46 research outputs found

    Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond

    Full text link
    We introduce an architecture to learn joint multilingual sentence representations for 93 languages, belonging to more than 30 different language families and written in 28 different scripts. Our system uses a single BiLSTM encoder with a shared BPE vocabulary for all languages, which is coupled with an auxiliary decoder and trained on publicly available parallel corpora. This enables us to learn a classifier on top of the resulting sentence embeddings using English annotated data only, and transfer it to any of the 93 languages without any modification. Our approach sets a new state-of-the-art on zero-shot cross-lingual natural language inference for all the 14 languages in the XNLI dataset but one. We also achieve very competitive results in cross-lingual document classification (MLDoc dataset). Our sentence embeddings are also strong at parallel corpus mining, establishing a new state-of-the-art in the BUCC shared task for 3 of its 4 language pairs. Finally, we introduce a new test set of aligned sentences in 122 languages based on the Tatoeba corpus, and show that our sentence embeddings obtain strong results in multilingual similarity search even for low-resource languages. Our PyTorch implementation, pre-trained encoder and the multilingual test set will be freely available

    Paraphrastic Representations at Scale

    Full text link
    We present a system that allows users to train their own state-of-the-art paraphrastic sentence representations in a variety of languages. We also release trained models for English, Arabic, German, French, Spanish, Russian, Turkish, and Chinese. We train these models on large amounts of data, achieving significantly improved performance from the original papers proposing the methods on a suite of monolingual semantic similarity, cross-lingual semantic similarity, and bitext mining tasks. Moreover, the resulting models surpass all prior work on unsupervised semantic textual similarity, significantly outperforming even BERT-based models like Sentence-BERT (Reimers and Gurevych, 2019). Additionally, our models are orders of magnitude faster than prior work and can be used on CPU with little difference in inference speed (even improved speed over GPU when using more CPU cores), making these models an attractive choice for users without access to GPUs or for use on embedded devices. Finally, we add significantly increased functionality to the code bases for training paraphrastic sentence models, easing their use for both inference and for training them for any desired language with parallel data. We also include code to automatically download and preprocess training data.Comment: Published as a demo paper at EMNLP 202

    Crosslingual Document Embedding as Reduced-Rank Ridge Regression

    Get PDF
    There has recently been much interest in extending vector-based word representations to multiple languages, such that words can be compared across languages. In this paper, we shift the focus from words to documents and introduce a method for embedding documents written in any language into a single, language-independent vector space. For training, our approach leverages a multilingual corpus where the same concept is covered in multiple languages (but not necessarily via exact translations), such as Wikipedia. Our method, Cr5 (Crosslingual reduced-rank ridge regression), starts by training a ridge-regression-based classifier that uses language-specific bag-of-word features in order to predict the concept that a given document is about. We show that, when constraining the learned weight matrix to be of low rank, it can be factored to obtain the desired mappings from language-specific bags-of-words to language-independent embeddings. As opposed to most prior methods, which use pretrained monolingual word vectors, postprocess them to make them crosslingual, and finally average word vectors to obtain document vectors, Cr5 is trained end-to-end and is thus natively crosslingual as well as document-level. Moreover, since our algorithm uses the singular value decomposition as its core operation, it is highly scalable. Experiments show that our method achieves state-of-the-art performance on a crosslingual document retrieval task. Finally, although not trained for embedding sentences and words, it also achieves competitive performance on crosslingual sentence and word retrieval tasks.Comment: In The Twelfth ACM International Conference on Web Search and Data Mining (WSDM '19

    Advances in monolingual and crosslingual automatic disability annotation in Spanish

    Get PDF
    Background Unlike diseases, automatic recognition of disabilities has not received the same attention in the area of medical NLP. Progress in this direction is hampered by obstacles like the lack of annotated corpus. Neural architectures learn to translate sequences from spontaneous representations into their corresponding standard representations given a set of samples. The aim of this paper is to present the last advances in monolingual (Spanish) and crosslingual (from English to Spanish and vice versa) automatic disability annotation. The task consists of identifying disability mentions in medical texts written in Spanish within a collection of abstracts from journal papers related to the biomedical domain. Results In order to carry out the task, we have combined deep learning models that use different embedding granularities for sequence to sequence tagging with a simple acronym and abbreviation detection module to boost the coverage. Conclusions Our monolingual experiments demonstrate that a good combination of different word embedding representations provide better results than single representations, significantly outperforming the state of the art in disability annotation in Spanish. Additionally, we have experimented crosslingual transfer (zero-shot) for disability annotation between English and Spanish with interesting results that might help overcoming the data scarcity bottleneck, specially significant for the disabilities.This work was partially funded by the Spanish Ministry of Science and Innovation (MCI/AEI/FEDER, UE, DOTT-HEALTH/PAT-MED PID2019-106942RB-C31), the Basque Government (IXA IT1570-22), MCIN/AEI/ 10.13039/501100011033 and European Union NextGeneration EU/PRTR (DeepR3, TED2021-130295B-C31) and the EU ERA-Net CHIST-ERA and the Spanish Research Agency (ANTIDOTE PCI2020-120717-2)

    Self-supervised learning in natural language processing

    Get PDF
    Most natural language processing (NLP) learning algorithms require labeled data. While this is given for a select number of (mostly English) tasks, the availability of labeled data is sparse or non-existent for the vast majority of use-cases. To alleviate this, unsupervised learning and a wide array of data augmentation techniques have been developed (Hedderich et al., 2021a). However, unsupervised learning often requires massive amounts of unlabeled data and also fails to perform in difficult (low-resource) data settings, i.e., if there is an increased distance between the source and target data distributions (Kim et al., 2020). This distributional distance can be the case if there is a domain drift or large linguistic distance between the source and target data. Unsupervised learning in itself does not exploit the highly informative (labeled) supervisory signals hidden in unlabeled data. In this dissertation, we show that by combining the right unsupervised auxiliary task (e.g., sentence pair extraction) with an appropriate primary task (e.g., machine translation), self-supervised learning can exploit these hidden supervisory signals more efficiently than purely unsupervised approaches, while functioning on less labeled data than supervised approaches. Our self-supervised learning approach can be used to learn NLP tasks in an efficient manner, even when the amount of training data is sparse or the data comes with strong differences in its underlying distribution, e.g., stemming from unrelated languages. For our general approach, we applied unsupervised learning as an auxiliary task to learn a supervised primary task. Concretely, we have focused on the auxiliary task of sentence pair extraction for sequence-to-sequence primary tasks (i.e., machine translation and style transfer) as well as language modeling, clustering, subspace learning and knowledge integration for primary classification tasks (i.e., hate speech detection and sentiment analysis). For sequence-to-sequence tasks, we show that self-supervised neural machine translation (NMT) achieves competitive results on high-resource language pairs in comparison to unsupervised NMT while requiring less data. Further combining self-supervised NMT with unsupervised NMT-inspired augmentation techniques makes the learning of low-resource (similar, distant and unrelated) language pairs possible. Further, using our self-supervised approach, we show how style transfer can be learned without the need for parallel data, generating stylistic rephrasings of highest overall performance on all tested tasks. For sequence-to-label tasks, we underline the benefit of auxiliary task-based augmentation over primary task augmentation. An auxiliary task that showed to be especially beneficial to the primary task performance was subspace learning, which led to impressive gains in (cross-lingual) zero-shot classification performance on similar or distant target tasks, also on similar, distant and unrelated languages.Die meisten Lernalgorithmen der Computerlingistik (CL) benötigen gelabelte Daten. Diese sind zwar für eine Auswahl an (hautpsächlich Englischen) Aufgaben verfügbar, für den Großteil aller Anwendungsfälle sind gelabelte Daten jedoch nur spärrlich bis gar nicht vorhanden. Um dem gegenzusteuern, wurde eine große Auswahl an Techniken entwickelt, welche sich das unüberwachte Lernen oder Datenaugmentierung zu eigen machen (Hedderich et al., 2021a). Unüberwachtes Lernen benötigt jedoch massive Mengen an ungelabelten Daten und versagt, wenn es mit schwierigen (resourcenarmen) Datensituationen konfrontiert wird, d.h. wenn eine größere Distanz zwischen der Quellen- und Zieldatendistributionen vorhanden ist (Kim et al., 2020). Eine distributionelle Distanz kann zum Beispiel der Fall sein, wenn ein Domänenunterschied oder eine größere sprachliche Distanz zwischen der Quellenund Zieldaten besteht. Unüberwachtes Lernen selbst nutzt die hochinformativen (gelabelten) Überwachungssignale, welche sich in ungelabelte Daten verstecken, nicht aus. In dieser Dissertation zeigen wir, dass selbstüberwachtes Lernen, durch die Kombination der richtigen unüberwachten Hilfsaufgabe (z.B. Satzpaarextraktion) mit einer passenden Hauptaufgabe (z.B. maschinelle Übersetzung), diese versteckten Überwachsungssignale effizienter ausnutzen kann als pure unüberwachte Lernalgorithmen, und dabei auch noch weniger gelabelte Daten benötigen als überwachte Lernalgorithmen. Unser selbstüberwachter Lernansatz erlaubt es uns, CL Aufgaben effizient zu lernen, selbst wenn die Trainingsdatenmenge spärrlich ist oder die Daten mit starken distributionellen Differenzen einher gehen, z.B. weil die Daten von zwei nicht verwandten Sprachen stammen. Im Generellen haben wir unüberwachtes Lernen als Hilfsaufgabe angewandt um eine überwachte Hauptaufgabe zu erlernen. Konkret haben wir uns auf Satzpaarextraktion als Hilfsaufgabe für Sequenz-zu-Sequenz Hauptaufgaben (z.B. maschinelle Übersetzung und Stilübertragung) konzentriert sowohl als auch Sprachmodelierung, Clustern, Teilraumlernen und Wissensintegration zum erlernen von Klassifikationsaufgaben (z.B. Hassredenidentifikation und Sentimentanalyse). Für Sequenz-zu-Sequenz Aufgaben zeigen wir, dass selbstüberwachte maschinelle Übersetzung (MÜ) im Vergleich zur unüberwachten MÜ wettbewerbsfähige Ergebnisse auf resourcenreichen Sprachpaaren erreicht und währenddessen weniger Daten zum Lernen benötigt. Wenn selbstüberwachte MÜ mit Augmentationstechniken, inspiriert durch unüberwachte MÜ, kombiniert wird, wird auch das Lernen von resourcenarmen (ähnlichen, entfernt verwandten und nicht verwandten) Sprachpaaren möglich. Außerdem zeigen wir, wie unser selbsüberwachter Lernansatz es ermöglicht Stilübertragung ohne parallele Daten zu erlernen und dabei stylistische Umformulierungen von höchster Qualität auf allen geprüften Aufgaben zu erlangen. Für Sequenz-zu-Label Aufgaben unterstreichen wir den Vorteil, welchen hilfsaufgabenseitige Augmentierung über hauptaufgabenseitige Augmentierung hat. Eine Hilfsaufgabe welche sich als besonders hilfreich für die Qualität der Hauptaufgabe herausstellte ist das Teilraumlernen, welches zu beeindruckenden Leistungssteigerungen für (sprachübergreifende) zero-shot Klassifikation ähnlicher und entfernter Zielaufgaben (auch für ähnliche, entfernt verwandte und nicht verwandte Sprachen) führt
    corecore