TENET framework with various state-of-the-art IDS frameworks 

to demonstrate its effectiveness. 

 

4.1 TENET FRAMEWORK: OVERVIEW 

Our proposed TENET framework consists of three phases: (i) data collection and 

preprocessing, (ii) learning, and (iii) evaluation. The first phase involves collecting in-vehicle 

network data from a trusted vehicle and preprocessing the collected data. In the learning phase 

(offline), the preprocessed data is used to train a novel Temporal Convolutional Neural Attention 

(TCNA) network in an unsupervised manner to learn the normal behavior of the system. Lastly, 

in the evaluation phase (online), the trained TCNA network is used to calculate a divergence 

score (DS), which is then used by a decision tree-based classifier to detect attacks. The overview 

of our proposed TENET framework is shown in Figure 20. The following subsections describe 

the three phases of the framework.  

 

Figure 20 Different phases of our proposed TENET framework 
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4.1.1 DATA COLLECTION 

This first phase of the TENET framework involves collecting in-vehicle network data from 

a trusted vehicle. During the data collection step, it is crucial to ensure that the in-vehicle 

network and the associated ECUs are trusted and free from any malware. Otherwise, the model 

learns the incorrect representation of the normal operation of the in-vehicle network. Moreover, 

it is important to collect data from a variety of normal operating conditions, and for different 

durations. This provides a rich collection of the in-vehicle network data that captures various 

normal operating conditions of the vehicle, which can then be used to train better models. One of 

the ways to collect the in-vehicle network data is by using the OBD-II port which gives access to 

most of the commonly used messages in addition to the unified diagnostic service (UDS) 

messages. However, we recommended splicing into the CAN network and directly logging the 

messages using a standard logger such as Vector GL 1000 [59]. This provides full access to the 

CAN network and allows us to record any CAN message traversing the network. 

After the data collection, the data is prepared for pre-processing to facilitate easy and 

efficient training of the models. Every CAN message has a unique identifier and each message in 

the dataset is grouped by the unique identifier and processed independently. The processed 

entries are arranged in a tabular format where each row represents a single data sample and each 

column represents various unique attributes of the message. Each message has the following 

attributes (columns): (i) unique timestamp corresponding to the log time of the message, (ii) 

message identifier, (iii) number of signals in the message, (iv) individual signal values in the 

message (which together constitute the CAN message payload), and (v) label of the message (‘0’ 

for no-attack and ‘1’ for attack). The learning phase and evaluation phases of our TENET 
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framework involve different datasets. Therefore, we split the collected data into training and 

testing data. Labels of all collected samples in the training dataset are set to 0 to represent no-

attack data. The test data will have a label value of 1 for attack samples and a label value of 0 for 

no-attack samples. Furthermore, the original training data is split into training (85%) and 

validation (15%) data for training and evaluating the trained model respectively. Due to the 

possibility of high variance in CAN signal values, all signal values of each signal type are scaled 

between 0 and 1. In this work, we primarily focus on monitoring the payload of the CAN 

message i.e., signal values within each message. This is because an attacker needs to modify the 

bits in the payload to launch most attacks. As our proposed TENET framework relies primarily 

on monitoring the message payload it can also be adapted to other in-vehicle network protocols 

such as FlexRay, LIN, CAN-FD, etc. with minimal changes. More details about the training 

procedure and the model architecture are discussed next. 

 

4.1.2 TENET LEARNING PHASE 

In this subsection, we present our proposed novel TCNA network architecture and the 

training procedure we employed to train the TCNA network. TENET uses the TCNA network to 

learn the normal system behavior of the in-vehicle network in an unsupervised manner. The 

proposed TCNA model takes the series of signal values in a message as the input and tries to 

predict the signal values of the next message instance. The TCNA network achieves this by 

trying to learn the underlying probability distribution of the normal data while attempting to 

minimize the prediction error during training. 
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(a) 

     

(b) 

 

(c)  

Figure 21 (a) TCNA network architecture with the internal structure of the TCNA block, 

(b) TCN residual block showing the various layers of transformation and, (c) the attention 

mechanism. 
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The proposed TCNA network consists of three stacked TCNA blocks and a final linear 

layer before the output as shown in Figure 21 (a). A TCNA block consists of an attention block 

and a TCN residual block (TRB). The TRB is adopted from [26] and employs a residual 

architecture containing two DCC layers, two weight normalization layers, and two ReLU 

nonlinearity layers stacked together as shown in Figure 21 (b). This residual architecture helps to 

efficiently backpropagate the gradients and encourages the reuse of learned features. The input to 

the first TCNA block is a time series of CAN message data with n signal values as features. This 

partial sequence from the complete time-series dataset, which is given as the input to the model 

every time, is called a subsequence. Since padding zeros to the input subsequence will distort the 

sequential nature of time series data, we avoid zero-padding to the input time-series by 

computing the length of the subsequence using (2). 

= ( − ) ∗     (19) 

where R is the subsequence length, k is the kernel size, and l is the number of DCC layers in the 

networks. The first TCNA block does not contain an attention block, and the inputs are directly 

fed to the TRB as shown in Figure 21 (a), where { , , … ,  } represents multiple channels of 

the TRB and k is the number of channels of TRB inputs. The first DCC layer inside the TRB 

processes each feature of the input sequence as separate channels. A 1-D dilated causal 

convolution operation is performed using a kernel of size two and the number of filters is three 

times the input features (n) in each DCC layer. The input and output dimensions are the same 

except for the first TRB. The output from the DCC layer is weight normalized for faster 

convergence and avoids explosion of weight values. The weight normalized outputs are passed 

through a non-linear ReLU activation function. This process is repeated one more time inside the 
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TRB. A convolution layer with a filter size of 1x1 is added to make the dimensions of the outputs 

from the last ReLU activation and the input of the TRB consistent with each other. Each DCC 

layer in the TRB tries to learn the temporal relationship between messages by applying various 

filters to its inputs and updating the filter weight values accordingly.  

The output feature maps of the TRB are given as the input to the attention block, shown in 

Figure 21 (c). The attention block repeats its inputs to obtain the query (Q), key (K), and value 

(V) vectors. A scalar-dot product is performed between Q and transpose of key ( ) to calculate 

the similarities between each Q and K vectors. The resultant dot product is scaled by a factor of 

1  and passed through a softmax layer to calculate the attention weights, as shown in 

equation (20).  

( , , ) = (  )            (20) 

where the term  represents the dimension of the K vector. The attention weights represent the 

importance of each feature map of the previous DCC layer. The attention weights are then scalar 

multiplied with V to produce the output of the attention block. Thus, the attention block uses a 

self-attention mechanism to improve the quality of feature maps that will be received by the 

subsequent TRBs. Similarly, the input sequence flows through the TCNA network and is fed to 

the final linear layer which produces an output of n dimensions. The n-dimensional output 

represents the predicted signal values of each dimension. 

The TCNA network model is trained in an unsupervised manner using the training data that 

has no-attack samples and label information. We employ a rolling window approach to train the 

TCNA network. Each window consists of signal values corresponding to the current 

subsequence. Our TCNA network learns the temporal dependencies between messages inside a 
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subsequence and tries to predict the signal values of the subsequence that is shifted by one time 

step to the right. We employ a mean squared error (MSE) loss function to compute the prediction 

error by comparing the signal values of the last time step in the predicted subsequence with the 

last time step of the input subsequence. The error is propagated backward to update the weights 

for the filters. This process is repeated for each subsequence until the end of the training data, 

which constitutes one epoch. We train the model for multiple epochs and employ a mini-batch 

training approach to speed up the training. At the end of each epoch, the model is evaluated using 

the unseen validation data. Additionally, we employed an early stopping mechanism to prevent 

the model from overfitting. The details related to the model hyperparameters are discussed later 

in subsection 4.2.1. 

 

4.1.3 TENET EVALUATION PHASE 

We use the trained TCNA network in conjunction with a detection classifier to efficiently 

detect in-vehicle network attacks at runtime. As we are mainly interested in distinguishing 

between attack and no-attack samples, we transform the detection problem into a binary 

classification problem. The high frequency of messages in the in-vehicle network requires a 

detection classifier that is lightweight and can classify messages quickly with high detection 

accuracy and minimal overhead. Hence, we use a categorical variable decision tree based 

classifier to detect between normal and attack samples due to their simpler nature, speed, and 

precise classification capabilities.  

A decision tree starts with a single node (root node), which branches into possible 

outcomes. Each of those outcomes leads to additional nodes called branch nodes. Each branch 

node branches off into other possibilities and ends in a leaf node giving it a treelike structure. 
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During training, the decision creates the tree structure by determining the set of rules in each 

branch node based on its input. During testing, the decision tree takes the input and traverses the 

tree structure until it reaches a leaf node, which classifies the input as either a no-attack or attack 

sample.  

The evaluation phase begins by splitting the test data with attacks into two parts: (i) 

calibration data, and (ii) evaluation data. In the first part, only the calibration data is fed to the 

trained TCNA network to generate the predicted sequences. We then compute the divergence 

score (DS) for each signal in every message using equation (21). 

( ) = ( ) −  ( + ) ∀  ∈ [ , ],  ∈ [ , ]     (21) 

where m represents the mth message sample and M represents the total number of  message 

samples, i represents the ith signal of the mth message sample and Nm represents the total number 

of signals in the mth message, t represents the current time step, ( ) represents the ith predicted 

signal value of the mth message at time step t, and  ( + 1) represents the true ith signal value 

of the mth message sample at time step t + 1.  

The divergence score is higher during an attack as the TCNA model is trained on the no-

attack data and fails to predict the signal values correctly in the event of an attack. This sensitive 

nature of the DS to attacks makes it a good candidate for the input to our detection classifier. 

Moreover, the group of signal level DS for each message sample is stacked together to obtain the 

DS vector. Thus, we train the decision tree classifier using the DS vector as input to learn the 

distribution of both no-attack samples and attack samples. We use the unseen evaluation data 

(that has both attack and no-attack samples) to evaluate the performance of TENET. 
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4.2 EXPERIMENTS 

 

4.2.1 EXPERIMENTAL SETUP 

To evaluate the effectiveness of the TENET framework, we conducted various experiments. 

We compare TENET against three state-of-the-art prior works on automotive IDS: RN [56], 

INDRA [54], HABAD [55], and LATTE [16]. Together, these approaches reflect a wide range of 

sequence modeling architectures. RN [56] uses vanilla RNNs to increase the dimensionality of 

input signal values and reconstruct the input signal at the output by minimizing MSE. The 

trained RN model scans continuously for large reconstruction errors at runtime to detect 

anomalies over in-vehicle networks. HABAD [55] uses an LSTM based autoencoder model with 

attention to detect anomalies in real-time CPS. This model reduces the MSE reconstruction loss 

by trying to replicate the input message signal at the output. HABAD uses a supervised learning 

detector that combines a kernel density estimator (KDE) and k-nearest neighbors (KNN) 

algorithm to detect anomalies. LATTE [16] uses a LSTM based predictor model with a novel 

self-attention mechanism to predict the next time step message signal value in an unsupervised 

fashion. A one class support vector machine (OCSVM) based detector works together with the 

LSTM self-attention predictor model to detect different cyber-attacks at runtime. Lastly, INDRA 

[54] uses a GRU-based autoencoder that reconstructs input sequences at the output by reducing 

the MSE reconstruction loss. At runtime, INDRA utilizes a pre-computed static threshold to flag 
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anomalous messages. The comparisons of TENET with the above-mentioned IDS are presented 

in subsections 4.2.2 and 4.2.3. 

We adopted an open-source CAN message dataset developed by ETAS and Robert Bosch 

GmbH [50] to train our model, and the comparison works. The dataset consists of multiple CAN 

messages with a different number of signals that were modeled after real-world vehicular 

network information. Moreover, the dataset has a distinct training set that has normal CAN 

messages and a labeled testing dataset for different types of attacks. For training and validation, 

we used the training dataset from [50] without any attack scenarios in an unsupervised manner. 

We tested our proposed TENET framework, and all comparison works by modeling various real-

world attacks (discussed in chapter 2 subsection 2.1.4) using the test dataset in [50]. Note that 

TENET can be easily adapted to other in-vehicle network protocols such as Flexray and Ethernet, 

as it relies only on the message payload information. However, the lack of any openly available 

datasets for these protocols prevents us from showing results on them. 

We used PyTorch 1.8 to model and train various machine learning models including 

TENET, and the comparison works. Our framework uses 85% of data for training and the 

remaining 15% for validation. We trained TENET for 200 epochs with an early stopping 

mechanism that constantly monitors the validation loss after each epoch. If no improvement in 

validation loss is observed in the past 10 (patience) epochs, training is terminated. We used MSE 

to compute the prediction error and the ADAM optimizer with a learning rate of 1e-4. We 

employed a rolling window approach (discussed in subsection 4.1.2) with a batch size of 256 and 

a subsequence length of 64. We used scikit-learn to implement the decision tree classifier, with 

the gini-criterion, and best splitter to detect anomalies based on the divergence score.  
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Before discussing the results, we define performance metrics in the context of anomaly 

detection. We classify a message as a true positive (TP) only if the model detects a true attack as 

an anomaly, and a true negative (TN) is when a normal message is detected as a no-attack 

message. When the model detects a normal message as an anomalous message it is defined as a 

false positive (FP), whereas an actual anomalous message which is not detected is a false 

negative (FN). Using these definitions, we evaluate our framework based on four different 

performance metrics:  

 Detection Accuracy: which quantifies the ability of the IDS to detect an anomaly 

correctly, as defined in equation (22). 

                      =
( )

(  ) 
                   (22) 

 Receiver Operating Characteristic (ROC) curve with area under the curve (AUC): 

which measures the classifier’s performance as the area under the curve in A plot 

between the true positive rate (TPR) and false positive rate (FPR) as shown in 

equation (23): 

                             =
( ) 

                 =
( ) 

                       (23) 

 False Negative Rate (FNR): which quantifies the probability that a TP will be 

missed by the model (a lower value is better). It is calculated as shown in equation 

(24): 

=
( ) 

                   (24) 

 False Positive Rate (FPR): which quantifies the probability that a TN will be 

missed by the model (a lower value is better). It is calculated as shown in equation 

(25): 
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=
( ) 

                   (25) 

 Mathews Correlation Coefficient (MCC): which provides an accurate evaluation of 

the model performance while working with imbalanced datasets, as defined as 

equation (26): 

=
((  ∗ ) ( ∗ ))

(( )( )( )( ))   
                   (26) 

Another metric that is sometimes used is the F-1 score, which is the harmonic mean of 

precision and recall. As both precision and recall do not include the true negatives in their 

computation, the F-1 score metric fails to represent the true performance of the classifier. Unlike 

the F-1 score metric, the MCC metric that we consider includes all the cells of the confusion 

matrix, thus providing a much more accurate evaluation of the frameworks. 

  

4.2.2 RECEPTIVE FIELD LENGTH ANALYSIS 

In the first experiment, we compare the performance of our TCNA architecture with four 

different receptive field lengths while the remaining hyperparameters are unchanged. We 

conduct this analysis to evaluate whether very long receptive lengths can help with a better 

understanding of normal system behavior. All the variants are evaluated based on their 

performance on two training metrics: average training loss and average validation loss, and the 

best model is selected for further comparisons.  

Table 2 TCNA variants with different receptive field lengths 

Framework Receptive Field Lengths 

16 32 64 128 

Avg training loss  4.1e-4 3e-4 2.5e-4 6.8e-4 

Avg validation loss 5.5e-4 4.3e-4 2.9e-4 9.3e-4 
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The average training loss value represents the average loss between the predicted behavior 

and observed behavior of each iteration in the training data. In contrast, the average validation 

loss represents the average loss between the predicted behavior and the observed behavior of 

each iteration in the validation data. Table 2 shows the average training and validation loss of the 

three variants of TCNA. We can observe that a receptive length of 64 has the lowest average 

training and validation loss. Therefore, we select 64 as our receptive field value, which is twice 

the maximum receptive field length presented in the comparison works (sequence length of 32 in 

[55]). This long receptive field length enables us to effectively learn very long-term 

dependencies in the input time series data and allows us to better understand the normal vehicle 

operating behavior.  

 

4.2.3 COMPARISON OF TENET CLASSIFIER VARIANTS 

Next, we compare three different variants of TENET to study the impact of different 

classification techniques on TENET’s anomaly detection capabilities. We considered non-linear 

classifiers such as decision trees (DT) and K-Nearest Neighbors (KNN), and a static threshold 

technique to classify a message as anomalous or normal. The three variants are labeled as 

TENET-ST, TENET-KNN, and TENET-DT. TENET-ST predicts whether a given message is 

normal or anomalous using the 99.99th percentile of final validation loss as the threshold (as 

suggested in [54]). TENET-KNN uses a KNN classifier along with a kernel density estimator 

(KDE) to detect anomalies [55]. And lastly, TENET-DT uses our proposed decision tree based 

approach to detect anomalous messages. All variants utilize the same TCNA architecture we 

propose (presented in section 4.1) and the best performing TENET configuration from subsection 

4.2.2 is used to predict the signal values of the next message instance. The detection accuracy, 
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ROC curves with AUC, and MCC metrics for the three variants under four different attack 

scenarios are shown in Figure 22. 

 

(a) 

 

 

(b) 
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(c)   

Figure 22 Comparison of (a) detection accuracy and (b) MCC of TENET variants under 

various attack scenarios, and (c) ROC with AUC for the playback attack. 

 

In Figure 22(a), we can observe that the TENET-DT variant outperforms all the other 

variants for all attack scenarios by achieving an average accuracy of over 96% which is around 

6.1% higher than the other two variants. Moreover, TENET-DT achieves an average of 19.7% 

increase in MCC metric compared to the other two variants for all attack scenarios, as can be 

seen in Figure 22(b). Figure 22(c) illustrates the ROC curves (with the area under the curve 

(AUC) in the legend) for the three variants in a playback attack scenario. The black dotted line in 

Figure 22(c) represents an AUC of 0.5 which is as good as random guessing. For brevity, we 

only show a playback attack for representing the ROC-AUC since it is the most difficult attack to 

detect. Recall that in a playback attack, the attacker tries to trick the IDS by replaying the 

previously observed messages. An IDS cannot easily detect these attacks unless it was properly 

trained to comprehend the normal sequence of messages. We can see that TENET-DT 
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outperforms other variants with an AUC of 0.96 along with the lowest false positive rate. 

Moreover, decision trees are a simple rule-based approach and can be trained quickly even if the 

input data size increases and produces fast results. Hence, we select the decision tree based 

classifier to detect anomalous messages in the in-vehicle network. Henceforth, we refer to 

TENET-DT as TENET. 

 

4.2.4 PRIOR WORK COMPARISON 

In this subsection, we compare our proposed TENET framework with various state-of-the-art 

prior works RN [56], INDRA [54], HABAD [55], and LATTE [16]. We evaluated the 

performance of the TENET framework, and the comparison works using detection accuracy, 

FPR, ROC curves with AUC, and MCC metrics, under various attack scenarios, and the results 

are as shown in Figure 23. From Figure 23 (a)-(e), we can observe that our TENET framework 

outperforms all comparison works in detection accuracy and MCC metrics for all attack 

scenarios except plateau attack. Moreover, LATTE [16] and TENET shows similar performance 

for the ROC-AUC metric.  In addition, it can be observed that TENET achieves the second 

lowest FPR and FNR. 

 LATTE [16] shows better performance for detection accuracy, MCC, FPR, and FNR metrics 

only for plateau attack. However, LATTE [16] has relatively large memory footprint and model 

parameter (discussed in detail in subsection 4.2.5) compared to TENET.  Moreover, INDRA [54] 

outperforms TENET for the FPR metric for all attack scenarios. However, the model shows poor 

performance for the FNR metric which is equally important because it tells the probability of an 

IDS to miss an actual attack. Table 3 summarizes the average percentage improvement of our 

TENET framework over the comparison works for all attack scenarios. A negative percentage 
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value indicated that TENET has underperformed for that metric and work. From Table 3, we can 

notice that our TENET framework achieves an improvement of up to 69.47% for the FNR metric, 

up to 64.30% for the MCC metric, up to 37.25% for the ROC-AUC metric, up to 9.48% for the 

detection accuracy, and up to 5.19% for the FPR metric for all attack scenarios. 

Table 3 Average percentage improvement of TENET over comparison works 

Prior Works Detection 

accuracy 

ROC-AUC MCC FPR FNR 

LATTE [16] 1.26 0.00 3.95 1.96 -6.63 

INDRA [54] 3.32 17.25 19.14 -1.33 32.70 

HABAD [55] 9.07 26.50 49.26 5.19 44.05 

RN [56] 9.48 37.25 64.30 1.41 69.47 

 

  

(a) 
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(b) 

 

 

(c) 
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(d) 

 

 

(e) 

Figure 23 Comparison of (a) detection accuracy, (b) MCC, (c) FNR, (d) FPR of TENET and 

comparison works under various attack scenarios, and (e) ROC with AUC for playback 

attack. 
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In a nutshell, our TENET framework with a novel TCNA network outperforms all the 

recurrent architectures without attention in detection accuracy and MCC metrics (from Table 3), 

due to its ability to capture very-long term dependencies in time-series data. Moreover, the 

attention mechanism within the TCNA improves the quality of the outputs of the TRB enabling 

efficient learning of very-long term dependencies. Thus, our novel TCNA network with the 

decision tree classifier results in a formidable anomaly detection framework. 

 

4.2.5 TENET MEMORY OVERHEAD ANALYSIS 

Lastly, we compare the number of trainable parameters and the memory footprint of the 

TENET framework, and the comparison works to evaluate the memory overhead of these models. 

It is important to consider the memory overhead of IDS models because automotive ECUs are 

resource constrained and it is crucial to have a model that does not interfere with the normal 

operation of safety-critical applications. Figure 24 illustrates the fast and lightweight nature of 

TENET and the earlier mentioned comparison works with the number of model parameters (on 

the x-axis), the memory footprint (on the y-axis), and the color bar represents the detection 

latency of comparison works in microseconds ( ). It can be seen from Figure 24 that TENET 

has the second lowest number of model parameters and memory footprint over all the other 

comparison works except RN [56]. Even though RN [56] has the least number of model 

parameters and memory footprint, it fails to capture the temporal dependencies between 

messages effectively, resulting in poor performance as seen in Figure 23 (a)-(e). Moreover, 

TENET (grey color) achieves the least detection latency among all compared works, shown in 

Figure 24. 
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Figure 24 Comparison of memory overhead of TENET and the comparison works. 

 

TENET achieves an average of 86.73% reduction in memory footprint against all 

comparison works, up to 98.17% reduction in the number of trainable model parameters. 

Moreover, the model memory footprint of TENET is 86.95% smaller compared to the model 

memory footprint of INDRA [54]. TENET achieves high performance with a very lower number 

of trainable parameters because of the fewer filters used by each DCC layer in the TCNA 

network. The attention block improves the quality of the outputs of each TRB thus eliminating 

the need for more filters, which in turn reduces the number of trainable parameters required by 

the model. Moreover, TENET also has the lowest inference time with an average of 34.24% 

reduction against all comparison works. TENET is able to achieve faster inferencing because, 

unlike recurrent architectures, TENET employs CNNs to process multiple subsequences in 

parallel, which helps reduce the inference time. Thus, TENET is able to achieve superior 

performance across various attack scenarios in automotive platforms with minimal memory and 

computational overhead. 
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4.3 CONCLUSION 

In this chapter, we proposed a novel Temporal Convolutional Neural Attention (TCNA) 

network based anomaly detection framework called TENET for automotive cyber-physical 

systems. We also proposed a metric called the divergence score (DS), which measures the 

deviation of the predicted signal value from the actual signal value. We presented a sensitivity 

analysis for the selection of receptive field size and the detection classifier. We then compared 

the best variant of our proposed framework with the best-known prior works that employ a 

variety of sequence model architectures. TENET achieves up to 69.47% improvement in the FNR 

metric, up to 64.30% improvement in the MCC and up to 37.25% increment in the ROC-AUC 

metric over all the comparison works and for all attack scenarios. Moreover, TENET achieves up 

to 98.17% reduction in the number of model parameters and an average of 86.73% decrease in 

model memory footprint over all the comparison works. Therefore, these promising results 

indicate a compelling potential for utilizing our proposed approach in emerging automotive 

platforms. 
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5. CONCLUSION AND FUTURE WORK 

 

5.1. RESEARCH CONCLUSION 

In this thesis, we proposed efficient techniques to deploy machine learning based IDSs for 

in-vehicle network security. We started by conducting a comprehensive survey on state of art on 

different types of in-vehicle network IDSs. This survey determined that machine learning based 

IDSs were a realizable solution to the automotive security problem.  

These findings were used to design two solutions for in-vehicle network security. The first 

technique uses a novel stacked LSTM with a self-attention framework called LATTE that learns 

the normal system behavior by learning to predict the next message instance under normal 

operating conditions. It also used a one class support vector (OCSVM) based detector model to 

detect cyber-attacks by monitoring the message deviations from the normal behavior. LATTE 

was able to achieve an average of 18.94% improvement in accuracy, 19.5% improvement in F1 

score, 37% improvement in AUC and 79% reduction in false positive rate, and up to 47.8% 

improvement in accuracy, 37.5% improvement in F1 score, 76% improvement in AUC and 95% 

reduction in false positive rate. Therefore, LATTE offers a lightweight, scalable, and reliable 

solution to the intrusion detection problem. 

 Nonetheless, the increased automotive system complexity today has resulted in very long-

term dependencies between messages exchanged between ECUs that cannot be effectively 

captured using LSTMs. This is mainly because the current time step output of LSTMs is heavily 

influenced by the recent time steps compared to past time steps, which makes it hard to capture 
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very long-term dependencies, e.g., for sequence lengths of 50 or more. Processing very long 

sequences also exacerbate the memory overhead of LSTMs. We want an IDS to efficiently 

capture and understand the very long-term dependencies to accurately detect anomalies in the 

network. Therefore, in the second technique we propose a novel anomaly detection framework 

called TENET based on Temporal Convolutional Neural Attention (TCNA) networks to learn 

very-long term temporal dependencies between messages in the in-vehicle network with low 

memory and computational overhead. TENET achieves an average improvement of 1.8% in 

FNR, 5.78% in detection accuracy, 20.25% in ROC-AUC, 34.16% in MCC, and 34.89% in FNR 

metric with 95.01% fewer model parameters, 86.73% decrease in memory footprint, and 34.24% 

lower inference time. 

 

5.2. FUTURE WORK  

Despite the many promising state-of-the-art AI-based IDS techniques that show compelling 

results, several issues still need to be addressed to make future autonomous vehicles truly secure. 

We present some key open challenges that represent promising opportunities for researchers to 

assist with achieving security goals in future autonomous vehicles. 

 

5.2.1 INTRUSION RESPONSE SYSTEMS (IRS) 

Detecting intrusions is the first step in the process of providing complete security to the in 

vehicle network. To achieve total security the identified threat needs to be handled in such a way 

that it does not cause any further undesirable events. Therefore, we need a response mechanism 

in place to handle the operation of the vehicle after detecting intrusion. One such mechanism is 

called an intrusion response system (IRS). IRSs have been employed in various fields to add an 
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extra layer of security. In the automotive domain, few works focus on intrusion response. In [60] 

authors proposed an intrusion tolerant architecture for autonomous driving. Their proposed 

approach used a simplex architecture to tolerate partially compromised automotive software on 

the ECU by extensively replicating critical services to hide the actions of a minority of 

compromised components. However, this work cannot handle a fully compromised ECU.  A 

three-layer intrusion response framework was proposed in [61]. The proposed IRS module works 

in combination with the intrusion prevention system (IPS) in the first layer and IDS in the second 

layer. Their IRS is designed to use a unique predefined security strategy for different types of 

threats. However, this may fail to handle a novel threat scenario. With the increasing complexity 

of automotive cyber-physical systems and attack vectors, more comprehensive response 

strategies are required for future vehicles. Therefore, this domain represents a research gap that 

can be explored more in the future.   

 

5.2.2 DATA PROTECTION AND PRIVACY 

Data theft is a rapidly growing concern in today’s world and is a prevalent issue across 

various industries. In 2020 alone, the average cost of a single data breach was around $3.86 

million [1]. This is also a concern in future autonomous vehicles as the vehicles collect and 

operate on large volumes of data of different types. Data thefts have varying levels of safety, 

security, and economic impacts depending on the type and severity of the breach. Such thefts can 

compromise individual user data as well as intellectual property data of vehicle OEMs. With the 

recent introduction of next-generation driverless ridesharing services in places such as Phoenix 

and San Francisco, the stakes for user data privacy now is higher than ever. For instance, 

attackers can use stolen user information to launch more effective socially engineered attacks. 
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The issues of security, trust, and privacy in autonomous vehicles are presented in detail in [62]. 

Techniques such as Confidentiality Integrity Availability (CIA) and Distributed Immutable 

Ephemeral (DIE) models need to be adopted in the automotive domain to ensure data protection 

and privacy of future autonomous vehicles. 

 

5.2.2 TAMPER-PROOF AI 

AI algorithms have shown superior performance in IDS and ADAS subsystems for 

autonomous vehicles. However, these algorithms are vulnerable to carefully crafted adversarial 

attacks [8]. Moreover, with the rollout of increasingly connected vehicles, we envision that 

Black-hole DDoS attacks (where communication between vehicles is blocked) and Sybil attacks 

(where a vehicle operates with multiple identities) will become increasingly common. Such 

attacks will result in confusing AI algorithms, potentially causing failure across vehicle 

subsystems. Recent model inversion attacks [63] that try to reconstruct training data from the 

model parameters are gaining popularity. Such attacks pose a great threat to the proprietary data 

of the automakers that are used to train the AI models. Moreover, with newer and scalable 

learning approaches for large AI algorithms such as with federated learning in datacenter 

environments, the need for creating new approaches for tamper-proof and adversarial attack-

resilient AI algorithms becomes even more imperative. 

 

5.2.3 SECURING AUTOMOTIVE IC SUPPLY CHAINS 

As different semiconductor integrated circuit (IC) components in a vehicle are 

manufactured in different parts of the world today, it is crucial to have a secure supply chain. 

Any vulnerability induced from the supply chain in any component of the vehicle will have 
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disastrous effects on autonomous vehicles. This issue is further exacerbated with the increasing 

demand for the RSUs and 5G infrastructure to enable intelligent transportation systems. A 

comprehensive list of IC supply chain concerns and a logic obfuscation technique to overcome 

them is presented in [64]. Techniques such as digital watermarking, IC fingerprinting, IC 

metering, etc., need to be further explored to ensure a secure supply chain. 

 

5.2.4 ADOPTING EMERGING TECHNOLOGIES 

In recent years, researchers have started looking into using WiGig networks that use IEEE 

802.11ad multiple gigabit wireless system (MGWS) standard at 60 GHz frequency for in-vehicle 

network communication. The ability to support high data rates and enable low latency 

applications can transform the prospect of both in-vehicle networks and future self-driving 

applications. Another disruptive technology that could revolutionize future autonomous vehicles 

is blockchain technology. The blockchain’s decentralized ledger provides accurate and 

simultaneous access to different types of data, such as traffic information and better vehicle 

tracking information for ride-sharing applications. However, as these technologies are still in 

their infancy in the automotive domain, they need to be meticulously scrutinized by 

characterizing vulnerabilities and exploring security mechanisms to enhance security. 
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