1,461 research outputs found

    Unsupervised Domain Adaptation through Inter-Modal Rotation for RGB-D Object Recognition

    Get PDF
    Unsupervised Domain Adaptation (DA) exploits the supervision of a label-rich source dataset to make predictions on an unlabeled target dataset by aligning the two data distributions. In robotics, DA is used to take advantage of automatically generated synthetic data, that come with 'free' annotation, to make effective predictions on real data. However, existing DA methods are not designed to cope with the multi-modal nature of RGB-D data, which are widely used in robotic vision. We propose a novel RGB-D DA method that reduces the synthetic-to-real domain shift by exploiting the inter-modal relation between the RGB and depth image. Our method consists of training a convolutional neural network to solve, in addition to the main recognition task, the pretext task of predicting the relative rotation between the RGB and depth image. To evaluate our method and encourage further research in this area, we define two benchmark datasets for object categorization and instance recognition. With extensive experiments, we show the benefits of leveraging the inter-modal relations for RGB-D DA. The code is available at: 'https://github.com/MRLoghmani/relative-rotation'

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Multi-Modal RGB-D Scene Recognition Across Domains

    Get PDF
    Scene recognition is one of the basic problems in computer vision research with extensive applications in robotics. When available, depth images provide helpful geometric cues that complement the RGB texture information and help to identify discriminative scene image features. Depth sensing technology developed fast in the last years and a great variety of 3D cameras have been introduced, each with different acquisition properties. However, those properties are often neglected when targeting big data collections, so multi-modal images are gathered disregarding their original nature. In this work, we put under the spotlight the existence of a possibly severe domain shift issue within multi-modality scene recognition datasets. As a consequence, a scene classification model trained on one camera may not generalize on data from a different camera, only providing a low recognition performance. Starting from the well-known SUN RGB-D dataset, we designed an experimental testbed to study this problem and we use it to benchmark the performance of existing methods. Finally, we introduce a novel adaptive scene recognition approach that leverages self-supervised translation between modalities. Indeed, learning to go from RGB to depth and vice-versa is an unsupervised procedure that can be trained jointly on data of multiple cameras and may help to bridge the gap among the extracted feature distributions. Our experimental results confirm the effectiveness of the proposed approach

    Multi-Modal Domain Adaptation for Fine-Grained Action Recognition

    Get PDF
    Fine-grained action recognition datasets exhibit environmental bias, where multiple video sequences are captured from a limited number of environments. Training a model in one environment and deploying in another results in a drop in performance due to an unavoidable domain shift. Unsupervised Domain Adaptation (UDA) approaches have frequently utilised adversarial training between the source and target domains. However, these approaches have not explored the multi-modal nature of video within each domain. In this work we exploit the correspondence of modalities as a self-supervised alignment approach for UDA in addition to adversarial alignment. We test our approach on three kitchens from our large-scale dataset, EPIC-Kitchens, using two modalities commonly employed for action recognition: RGB and Optical Flow. We show that multi-modal self-supervision alone improves the performance over source-only training by 2.4% on average. We then combine adversarial training with multi-modal self-supervision, showing that our approach outperforms other UDA methods by 3%.Comment: Accepted to CVPR 2020 for an oral presentatio

    Recent Advances in Multi-modal 3D Scene Understanding: A Comprehensive Survey and Evaluation

    Full text link
    Multi-modal 3D scene understanding has gained considerable attention due to its wide applications in many areas, such as autonomous driving and human-computer interaction. Compared to conventional single-modal 3D understanding, introducing an additional modality not only elevates the richness and precision of scene interpretation but also ensures a more robust and resilient understanding. This becomes especially crucial in varied and challenging environments where solely relying on 3D data might be inadequate. While there has been a surge in the development of multi-modal 3D methods over past three years, especially those integrating multi-camera images (3D+2D) and textual descriptions (3D+language), a comprehensive and in-depth review is notably absent. In this article, we present a systematic survey of recent progress to bridge this gap. We begin by briefly introducing a background that formally defines various 3D multi-modal tasks and summarizes their inherent challenges. After that, we present a novel taxonomy that delivers a thorough categorization of existing methods according to modalities and tasks, exploring their respective strengths and limitations. Furthermore, comparative results of recent approaches on several benchmark datasets, together with insightful analysis, are offered. Finally, we discuss the unresolved issues and provide several potential avenues for future research
    • …
    corecore