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Abstract

Fine-grained actions are short actions that typically last a matter of seconds. However, due to
the difficulty in collecting and annotating fine-grained actions, datasets contain limited variability
in their collection. Many datasets are collected in a single environment, with few participants
and cameras. Computer vision models trained on such datasets may not perform well on videos
encountered when they are deployed. This work showcases several domains shifts in the large-
scale dataset of fine-grained actions, EPIC-KITCHENS.

This thesis focuses on unsupervised domain adaptation for fine-grained action understanding.
This assumes there is a domain shift between the labelled videos used for training (the source
domain) and videos used for testing (the target domain). With access to unlabelled videos from the
target domain, the aim is to improve the performance of fine-grained action understanding tasks.
Unsupervised domain adaptation reduces the high cost of annotating fine-grained actions, which is
often expensive or impractical in the target domain.

Videos depicting fine-grained actions contain both visual and motion information, as well as
audio and often textual descriptions. This work explores utilising these multiple modalities to im-
prove domain adaptation, as well as learn a representation of fine-grained actions. Some modalities
will be more robust than others to different domain shifts, for example motion is more robust than
RGB to environmental changes. A domain adaptation solution is proposed which improves action
recognition performance by exploiting the differing level of robustness of video modalities to do-
main shifts. Additionally, cross-modal tasks can be used to learn discriminative information about
fine-grained actions. A domain adaptation solution is proposed to adapt a text-to-video retrieval
system to a novel set of uncaptioned videos.
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Chapter 1

Introduction

Fine-grained actions describe what a human is doing over a short time-interval. These last a matter

of seconds, such as “cutting an onion” or “picking up tomato”, in contrast to coarse-grained actions

or activities which span longer periods of time, such as “preparing a meal”. Understanding what

fine-grained actions occur in a video has a wide range of applications in assistive technologies in

homes as well as in industry.

Deep learning has advanced the performance of many video understanding tasks. However,

neural networks require a massive amount of annotated videos in order to train discriminative

models. For activity recognition, large internet databases has enabled datasets to scale [25, 26].

The performance of recent methods on the Kinetics datasets exceed 80% accuracy [27, 28, 29],

but this is only possible due to the 500,000 annotated videos available for training. Unfortunately,

the collection of fine-grained actions has increased difficulty, as they are not easily searchable in

online sources.

For fine-grained action understanding, datasets often collect long-untrimmed videos [11, 12,

13, 15, 30]. A single video provides many examples of fine-grained actions, but leads to a large

bias towards a limited number of participants, locations and cameras [11, 12, 13, 15, 30]. In
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CHAPTER 1. INTRODUCTION

addition, participants conduct a limited number of activities, which are sometimes pre-specified

before data collection [8, 9, 11, 12, 13, 31]. This is in contrast to video collected from the web,

where each video is filmed in a different location with a different camera, depicting a large variety

of different activities.

The assumption in classical machine learning is that the training data is representative of the

test data. In practice, this is rarely the case. A domain shift occurs when the distribution of training

videos is different to the videos encountered during testing. Given the large bias towards different

recording conditions in datasets of fine-grained actions, a domain shift is likely to be a common

problem for real-world applications. Although dataset bias has been extensively studied in the

context of images [32, 33], and some focus on activities in video [34, 35], the bias within datasets

of fine-grained actions has not been explored. This is surprising as datasets of fine-grained actions

contain fewer and less diverse number of sources than large-scale datasets for image or activity

recognition.

Neural networks trained on fine-grained actions may exhibit poor performance when evaluated

under a domain shift [33]. One solution is to collect footage that better matches the recording

conditions used for testing. However, the annotation of a large number of fine-grained actions

is expensive. Unsupervised domain adaptation reduces the cost of annotation by exploiting pre-

existing labelled data, the source domain, in addition to the unlabelled videos collected from the

test distribution, the target domain. The difficulty is that videos in the target domain are sampled

from a different distribution to that in the source domain.

1.1 Challenges and Research Hypothesis

The vast majority of the domain adaptation literature has focused on images, whereas video in-

troduces additional challenges and opportunities. Video is multi-modal, containing both spacial

and temporal information in addition to other modalities such as audio. Recent domain adaptation
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works focused on overcoming a domain shift in the temporal dimension [1, 2], however, domain

adaptation is still applied to individual modalities. This thesis explores how to utilise multiple

modalities in video for domain adaptation. Chapter 4, shows that the differing degrees of robust-

ness of modalities to domain shifts can be exploited for domain adaptation.

Designing a domain adaptation benchmark to reflect real world conditions is a challenge. Cur-

rent video domain adaptation benchmarks select source and target domains from different video

datasets [1, 2, 36, 37, 38]. The downside is that the target domain is still collected with training

computer vision models in mind. Video understanding models deployed in the real world contain

will encounter actions that are irrelevant to the task, a natural long-tailed distribution of classes and

untrimmed video. This is in contrast to computer vision benchmarks that carefully select videos

from chosen classes, often with a similar number of videos for each class. Many fine-grained action

recognition datasets, including EPIC-KITCHEN [10, 30], contain videos of continuous footage of

participants over long periods of time. The unscripted nature of collecting video is more realis-

tic scenario for domain adaptation, as collection of footage has little bias towards the sampling

of actions for the target task. Chapter 5 explores some challenge of creating a domain adapta-

tion benchmark for EPIC-KITCHENS, including how to validate and tune hyper-parameters in the

absence of labelled target data.

Domain adaptation for EPIC-KITCHENS [10, 30] has additional challenges beyond other

video domain adaptation benchmarks [1, 2, 36, 37, 38], including: the natural long-tailed dis-

tribution of classes, differing class proportions between domains, as well as unseen actions not

present in the source domain. The most common approach for domain adaptation is to align the

distributions of examples in source and target domains, however, this does not take into account the

aforementioned challenges. In Chapter 6, we propose to align videos depicting the same actions

across domains, instead of marginal distributions. The class balanced loss helps alleviate issues

with long-tailed distributions and differing class proportions between domains. We also propose

a sampling approach for target videos, to avoid aligning actions in the target domain that do not
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occur in the source.

The task of action recognition introduces additional challenges for domain adaptation. Verbs

are generally ambiguous with large overlaps between classes [39]. A single action often has many

different ways to describe it. For example, the same video with the caption add salt to water, could

also be captioned as season water or sprinkle salt into water. This is refereed to as a semantic

shift, which could lead to a domain shift for action labels. This thesis assumes there is no semantic

shift between the source and target domains, and only a visual shift occurs.

Another important challenge not tackled in this thesis is that the target domain contain untrimmed

video, depicting many different actions. This thesis assumes the existence of an action detector that

performs well enough on target videos to segment actions into individual video snippets. There-

fore, the task of thesis is to associate each unlabelled video snippet in the target domain with an

action.

1.1.1 Research Hypothesis

• A domain shift between videos in the source and target domain (e.g. due to are collection of

footage in different locations or by different participants), leads to a model trained on source

to have limited generalisation capability to the target domain.

• This domain shift can be mitigated with addition of unlabelled target data during training.

Aligning the distributions of source and target videos can improve the performance of both

action recognition and text-video retrieval tasks on target videos.

• Multiple modalities in video have differing degrees of robustness to domain shifts, and can

be exploited for domain adaptation. The presence of a more robust modality can be used to

create a more robust representation for the less robust modalities.

• Learning the temporal correspondence between multiple-modalities in video in both source
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and unlabelled target videos can improve action recognition performance on target data.

• Collection of videos 2 years apart, even by the same participants in the same location, re-

sults in a domain shift. This is due to different objects manipulated, wear and tear in the

environment and different cameras used.

• When the source domain and the target domain have differing proportions of classes, marginal

alignment of the distributions of source and target videos without considering the task is in-

sufficient to overcome the domain gap. However, alignment of individual source and target

videos depicting the same action can improve domain adaptation, using a pseudo-labelling

approach to approximate target actions in the absence of target labels.

• Actions can be defined as pairs of verbs and noun. While many verbs and nouns can be

shared across source and target domains, it is possible only few actions are shared. There-

fore, aligning visual representations of verb and nouns in video separately from actions, can

improve domain adaptation.

1.2 Contributions

The contributions of this thesis are as follows:

• The previously unexplored problem of domain adaptation for fine-grained action recognition

is proposed, introducing two new benchmarks in Chapters 4 and 5.

• Multiple domain shifts are showcased within the recent dataset of fine-grained actions, EPIC-

KITCHENS-100 dataset [10]. Chapter 4 showcases the domain shift between videos cap-

tured by different participants in different environments. In addition, there is a domain shift

between videos collected by the same participants captured two-years apart, and is the focus

of Chapter 5.
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• A domain adaptation method for action recognition, utilising multiple modalities, is pro-

posed in Chapter 4. This exploits the temporal correspondence between modalities present

in video (appearance, motion and sound), and improves the ability of fine-grained action

recognition models to adapt to new environments.

• The unsupervised domain adaptation challenge for action recognition, defined in Chapter 5,

provided a public competition for the research community. A validation strategy was pro-

posed such that participants could select hyper-parameters of their models, without accessing

action labels from the training split of the target domain.

• The problem of domain adaptation for text-to-video retrieval is defined in Chapter 6. The aim

is to retrieve semantically relevant videos to textual captions describing fine-grained actions.

The difficulty is that there is a domain shift between the set of videos used for retrieval, and

the captioned videos used during training.

• A domain adaptation method for text-to-video retrieval is proposed in Chapter 6, which

utilises a pseudo-labelling approach to overcome the lack of text captions in the target do-

main. This allows source and target videos that depict the same action to be aligned. The

usefulness of this method is showcased on the benchmark proposed in Chapter 5.

1.2.1 Contributions in Publications

Associated with this thesis is a first author publication [40], which is described in Chapter 4, and

three co-authored publications outlining the collection of the EPIC-KITCHENS dataset [10, 30,

41]. This section outlines my contributions towards these co-authored papers.

My contribution towards the initial dataset collection, EPIC-KITCHENS-55 [30, 41], was tran-

scribing audio narrations into textual descriptions in a scalable approach using Amazon Mechan-

ical Turk. A more detailed explanation of how EPIC-KITCHENS was collected is available in
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Sec 3.1.2.

My contributions towards the extended dataset, EPIC-KITCHENS-100 [10], was to organise

the collection of footage from participants, and the design of the Domain Adaptation Challenge.

The domain adaptation challenge is discussed in detail in Chapter 5.

1.3 Thesis Structure

This thesis starts with background information in Chapters 2 and 3. A detailed definition of un-

supervised domain adaptation is provided in Chapter 2, and summarises key works in the domain

adaptation literature. Chapter 3 provides an overview of the datasets and models used for video

understanding, before reviewing domain adaptation works for action recognition and cross-modal

retrieval.

Chapter 4 explores the domain shift between videos collected in different locations by different

participants. A multi-modal domain adaptation method is proposed, which is showcased on a new

domain adaptation benchmark, based on the EPIC-KITCHENS-100 dataset [10]. The benefits of

utilising multiple modalities in video for domain adaptation is shown in this chapter.

A different domain shift is explored in Chapter 5, that occurs between the videos of the same

participants captured two-years apart. This has the potential to negatively impact the performance

of fine-grained action recognition models, deployed over long periods of time. An unsupervised

domain adaptation challenge is proposed as a public competition, to encourage the development of

solutions for this domain shift. The results of the challenge are presented at the end of the chapter.

While previous chapters focused on action recognition, Chapter 6 explores the task of text-to-

video retrieval. The domain adaptation method proposed in this chapter shows the effectiveness of

aligning videos of similar actions, rather than the global statistics of the domains.

Finally, Chapter 7 presents a conclusion of the work presented in this thesis.
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Chapter 2

Unsupervised Domain Adaptation

Literature

Classical machine learning assumes that the test set is independently and identically distributed to

the training set. In practice, this is rarely the case. For fine-grained video understanding, models

should be able to perform well with unseen participants, camera setups and recording environ-

ments. Unsupervised Domain Adaptation attempts to overcome this problem with access to un-

labelled data from the test distribution (the target domain). Unlabelled data is used to overcome

the distribution mismatch between training and test, which is often cheap to collect relative to

annotation.

This section provides an introduction to domain adaptation, overviewing key works in the un-

supervised domain adaptation literature. The majority of domain adaptation methods focus on

the task of image classification tasks, and only recently has video seen some attention by re-

searchers [1, 2, 37, 42, 43, 44]. Domain adaptation methods tailored for video understanding

are discussed in detail in Chapter 3, once the various video architectures and datasets are defined.

Although, many of the domain adaption solutions for video take inspiration from the methods
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outlined in this chapter.

Sec. 2.1 and Sec. 2.2 provide the reader with context of domain adaptation. First, domain

adaptation is defined in Sec. 2.1, outlining the different types of domain adaptation tasks and

domain shifts. Next, a summary of the mainly historical, shallow domain adaptation approaches

is presented in Sec. 2.2, before providing an in-depth overview of the domain adaptation methods

for deep learning models, in Sec. 2.3.

A discussion of key domain adaptation methods, and how they relate to this thesis, is provided

in Sec. 2.3. The main methods for domain adaptation align the marginal distributions of the source

and target distributions in feature space, which are described in Sec 2.3.2, 2.3.3 and 2.3.4. It is

common to apply discrepancy metrics, such as Maximum Mean Discrepancy [45], to align do-

mains (Sec 2.3.2). More recently, adversarial training has been used to align domains (Sec 2.3.3).

Alternatively, batch normalisation layers in neural networks can be re-purposed for domain adap-

tation(Sec 2.3.4). In Chapters 4 and 5, the alignment of source and target distributions is used for

domain adaptation. In particular, Chapter 4 uses adversarial training to align multi-modal archi-

tectures. Many methods in sections 2.3.2, 2.3.3 and 2.3.4 have been adapted for video used as

baselines in the technical chapters.

Marginal alignment of distributions of source and target domains has a few disadvantages. The

ideal model for the target domain may not always be one where the feature spaces are aligned. In

addition, marginal alignment does not promote discriminative feature for the target task. As an

alternative, Sec 2.3.5 explore works which use additional self-supervised tasks trained jointly with

the task specific promote domain adaptation. In Chapter 4 we propose a self-supervised method

tailored for video by exploiting the temporal correspondence of multiple modalities.

Alternative approaches to combat the limitations of marginal alignment assign class labels to

unlabelled target instances (pseudo-labelling) and use these to train task specific losses on target

data, or align source and target distributions of individual classes. In Chapter 6 we propose the

use of pseudo-labelling to overcome the inability of marginal alignment to increase target domain
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performance.

Finally, we discuss literature for open-set domain adaptation, where some classes are present in

the target domain that are not present in the source domain (Sec 2.3.7). Our benchmark proposed

in Chapter 5 is also open-set due to the unscripted nature of the dataset collection.

2.1 Definition of Domain Adaptation

A domain is defined by the joint distribution DX,Y , over an input population X represented in a

particular feature space X , and the task labels Y in label space Y . In classical supervised learning

the aim is to find a mapping from the input space to the label space h : X 7→ Y . However, this

assumes that there is a single domain for training and testing. In practice there exists multiple

domains: a source, S = {DSX,Y , XS , Y S ,X S ,YS}, where a large number of labelled instances are

available during training, and a target T = {DTX,Y , XT , Y T ,X T ,YT } used for evaluation. The

difficulty stems from the fact that T might vary with respect to: the joint distribution of inputs and

labels DSX,Y 6= DTX,Y , the input space X S 6= X S or the label space YT 6= YS .

For some applications, the input and label space can differ between domains. However, the

majority of domain adaptation works assume the same input and label spaces, X S = X T and

YS = YT .

X S 6= X T . Different input spaces arise from the use of different modalities, such as transferring

information from: text→video, depth→images. Homogeneous domain adaptation assumes

that the input features share the same space, whereas in heterogeneous domain adaptation,

the input features are from different inputs spaces. In this work, the homogeneous case is

assumed, where the source and target domains share the same feature spaces.

YS 6= YT The label space differs between the domains. Examples of domain adaptation scenarios

where the label spaces differ are: partial domain adaptation where the target domain is a
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subset of the source domain YT ⊂ YS and open set adaptation where YS ⊂ YT . If YS =

YT , it is known as closed set domain adaptation.

There is often a limited amount of labelled target data available during training. The amount

of labelled target data available defines different domain adaptation tasks:

Supervised Domain Adaptation Labelled data is available in both the source and target domains.

Semi-supervised Domain Adaptation There is access to a limited amount of labelled target data

during training, however the majority of target data should be unlabelled.

Domain Generalisation There is no access to any data in the target domain during training. Meth-

ods are trained on one or more source domains to generalise to an unseen domain.

Unsupervised Domain Adaptation The target domain is unlabelled so no labelled target data

should be used for domain adaptation. This is the main focus of this work.

2.1.1 Defining the Domain Shift

Assuming the same feature spaces across domains, if the joint distribution differs across domains,

DSX,Y 6= DTX,Y , a learned mapping from h : X : Y that performs well on the source data may

exhibit poor performance on target data. The reason behind the joint distribution shift provides

different challenges for domain adaptation.

DSX 6= DTX The co-variate shift, or marginal distribution shift, is where the input features from

different domains are distributed differently. This is the focus for the majority of domain

adaptation problems. The domains are said to have different marginal distributions as the

task labels are not considered and have been marginalised out of the distributions. There

are often multiple factors behind this shift for fine-grained video understanding, including

different camera setup, participants and environments across domains.
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How the input distribution conditioned on a single class changes, DSX|Y 6= DTX|Y , is referred

to as a conditional shift. Some methods exploit this to improve alignment.

DSY 6= DTY The label shift refers to the different proportions of labels in both source and target

domains. This is also linked to the class imbalance problem where at training there is a long-

tailed distribution of instances per class, but at test time a uniform distribution is expected.

DSY |X 6= DTY |X The semantic shift changes the meaning of labels between domains, such that the

distribution over the labels conditioned on the input changes. This is difficult to overcome

but can be an issue for cross-dataset action recognition due the ambiguous nature of verbs.

2.1.2 Domain Adaptation Theory

A theoretical work by Ben-David et al. [46] provides an upper bound of the labelling error on the

target domain, eT (h), given a hypothesis function, h. This inspired the majority of the recent unsu-

pervised domain adaptation methods. They showed the target labelling error, eT (h), is bounded by

the labelling error on the source domain, eS(h), and the marginal distribution discrepancy between

the domains, dH∇H.

The H-divergence discrepancy measure, dH∇H, is used to prove the upper bound on the target

labelling error, and is defined as the supremum over a class of hypothesis functions, H, which

discriminate between source and target distributions, DS and DT . Prx∼D[h(x) 6= h′(x)] is the

probability that two hypothesis functions, h and h′, disagree on input samples from distribution,

D.

dH∇H(DS ,DT ) = 2 sup
h,h′∈H

|Prx∼DS [h(x) 6= h′(x)]− Prx∼DT [h(x) 6= h′(x)]| (2.1)

Theorem 1. Given the distribution of input samples in the source and target domains,DS andDT ,
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the upper bound for the target error for every hypothesis h ∈ H is given by:

eT (h) ≤ eS(h) +
1

2
dH∇H(DS ,DT ) + λ (2.2)

where λ = eS(h∗) + eT (h∗) is the combined error from the source and target domains, given the

ideal joint hypothesis:

h∗ = argmin
h∈H

eS(h) + eT (h) (2.3)

Many works assume that λ is small and focus on minimising the distribution discrepancy,

dH∇H. Ben-David et al. [47] prove that if there is no hypothesis function, h∗ ∈ H, that achieves

low error on both domains, labelled data in the target domain is required to guarantee successful

domain adaptation. Therefore to overcome a semantic shift between the domains, labelled target

data would be needed.

2.1.3 Measuring the Domain Shift

To measure the co-variate shift, a variety of discrepancy measures such as the KL-divergence,

Wasserstein metric and the Maximum Mean Discrepancy (MMD) [45] have been proposed. Theo-

rem 1 (Sec.2.1.2) showed that minimizing the discrepancy between source and target distributions

will improve the ability of a classifier trained on the source domain to generalise to the target do-

main. MMD is popular in the literature due to the fact that it is a non-parametric measure that does

not require density estimates. MMD is referred to frequently throughout this thesis, therefore this

section provides the definition of the measure.

MMD measures the distance between the mean embedding of two distributions in Reproducing

Kernel Hilbert Space (RKHS). This captures the discrepancy between domains as the mean in

RKHS can fully represent a single distribution. Given n inputs from the source domain, Sn =
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(xs1 . . . x
s
n), m inputs from the target domain, Tm = (xt1 . . . x

t
m), and a mapping to a Hilbert space,

φ : X 7→ H, MMD is defined as:

MMD(Sn, Tm) =

∥∥∥∥∥ 1

n

n∑
i=1

φ(xsi )−
1

m

m∑
i=1

φ(xti)

∥∥∥∥∥
2

H

(2.4)

Note that φ is not used explicity, rather a kernel trick is used. The kernel, k(·, ·), must be

positive semi-definite to ensure it maps to RKHS, which is most often the radial basis function

(Gaussian kernel).

MMD(Sn, Tm) =

∥∥∥∥∥ 1

n2

n∑
i=1

n∑
j=1

k(xsi , x
s
j)−

2

nm

n∑
i=1

m∑
j=1

k(xsi , x
t
j) +

1

m2

∑
i=1

1

m2

m∑
j=1

k(xti, x
t
j)

∥∥∥∥∥
0.5

(2.5)

This section introduced the problem of domain adaptation, what a domain shift is and how

to measure it. The next sections outline works that tackle the problem of unsupervised domain

adaptation.

2.2 Shallow Domain Adaptation

These domain adaptation methods work directly in a feature space engineered for a particular task,

therefore they do not combine domain adaptation with representation learning. Later sections will

focus on more recent techniques, which jointly optimise domain alignment with learning a feature

representation with neural networks. Therefore, this section provides a historical background for

domain adaptation. A more in-depth comparison between methods in literature and the work in

this thesis is provided in Sec 2.3.

Early domain adaptation approaches re-weighted source instances to match the target distribu-

tion (Sec. 2.2.1), augmenting the feature representation (Sec 2.2.2) or transforming the domains
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into a space where the source and the target distributions are aligned (Sec 2.2.3). Creating a rep-

resentation which aligns source and target distributions inspired the majority of recent methods,

described in Sec 2.3. In a similar spirit, methods used in Chapters 4,5 and 6 also learn a represen-

tation where the source and target distributions are aligned.

2.2.1 Instance-based Adaptation

To improve the performance of classifiers on target data, early works re-weighted source instances

to approximate the target distribution [48, 49, 50, 51]. These assume there is no semantic shift

between the source and the target distributions, DSY |X = DTY |X , in order to match the marginal

distributions,DSX andDTX . This is also referred to as importance weighting as source instances that

are more representative of the target distribution are given larger weights than those far from target

instances in feature space.

The motivation behind these works is shown in Eq. 2.6. The risk on the target domain is

approximated by n source instances and labels, Sn = {xS , yS} ∼ DSX,Y . L is a loss function

which determines the fitness of the mapping from input space to label space, h : X : Y , with

parameters θ.

θ = argmin
θ

∫ ∫
DTX,Y (x, y)L(y, x; θ)dxdy

= argmin
θ

∫ ∫ DTX,Y (x, y)

DSX,Y (x, y)
DSX,Y (x, y)L(y, x; θ)dxdy

≈ argmin
θ

1

n

∑
xs,ys∈Sn

DTX,Y (xSi , y
S
i )

DSX,Y (xSi , y
S
i )
L(ySi , x

S
i ; θ)

= argmin
θ

1

n

∑
xs,ys∈Sn

DTY |X(ySi |xSi )

DSY |X(ySi |xSi )

DTX(xSi )

DSX(xSi )
L(ySi , x

S
i ; θ)

(2.6)

If there is no semantic shift in the meaning of the labels, DSY |X = DTY |X , the target domain perfor-
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mance can be found by weighting source examples by β =
DTX(xs)

DSX(xs)
. A common approach to ap-

proximate β is to minimise a distribution discrepancy measure between the target and re-weighted

source distributions with respect to β [48, 50]. Key works have minimised the Kuback-Libler

divergence [50] or Maximum Mean Discrepancy [48, 49, 51].

A major disadvantage of these methods is that the target domain performance suffers if there

is a large domain shift, where target instances are far from the source instances in input space.

Therefore, more recent shallow based approaches focused on augmenting or transforming the fea-

ture representation such that the domains are close.

2.2.2 Feature Augmentation

A simple method for supervised domain adaptation augments the input features with copies of

itself [52]. Eq 2.7 shows that the augmented features, Φ(xS) and Φ(xT ), are produced from the

source and target inputs, xS and xT , and a vector of zeros of the same shape, 0. The first set of

indices of the augmented features is used to learn shared characteristics between source and target,

whereas the second and third sets of indices represent domain specific features.

Φ(xS) =< xS , xS , 0 > Φ(xT ) =< xT , 0, xT > (2.7)

This motivated unsupervised domain adaptation methods to augment low-dimensional repre-

sentations of the input space with sub-spaces sharing similar characteristics to both source and

target domains. Geodesic Flow Sampling (GFS) [53] creates a low-dimensional representation

of the source and target domains, and embeds them onto the Grassman manifold. The Grassman

manifold provides a topological structure over all possible sub-spaces with the same dimensions.

Sub-spaces are selected along the geodesic flow, the shortest path between the source and target,

that provides incremental changes from source to target. As it is difficult to choose the best sub-

16



2.2. SHALLOW DOMAIN ADAPTATION

Figure 2.1: Sampling sub-spaces along the Geodesic Flow to augment the input feature space.
Figure taken from [3]

space for domain adaptation, the domains are projected into multiple spaces along the geodesic

flow. The representations from each sub-space are concatenated and used to train a classifier on

the source. Alternatively, Geodesic Flow Kernel (GFK) [3] uses all sub-spaces along the geodesic

flow, which exploits the kernel trick to train a classifier in an inifite number of subspaces without

projecting into each of the spaces explicitly.

Although feature augmentation can aid domain adaptation, the augmented source and target

features do not necessarily have the same distribution. As the target error is bounded by the dis-

crepancy between source and target input distributions (Theorem 1, Sec.2.1.2), the next section

outlines works that transform the input space such that the domains are aligned.

2.2.3 Feature Transformations

These works transform the source and target features such that the marginal distributions between

the transformed features are close. This transformation can be jointly learned as a projection into

a low-dimensional space [54, 55], or into a space of the same cardinality [56, 57]. Methods find

a common projection to map source and target domains into an aligned space [54, 55], or learn a

separate projection to map each domain into a common sub-space [56]. Alternatively, the source

domain can be directly mapped onto the target domain [57, 58].
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Domain Alignment can be achieved jointly while learning a projection into a low-dimensional

space [54, 55]. Transfer Component Analysis (TCA) [54] is inspired by MMD and learns a projec-

tion that minimizes the distance between the means of the the source and the target distributions in

the transformed feature space. The alignment is optimised with an orthogonality constraint on the

projection matrix in order to preserve task information. Domain Invariant Projection (DIP) [55]

learns a projection that minimises the means of the distribution in RKHS with a Gaussian ker-

nel. This better resembles MMD as domains are compared in RKHS rather than the projected

low-dimensional space. However DIP has no closed form solution and uses a conjugate gradient

method to find the projection. DIP improves target object detection performance upon GFK, TCA

and instance-sampling methods [51, 59] on the Office-dataset [60].

Other approaches conduct alignment separately from dimensional reduction [56, 57]. Sub-

space Alignment (SA) [56] first projects the domains into a low-dimentional space before align-

ment. The projected space is transformed into a sub-space where the Frobenius norm between the

source and the target distributions is minimised. One advantage of this method is that there are no

hyper-parameters that require tuning for domain alignment. Another simple but effective method

which has no hyper-parameters is Correlation Alignment [57]. This transforms the source features

to match the target co-variance. Co-variance matching is approximated by whitening the source

data and ‘re-colouring’ it with the target co-variance. The target features are not transformed. They

showed improved performance over GFK [3], SA [56] and TCA [54] on the Office and extended

Office-Caltech100 datasets [60] arguing that the improved performance is due to their alignment

method considering both eigenvalues as well as eigenvectors.

Feature transformation can be combined with instance re-weighting [61]. Transfer Joint Match-

ing [61] builds upon the feature transformation approach, TCA, but imposes L1 and L2 sparsity

regularisation on the rows of the PCA projection matrix corresponding to source instances. This

regularisation promotes source examples irrelevant to the target to be down-weighted in the pro-

jection which matches the means of the distributions. While maximising variance of the projected
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features and minimising row-sparsity of the source features, their strategy down-weights the con-

tribution from irrelevant source examples in the low-dimensional space.

An approach quite different from the others solves an optimal transport problem to minimize

the discrepancy between source and target [58, 62, 63]. The aim is to find a transport plan, γ,

which is a probabilistic coupling between the source and the target distributions. The set of possible

transport plans is given by : B = {γ ∈ (R+)n×m|γ1m = µs, γ
T1n = µt}, where 1 is a column of n

or m ones, and µs and µt are the discrete distributions of the source and target examples. Another

interpretation is that γ states how much mass of each source example should be transported to

each target example, ensuring that the distribution of the mapped source example matches the

target distribution and visa versa. The optimal plan, γo, is the plan that minimises a cost matrix C

between source and target examples, xs and xt, which is often the Fronebious norm.

γo = argmin
γ∈B

∑
i

∑
j

γi,jCi,j where Ci,j =
∥∥xsj − xtj∥∥ . (2.8)

The transformed source examples, γo(xs), can be used to train a classifier [58], or a separate

transformation can be learned to approximate γ, improving the performance on target examples

not seen during training [62]. Class information can be used to ensure that source examples from

the same class are not mapped to the same target examples [64], or the joint distribution of inputs

and label can be aligned [63].

2.2.4 Conditional Alignment

The works in the previous section focused on matching the marginal distributions without utilising

class information. However, this doesn’t ensure that samples of the same class share the same

distribution in both the source and the target domains. These works aim to align the conditional

distributions between the source and the target, DX|Y . Discrepancy measures are applied per-class
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to align domains, using the class labels of the source domain. However, for unsupervised domain

adaptation, no labels from the target domain are available during training. Instead, these methods

utilise pseudo-labels, which are the class label prediction on target data. These method utilise an

iterative strategy between training the model for domain alignment and computing the pseudo-

labels.

Some methods adapt existing approaches for marginal distribution matching to consider class

information. Transfer Joint Analysis [65] extended TCA to match the conditional distributions.

TCA is applied individually for each class in the source and target domain. JDOT [63] incorporates

class information into the optimal transport problem [58].

Metric based approaches explored using pseudo-labels to adapt a source representation to the

target domain [66]. A projection is used to learn a metric space, such that source inputs from

the same class are closer than instances from inputs of differing classes. Inputs are labelled by

the class associated with the nearest centroid in the projection. Domain Specific Class Means

(DSCM) [66] explores the multi-source setting where multiple source domains are present during

training, therefore, multiple centroids are defined for each class, one for each source. They propose

to adapt the metric space to better fit the target data in an interactive manner. Each iteration target

inputs are pseudo-labelled, and the target instance closest to the nearest centroid of the same label

are added to the source set, and the source instance furthest from the nearest centroid are removed.

The metric space is then updated with the set containing both source and target data until no more

target data can be added. This work showed that learning a metric space can improve domain

adaptation over learning a classifier in the original space, outperforming SA [56] when the metric

space is adapted with target data.
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2.3 Deep Domain Adaptation

This section summarises the approaches which combine unsupervised domain adaptation with the

learning of representations with deep learning architectures. Initial work simply extracted features

from deep learning architectures, which shallow domain methods approaches can be applied to

(Sec. 2.3.1). Deep learning representations greatly improved domain adaptation, therefore the

work in this thesis focuses on deep learning.

Improved target domain performance is achieved by adapting deep learning models for domain

adaptation. Works have aligned feature activation from source and target domains by minimising

discrepancy metrics (Sec. 2.3.2), adversarial training (Sec. 2.3.3) and re-purposed batch normal-

isation layers (Sec. 2.3.4). Throughout this thesis, our methods utilise ideas in these sections to

align source and target domain distribution. In addition, we directly apply many of these methods

directly to video architectures as baselines.

Other approaches used additional self-supervised objectives on target data (Sec. 2.3.5), or

pseudo-labelling approaches to obtain labels for target task (Sec. 2.3.6). A self-supervised method

tailored to video is proposed for domain adaptation in Chapter 4, inspired by works in Sec. 2.3.5.

In addition, a pseudo-labelling is proposed in Chapter 6 with many works in Sec. 2.3.6 used as

baselines.

Most approaches assumed closed-set domain adaptation where the label space is the same be-

tween domains, although some approaches relax this assumption (Sec. 2.3.7). The benchmark

described in Chapter 5 provides an open-set domain adaptation benchmark for video. Not all ac-

tions classes that occur in the source domain, occur in the target domain, and vice-versa. Chapter 6

proposes a domain adaptation method on this benchmark, using a sampling strategy align actions

of common classes across domains.
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2.3.1 Deep Feature Extraction

Features extracted from deep learning methods have been shown to create more transferable rep-

resentations for the target domain [67, 68], greatly improving domain adaptation performance on

standard domain adaptation benchmarks [60]. Shallow domain adaptation methods can be applied

directly to these deep features. Therefore, Chapters 4, 5 and 6 focus on deep learning approaches

for action understanding.

Initial work using deep features for domain adaptation was for sentiment classification of ama-

zon reviews [67]. Stacked Denoising Autoencoders (SDA) were trained in a greedy layer wise

fashion, extracting the intermediate layers as inputs feature. They showed that training an SVM

on the extracted features from the SDA could reduce the transfer error (the difference in accu-

racy between the domain adaptation method and an SVM trained on raw pixel values from target)

compared to feature alignment of raw inputs [59].

Donahue et al. showed that features extracted from Convolution Neural Networks (CNN) can

generalise to unseen datasets and greatly improve domain adaptation performance [68]. They

proposed DeCaf which extracts the feature activations from AlexNet trained on the ImageNet

dataset [69]. These features showed large improvements on the Office dataset [60] over using

SURF [70] which was previously used by most domain adaptation methods to provide a robust

feature representation.

Despite the improved generalisation capability of features extracted from CNNs [68], the per-

formance of models trained on these features drops when evaluating across datasets [33]. Similarly,

our work shows that fine-grained action understanding models show a drop in performance when

evaluated on a different domain, where the domain shift is due to videos filmed in different loca-

tions (Chapter 4), or videos collected two years later apart (Chapters 5 and 6). Instead, more recent

approaches jointly optimise domain adaptation with the learning of features using neural networks.

Next we discuss key works in the literature that align source and target domains of deep learning
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models to improve domain adaptation.

2.3.2 Deep Discrepancy Minimisation

A common approach to adapt neural networks for domain adaptation is to minimize some discrep-

ancy, such as the Maximum Mean Discrepancy metric (MMD) [45], jointly with the task specific

losses, such that the source and target distributions remain similar. Unlike shallow domain adap-

tation methods, these losses are back-propagated through the Neural Network to learn the feature

representation.

Domain Adaptation Neural Networks (DANN) [71] was one of the first methods to apply do-

main adaptation to deep learning architectures. MMD was applied to the hidden layers of a multi-

layer perception or a de-noising autoencoder to reduce the domain gap. Training was conducted

in two steps, first the network was pretrained using labelled source examples to achieve good clas-

sification performance, followed by fine-tuning with the MMD objective to align the distribution

of source and target. The addition of MMD provided improved target domain accuracy on the

office dataset [60], outperforming older shallow transfer-learning methods [3, 56] . However, us-

ing SURF features [70] as input to their method still outperformed raw images as input as both

networks were shallow and not pre-trained on large datasets.

Adapting Convolution Neural Network (CNN) architectures, such as AlexNet [16], for domain

adaptation greatly improved domain adapation performance. Deep Domain Confusion (DDC) [72]

applies MMD to a bottleneck layer, which was placed directly before the final fully connected

layer. The low-dimensional bottleneck layer limited the ability of the network to over-fit to the

source, and MMD aligned the source and the target distributions. The placement and size of the

bottleneck layer was also chosen such that MMD between source and target was minimised, from

the network pre-trained on source data. MMD and the classification losses were jointly optimised

and back-propagated through the network. This work showed substantial improvements on DANN,
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outperforming handcrafted [70] and DeCAF [68] features.

Discrepancy measures can be used to align multiple layers of a neural network [73, 74]. Do-

main Adaptation Networks (DAN) [73] applies MMD to multiple, feed-forward, task specific lay-

ers of AlexNet. Although the lower-layers of a CNN are often general and less dataset specific, the

feed-forward layers higher in the network suffer greatly from a domain shift. Note that separate

MMD losses were trained jointly to align different layers of the network. Joint Adaptation Net-

work (JAN) [74] uses a single MMD measure to align the joint distribution over multiple layers in

RKHS. The authors argued that capturing the joint distributions over multiple layers, MMD can

better reason about the conditional shift between domains.

One difficulty of the MMD metric is choosing the correct kernel. Most often a Gaussian kernel

is used, however changing the variance parameter will result in a different weighted combination

of moments used by the discrepancy measure. Long et al. [73] proposed a multiple-kernel variant

of MMD, which used a variety of Gaussian kernels with different variance to avoid the issue of

choosing an appropriate kernel for the test statistic. Zellinger et al. [75] argued that it is most im-

portant to align the central moments of the first k orders, and defines Central Moment Discrepancy

(CMD). This avoids the kernel calculations in MMD and the authors argued that classification

accuracy is less sensitive to changes in k than the choice of kernel in MMD.

Many discrepancy measures for deep domain adaptation, including those using MMD, were in-

spired by shallow domain adaptation approaches [57, 63]. Deep CORAL [76] extends CORAL [57]

to align the activations of the last fully connected layer of AlexNet. The Euclidean distance be-

tween source and target covarience matrices is minimised with respect to the weights of the neural

network. The covariance matricies are computed using the current mini-batch statistics of each

domain. This showed comparable target classification accuracy on the Office dataset [60] com-

pared to DAN [73]. DeepJDOT [77] applies the shallow optimal transport alignment approach,

JDOT [63], to hidden layers of a neural network. A iterative approach is taken for optimisation.

First JDOT is optimised to find the optimal mapping from source to target, before minimising the
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cost of the optimal mapping with respect to the weights of the nerual network. This provided

large improvements on target classification accuracy compared to DAN [73] on the Office [60] and

Office-Home datasets [78]. Note that DeepJDOT uses label information during alignment, where

pseudo-labels, or class predictions, are obtained for the unlabelled target data. Pseudo-labelling

approaches are discussed in more detail in Sec. 2.3.6.

This section discussed works that align source and target distributions for domain adaptation.

Chapters 4 and 6 propose domain adaptation methods which align source and target distributions.

The key work in the literature DAN [73], which uses the multiple kernel variant of MMD to align

domains, is applied to video architectures and used as a baseline in both chapters.

2.3.3 Adversarial Alignment

An alternative to discrepancy minimization is to use adversarial training [4]. This uses the minimax

game of Generative Adversarial Networks [79] to align the source and target domains. We propose

adversarial training to align multi-modal video architectures in Chapter 4, and apply discriminate

adversarial domain alignment as baselines in Chapter 5 and Chapter 6.

Adversarial methods can be generative, which translate source images into the style of the tar-

get [80, 81, 82], or discriminative, which align the domains in feature space [4, 83, 84, 85, 86]. Due

to the success of adversarial alignment, recent domain adaptation approaches for action recognition

incorporate discriminative adversarial training [1, 2, 37, 43]. In Chapter 4, we show that adversar-

ial training is an effective method for domain adaptation for fine-grained action recognition, and

how to employ adversarial training for multi-modal architectures.

Discriminative approaches consist of a feature extractor, G, used to produce the representation

of source and target inputs, xS and xT , and a discriminator, D. The aim ofD is to predict if a given

feature representation is sampled from the source, DS , or the target domain, DT . By learning to

distinguish between examples in each domain, D can be used as a learning signal for G to align
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Figure 2.2: Domain Adversarial training with a gradient reversal layer (GRL). Figure taken from
ReverseGrad [4]

.

the domains. D is optimised to minimise the following loss function:

Ld(θD, θG) =ExT ∼DT [logD(G(xT ; θG); θD)] + ExS∼DS [log(1−D(G(xS ; θG); θD)] (2.9)

A minimax optimisation is used to align the domains, minθD maxθG Ld(θD, θG), where θD and θG

are the weights of D and G, respectively. Therefore, the feature extractor will bring the domains

closer in order to fool the domain discriminator, while the domain discriminator becomes better at

distinguishing between the domains. Ganin et al. [4] showed that D can be interpreted as learning

the hypothesis function that distinguishes between source and target distributions in Theorem 1

(Sec. 2.1.2). Therefore, similar to the previous section, adversarial optimisation will align the

marginal distributions between domains.

The seminal work, ReverseGrad [4] (Fig. 2.2), uses a Gradient Reversal Layer (GRL) to solve

the minimax objective in a single optimisation step. During the forward pass, GRL acts as the iden-
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tity function, whereas in the backward pass the gradient is negated before back-propgating into the

feature extractor. Adversarial alignment is jointly optimised with the source domain classification

task. The task classifier, C, acts on the features generated from G with a classification loss Ly. A

hyper-parameter λ is used to trade-off the alignment and classification losses. The gradients of the

domain discriminator will not be useful at the start of training, therefore a warmup strategy is used

to initialise the domain discriminator by increasing λ from zero to one as a function of the current

training step.

Alternatively GAN based losses [83] can be used to adversarially align domains, this is advan-

tageous if separate weights are used to map the source and the target domains into feature space.

The target specific weights can learn domain specific low-level features, such as textures and basic

shapes, to align the more class specific layers with the source domain. The initialisation of the tar-

get weights is important to avoid degenerate solutions. The authors proposed to first initialise the

target weights with source weights pretrained on the classification task. For alignment, a domain

discriminator is used to map source and target features to a domain label, while the target weights

are optimised to minimise the domain loss with inverted domain labels.

Improving Discriminative Target Representations

Chen et al. [87] showed that adversarial alignment approaches are less discriminative than models

trained only on source. They explain this through singular value decomposition, where ReverseG-

rad [4] produces one singular value much larger than the others. They proposed Batch Spectral

Penalization (BSP) to penalise the k largest singular values, which improves upon ReverseGrad

on the Office-31 [60], Office-Home [78] and VisDA-2017 [88] datasets. Other works improve

discriminability by considering the conditional distributions [84, 86, 89], using multiple domain

discriminators[85, 86], or an adversarial minimax game between multiple classifiers [5, 90]

To align the conditional distributions, class label information can be included when training
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the domain discriminator [84, 89, 91]. Conditional Domain Adaptation Network (CDAN) [84]

conditions the domain discriminator on both the activations of the feature extractor and the log-

its of the task classifier. The logits enable the domain discriminator to utilise class information

during alignment. In CDAN the outer-product between the logits and the features are used to ex-

plicitly capture the interaction between the two spaces. They showed that the concatenation of the

spaces leads to worse performance, as it doesn’t explicitly model the interaction between features

and class probabilities. The downside of the outer-product operation is that the input to the domain

discriminator can be very large. Therefore, an approximation is provided which multiplies the indi-

vidual spaces by separate random vectors, that are fixed during training, followed by element-wise

multiplication. This allows a fixed sized vector as input to the domain discriminator. Their method

outperforms MMD based alignment [73, 74] and adversarial approaches [4, 83] on the Office-

31 [60], Office-Home [78] and ImageCLEF-DA [92] datasets, and generative approaches [81, 93]

on the VisDA2017 challenge [88]. Generative approaches are discussed later in this section.

Multiple domain discriminators have been used to align the conditional distributions [86]. Each

domain discriminator takes in source features from a single class. However, as the target domain

in unlabelled, the classifier probability for the kth class is used to weight the target features used

as input for the kth domain discriminator. This approach provides small improvements over Re-

verseGrad on the Office-31 [60] and ImageCLEF-DA [92] datasets, but larger gains were achieved

in the partial domain adaptation setting, where only 25 out of the 31 classes were used in the target

domain. Partial domain adapation will be revisited in Sec. 2.3.7.

Some adversarial approaches aim to incorporate class knowledge into a single domain dis-

criminator [89, 91]. The domain discriminator in Discriminative Adversarial Domain Adaptation

(DADA) [91], predicts K + 1 labels. (1 · · ·K) represent the classes for the source classification

task, and K + 1 is the domain label. The domain discriminator is optimised to predict ground-

truth class labels for source examples, and the domain label for target examples. The addition

of the class information into the domain discriminator encourages the feature extractor to align
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Figure 2.3: Adversarial training with Maximum Classifier Discrepancy (MCD). Figure taken from
[5]

target instances to one of the K source classes, avoiding target examples lying near of decision

boundaries.

Zhang et al. [85] applied multiple domain discriminators to encourage domain specific fea-

tures in the lower layers of a CNN and domain invariant features in the higher layers. While

the domain invariant layers are learnt using a GRL, the domain specific features are obtained by

back-propagating the discriminator gradient without negation. Therefore the lower layers are en-

couraged to learn domain specific low-level attributes, such as corners and edges, that may aid

class discrimination in the target domain.

Adversarial Training using Task-Classifiers

Adversarial training strategies have been proposed that avoid the use of a domain discriminator

and use a mini-max optimisation directly on the task classification scores [5, 90, 94]. Maximum

Classifier Discrepancy (MCD) (Fig. 2.3) [5] exploits the disagreement of classification scores from

two classifiers sharing the same feature extractor. The L1 distance between the class probabilities is
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referred to as the classifier discrepancy, which measures the disagreement between classifiers. This

discrepancy is maximised on target data, whilst each classifiers is optimised to correctly predict

the class label on source data. Therefore, the classifiers will disagree on the class label predictions

for target examples that are far from source examples. The domains are aligned by minimizing

the classifier discrepancy with respect to the feature extractor weights, such that classifiers have

similar predictions. This minimax game can be optimised iteratively, or in a single step with a

gradient reversal layer placed between the features and the two classifiers, applied only to target

data. Adversarial Dropout Regularization [90] uses the same approach as MCD but uses dropout

to obtain the two separate classifiers. Dropout randomly sets a percentage of feature activations

used as input to the classifier to zero. Applying dropout twice obtains two classifiers that can be

optimised using MCD.

Generative solutions

Generative solutions for domain adaptation translate source images into the style of the target [80,

81, 82, 93, 95]. Initial work [80, 95] used a GAN architecture, where a generator is trained to

reconstruct the original source image while the discriminator is trained to distinguish the recon-

structed source image from target images. By maximising the discriminators loss with respect to

the generator, the GAN produces images with a similar style to the target with task information

from the source preserved. Gen-to-adapt [93] uses the same feature representation for the gener-

ator and the task classifier. The feature extractor is jointly trained to reconstruct source images in

the style of the target and to predict the task labels. Cycle consistency constraints were added to

avoid features collapsing into uni-modal solutions [81, 82]. This translates the generated source

images in the style of the target back to the style of the source. CyCADA [81] uses the stylised

source images to train a separate network for the classification task, whereas, Image-to-Image

Translation [82] maps source and target domains to an intermediate representation. The interme-
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diate representation is jointly trained to reconstruct source and target images, as well as to predict

labels for a classification task.

These generative approaches are not best suited to classification in video, where there is a large

amount of redundant and task-irrelevant information,. Therefore, our work in Chapter 4 and other

video domain adaptation works [1, 2, 37, 43] adopt a discriminative approach to domain adaptation.

The big benefits of generative methods are with the tasks of semantic segmentation [81, 82] and

person Re-Id [96, 97, 98, 99]. For semantic segmentation, class labels are needed for individual

pixels. Generative methods align domains on a pixel level, therefore, they are more suited for this

task. For person Re-Id, different identities (labels) are used in both source and target domains.

Discriminative methods do poorly if the label space differs between source and target, as aligning

the distributions of each domain results in sub-optimal solutions.

2.3.4 Batch Normalisation Statistics

Batch Normalisation layers (BN) [100] were originally proposed to overcome the internal covari-

ate shift, where the distribution of activations changes over training. The layer standardises the

distribution of activations, such that the mini-batch statistics have a mean of zero and a standard

deviation of one. BN layers are placed in many hidden layers of the network in order to overcome

the covariate shift. For testing, population statistics of the training dataset set are used. BN im-

proved the gradient flow to lower layers in the network, allowing the use of higher learning rates.

This section explores works that exploit BN for domain adaptation.

Li et.al. [101] showed that the BN statistics from Caltech-256 [102] and Bing datasets [103]

differ on an Inception-BN model pretrained on Imagenet [100]. This shift in mean and variance

exists in both shallow and deep layers of the CNN. Their method, AdaBN, updates the population

statistics of all BN layers with the statistics of the target domain as a post-processing step after

training. This aligns the target domain to the standardised distribution seen during training. As
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BN is applied across many layers of the network, AdaBN is able to learn a non-linear domain

transformation due to the non-linear activation functions between layers. This method also has no

hyper-parameters to optimise, which is beneficial for unsupervised domain adaptation as no target

labels can be used for hyper-paramter tuning. Furthermore, they showed that AdaBN can be used

with other domain adaptation methods such as CORAL [57].

Separate BN layers have been used for source and target distributions to align domains during

training [6, 104, 105, 106]. These use a different batch normalisation layer for source and target,

whilst training with source and target losses. Carlucci et al. [105] argued deeper layers learn

more abstract, and ideally domain invariant, concepts, so should share BN layers. However, the

low-level layers, which are domain specific, should still have separate BN layers. Their method,

AutoDIAL uses a mixing parameter to control the extent to which distribution statistics of each

BN layer should be shared across domains, which is learnt as training progresses. If distribution

statistics are completely shared, AutoDIAL acts as a single BN layer, and if statistics are not shared,

AutoDIAL acts as two separate BN layers.

2.3.5 Target Self-supervision

These methods jointly optimise an auxiliary task on the target domain and a task specific loss

on the source domain. The auxiliary task only requires unlabelled target data and disentangles

the representation of the target domain while learning the target task. Such tasks include recon-

struction [107, 108], predicting transformations of images [109, 110, 111, 112] and encouraging

features of individual examples to have a large norm [113].

Deep Reconstruction-Classification Network (DRCN) [107] uses target reconstruction as the

auxilary task. A convolutional decoder maps the feature space to a reconstructed input space, and

the mean squared error between the input and reconstructed images is back-propagated into the

same feature extractor used for the source classification task. This provided competitive results
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with ReverseGrad [4]. Domain Seperation Network [108] uses a similar reconstruction task to

DRCN, but use three encoders to disentangle the domain specific features from the shared fea-

tures. Two encoders are domain specific and one encoder is trained with data from both domains.

MMD is used to ensure the shared encoder has a similar distribution feature activations for both do-

mains, and a difference loss encourages the domain specific features to be orthogonal to the shared

encoder. A classification task is learned on the source domain with a combined representation from

the source specific encoder and the shared encoder. A decoder is trained to reconstruct the target

images with a combined representation of the target specific and shared encoders as input.

Predicting the transformation of input images has been used as a self-supervised task for do-

main generalisation [112, 114] and domain adaptation [109, 110]. Carlucci et al. [114] proposed a

jigsaw puzzle task, which applied to multiple source domains, improved generalisation to unseen

target domains. Input images were split into patches and the task was to predict the ordering of

the patches that would reconstruct the image. This method was extended to include the rotation

prediction task [112], where the image is rotated and the task is to predict the angle of rotation.

Self-supervised tasks are used for domain adaptation by applying the auxiliary task to unla-

belled target data [109, 110]. Sun et al. [110] applied multiple tasks to unlabelled target data, pre-

dicting: rotation orientation, image patch location and whether the image was horizontally flipped.

These self-supervised tasks were also shown to benefit adversarial training when jointly trained

for semantic segmentation. Predicting rotation orientation improved partial domain adaptation

performance [109], which combines the self-supervision objective with the adversarial training.

Xu et al. [113] found that target domains have substantially smaller norms than that of source

domains. They propose HAFN as self-supervised task which penalises the norms of the source and

the target examples being too different from a common scalar R. A large R is beneficial for domain

adaptation but can cause exploding gradients at beginning of training, therefore they propose SAFN

which incrementally increases R throughout training.

Predicting input transformations and enforcing a larger norm have been tested for partial do-
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main adaptation [109, 113]. This is the setting where the source domain has classes not present

in the target. Both works show, in this setting, that their methods outperform standard closed-set

domain adaptation approaches [4, 73]. Bucci et al. [109] showed their approach can be combined

with Partial Adversarial Domain Adaptation (PADA) [115] for further improvements. Partial do-

main adaptation is revisited in Sec. 2.3.7.

Our work in Chapter 4 proposes a self-supervised task for video that exploits the fact videos

have multiple modalities. This improves domain adaptation performance for fine-grained action

recognition and is evaluated on both the closed-set and open-set domain adaptation scenarios.

2.3.6 Self-training and Pseudo-labelling

Many Unsupervised Domain Adaptation (UDA) methods [6, 105, 106, 116, 117, 118] take in-

spiration from the semi-supervised learning literature [119, 120, 121] to adapt classifiers with

unlabelled data from the target domain. A common approach is to enforce the cluster assumption

on unlabelled data [119], with UDA methods ensuring that such that target examples should not

lie near decision boundaries [105, 106, 116, 118]. This is achieved through entropy minimization

on each unlabelled target example, xt:

Le = σ(xt)log(σ(F (G(xt))) (2.10)

F and G are the classifier and features extractor of a CNN, respectively, and σ is the softmax

function, determining a probability distribution over the class labels.

Lipschitz Constraints

To enforce the cluster assumption further, Virtual Adversarial Domain Adapation (VADA) [116]

provides a locally-Lipschitz constraint on the classifier. They use Virtual Adversarial Training [120]
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to ensure that the classifier response, F (x), to input x, does not change with a small additive per-

turbation, x + r, by minimizing the KL-divergence between F (x) and F (x + r). The adversarial

perturbation, r, is found by maximising the KL-divergence, such that the classifier response with

the perturbed input is closer to a decision boundary. Drop to Adapt [117] uses a similar approach

to provide a locally-Lipschitz constraint but uses an adversarial dropout mask instead of a pertur-

bation.

Self-ensembling

Entropy minimization can also be considerd as a pseudo-labelling approach, where the network

predictions of the current training step are used as labels to train the network. However, these

predictions, or pseudo-labels, will be very noisy and error prone. Ensemble based approaches

in semi-supervised learning [121, 122], reduce the noise of these labels by averaging predic-

tions [122], or the models weights [121], over training steps. French et al. [6] (Fig. 2.4) used

an ensemble approach for UDA. A student network is trained jointly on the source classification

task and unlabelled data from the target domain. A teacher network, with a rolling average of the

student’s weights, generates pseudo-labels for the unlabelled target data. An unlabelled target im-

age is passed through both the student and teacher networks, with separate augmentations, and the

mean squared error between the predictions is used as the loss to train the network. At the time,

this approach achieved state-of-the-art results on VISDA-2017 [88]. However, a class-balanced

loss was needed to ensure that label predictions were uniformly distributed over the classes during

training. In addition, the target loss was only applied to examples which the teacher classifier’s

prediction is above a threshold.

Co-Training [123] trains multiple classifiers and uses the predictions of each on unlabelled data

to train the other. Mutual Mean Teacher [118] uses this approach with ensemble based learning

for domain adaptation. Two sets of teacher-student networks are used, which similar to French
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Figure 2.4: Self-ensembling for adaptation. A teacher network containing a rolling average of the
students weights is used to provide pseudo-labels to train the student. Figure taken from [6]

et al. [6], the teacher’s weights are a rolling average of the student. However, this model takes

advantage of co-training where the teacher model is used to train the student model of the different

teacher-student network.

Pseudo-label Assignment

Alternatively to entropy minimisation and ensemble methods, many methods use an iterative ap-

proach to domain adaptation [85, 104, 124, 125, 126, 127, 128]. First the target inputs are pseudo-

labelled, this is to provide an estimate of the ground-truth label for a target instance. Next the model

is optimised on target data to refine target label predictions with pseudo-labels [85, 104, 126, 129]

and/or the class conditional structures are aligned across domains [124, 126, 128, 130].

Classifier predictions can be used to generate pseudo-labels. These soft-labels which are de-

fined as the classifier score or posterior probabilities of classes [6, 118], or more commonly, a

hard-label associated with the argmax of the classifier score [85, 104, 126, 127, 128, 129, 130].

Sener et al. [124] created a labelling function in feature space, where the target instances inherit

labels from individual source instances. They adopt the largest margin nearest neighbour, which

enforces a margin such that the similarity between a source point and the nearest target instance of

the same class is larger than the similarity to the target instance of a different class.

Alternatively, the centroids of source features of a single class have been used for pseudo-

labelling [125]. A target instance is assigned the pseudo-label as the class of the nearest centroid.
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Kang et al. [130] used spherical k-means to adapt the source centroids to better fit the target

distribution before generating pseudo-labels. K-means is first initialised with means of the source

centroids, with k equal to the number of source classes. Target examples are pseudo-labelled by

the class associated with the nearest centroid of the k-means classifier.

Deep clustering approaches have been used to produce pseudo-labels [127]. This allows the

generation of labels that consider both the classifier predictions and a prior label distribution. Aux-

iliary labels are found by minimising the KL divergence between an auxiliary label distribution

and a predictive distribution (classification scores). A prior distribution is enforced by an addi-

tional entropy term in the loss function that encourages label assignments to be uniform across

class labels.

Pseudo-label Selection

To reduce the impact of incorrectly labelled pseudo-labels, a subset of reliable pseudo-labels can

be selected for training. Approaches use the consensus of multiple classifiers [104], a threshold on

the classification score [85], or distance from prototypical examples in feature space [125].

Asymetric Tri-training [104] exploits the consensus of two independently trained classifiers, F1

and F2 to select pseudo-labels. Pseudo-labelled target samples are selected if the predictions of F1

and F2 agree. In addition, the classification score of the prediction must exceed a threshold from

a least one of the classifiers in order for the target sample to be selected. Training is conducted in

an iterative procedure of labelling target data and training with those labels. This allows different

target data to be selected in each iteration, with more accurate labels as the classifiers are adapted

to target data. Progressive Modality Cooperation [129] uses the consensus of two classifiers trained

on different modalities, e.g. RGB and Depth, if the classifier predictions from both modalities both

agree on a pseudo-label with high classification scores, the target instance is selected for training.

The iCAN model [85] selects target pseudo-labels if they are both domain invariant and infor-
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mative to the classification task. A pseudo-labelled target example is considered informative if the

classifier prediction is above a threshold. Their threshold is adaptive requiring more informative

examples throughout training by considering the average accuracy on the source domain. A Do-

main discriminator is used to determine if the target example is domain invariant. Target examples

are selected if the domain discriminators logits are close to 0.5, i.e. if the network cannot predict

the domain the examples is sampled from, signifying the example is aligned with the source.

Distanced based metrics are used in feature space to select pseudo-labels [125]. Progressive

Feature Alignment (PFA) [125] pseudo-labels target instances based on the distance to the nearest

source prototype. Prototypes are calculated as the centroid of source feature activations in each

class. To reduce the impact from wrongly labelled pseudo-labels they propose and an Easy-to-Hard

sampling strategy which trains with target videos close to the source prototypes before training with

those further away. Gu et al. [128] modeled the distribution of distances to the class centroids as a

gaussian-uniform distribution, using the posterior probability to determine a confidence associated

with labelling target instances. The target loss used to train a classifier with the pseudo-label is

weighted by the confidence of the labelling.

Target Refinement

The optimal classifier for the source domain may not be optimal for the target domain. Some works

do not share the classifier weights between the source and the target domain such that the classifier

is refined for the target [104, 116, 130, 131, 132]. Asymmetric Tri-training [104] trains a classifier

only on pseudo-labelled target data, with separate weights from the classifier trained with source

data. The source classifier is used to generate pseudo-labels. The target classifier is initialised from

the classifier trained on the source.

Domain adaptation assumes that the source and the target domains are still highly related, so

the optimal target classifier, fT (x), should only differ from the source classifier, fS(x), by a small
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perturbation,∇f(x) [116, 131]. Residual Transfer Network (RTN) [131] models this as a residual

function: fS(x) = fT (x) +∇f(x). The residual is learnt by the source classification loss on fS(x)

and an entropy loss with target data on fT (x).

Dirt-t [116] refined a classifier that has been pre-trained on the source domain. Entropy min-

imisation on target data is used to refine the classifier to the target domain over a series of training

steps. In order to avoid decision boundaries moving too far, they propose a regulariser that limits

the ability of the classifier response to change significantly between training iterations. This is

achieved by the KL divergence between the current classifier response and the classifier response

before the gradient descent step.

Class Conditional Alignment

As opposed to self-training, pseudo-labelling is used to align the class conditional distributions

across both domains. UDA assumes there is no access to target labels during training, therefore

pseudo-labels are used as an estimate for class labels. Once the target domain is pseudo-labelled,

the distribution of each class across the source and the target domains can be aligned.

Given that the target domain is pseudo-labelled, triplet losses can be used between source and

target examples to align domains [124]. For each source instance, the distance to the nearest target

instance of the same class in minimized, whilst the distance to the nearest target instance of a

differing class is maximised. Alternatively, the centroids from each class can be used to align

domains [125, 126, 133]. Using the centroids reduces the impact of incorrectly labelled pseudo-

labels. To overcome the impact of small mini-batch sizes on the estimate of the centroids for

each domain, MSTN [133] maintains a rolling average of the centroid feature representation that

is updated each training step.

Recent approaches have aligned centroids in RKHS using the Maximum Mean Discrepancy

(MMD) measure per class [130, 134]. Transferable Prototypical Networks (TPN) [134] uses MMD
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between three kernel mean embeddings calculated from the source instances, target instances and

the mean of both source and target instances combined. The Contrastive Domain Discepancy

(CDD) measure [130] aims to minimise the intra-class domain discrepancy and maximise the inter-

class domain discrepancy. This metric minimises MMD between the source and target distributions

of the same class and maximises MMD between all source and target distributions of differing

classes.

Weighted Maximum Mean Discrepancy [132] uses an instance re-weighting approach to cor-

rect for the different label proportions in source and target domain. First the target domain is

pseudo-labelled and the proportions of source and target instances per class are calculated. The

source instances are weighted such that the density of the re-weighted source and target distribu-

tions match. Along with the other conditional alignment approaches using pseudo-labels [125,

125, 126, 126, 133, 133], optimisation iterates between pseudo-labelling and alignment.

Conditional alignment methods using adversarial training strategies [84, 86] were discussed

in Sec. 2.3.3. These used the classification scores directly as soft-labels, to approximate the joint

distribution [84] or as a weighting for multiple domain discriminators [86]. Joint distribution

alignment approaches using MMD [74] or optimal transport [77] were discussed in Sec. 2.3.2.

Target Clustering

Other works aim to maintain discriminative structures in target domain during alignment of classes

by clustering the target domain. Instances assigned to the same cluster are encouraged to be closer

in feature space [91, 126, 130]. Approaches cluster the target domain to produce pseudo-labels that

better fit target data [130], and encourage target pseudo-labels to be closer in feature space [91,

126]. Deng et al. [126] used a margin loss to encourage target examples assigned to the same

pseudo-label to be close in feature space whilst maximising the distance between target examples

with differing labels. This ensured the class conditional structures are clearer before aligning
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domains by minimising the Euclidean distance between source and target centroids of the same

class. Tang et al. [127] encouraged pseudo-labelled target instances to move closer to their class

centroid. A softmax distribution over the distances to all class centroids is obtained. The entropy

of this distribution was minimised to encourage each class to have tight clusters. A similar loss is

used on the source domain to produce tight clusters for source features.

In Chapter 6, we consider aligning the class conditional structures for domain adaptation on

a highly imbalanced dataset, using a pseudo-labelling approach. The approaches outlined in this

section do not test on highly imbalanced datasets that occur during uncurated data collection. Some

works in this section have also exploited that those datasets have near uniform class distribution

to avoid degenerative solutions [6, 91]. Instead, our work proposes a prototype based sampling

strategy to increase the diversity of class assignments, as well as a robust confidence measure to

select reliable pseudo-labels.

2.3.7 Beyond Closed-set Domain Adaptation

The works in the previous section have assumed that the same set of labels are used in the source

and target, i.e. Ys 6= Y t. However, in more realistic scenarios this will not be the case. There could

be labels present in the source that are not in the target (partial domain adaptation), or labels in the

target that are not in the source (open-set domain adaptation). Other tasks, such as cross-modal

retrieval, often evaluate on labels not seen during training. This section focuses on methods for

classification and the following section will address domain adaptation for retrieval.

Adversarial training has been adapted to the partial domain adaptation setting by weighting the

source losses differently for each source class [115, 135]. A weight vector, γ, approximates the

likelihood that each source class is present in the target domain, and is determined by the label

predictions, ŷti from all n target examples. Both the domain discriminator and task classification

losses are on source examples from the kth class are weighted by γk. Partial Adversarial Domain
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Adaptation (PADA) [115] calculates the weighting for the kth source class as the mean of the

target classification scores: γk = 1
n

∑n
i=1 ŷ

t
ik, and is updated every 500 training steps. To eval-

uate their method they form partial domain adaption benchmarks by adapting closed-set domain

adaptation benchmarks. Less than half of the classes from target domains are used, but keeping

all classes from the source domains. They showed large improvements on Office-31 [60] and

Office-Home [78] datasets, and smaller improvements on ImageNet-to-Caltech [115] and VISDA-

2017 [88]. Their method benefits from the fact these datasets are unnaturally balanced. With a

large class imbalance, minority classes would be unfairly down-weighted despite their presence in

the target domain.

In open set adaptation the target domain can contain labels unseen in the source [136, 137].

In these works a new class is defined for all unknown classes in the target. The difficulty is to

learn a decision boundary for this unknown class without labelled data. The seminal work [136]

proposed to map the source to the target by assigning each target example to a class, including the

unknown class. A cost is defined for assigning a class as the distance of a target example to the

centroid of source examples for that class. The unknown class has a fixed cost which is a hyper-

parameter to be tuned. The assignments can be found as a linear optimisation to find an assignment

to minimise total cost, subject at least one target example must be assigned to each class and all

target examples must be assigned a class or unknown class. This work was extended by Saito et

al. [137] for adversarial alignment. The classifier was to trained to predict class labels on source

inputs, but the unknown class for target instances with a probability t, where 0 < t < 1. Similar to

ReverseGrad [4] a Gradient Reversal Layer (GRL) was placed between the feature extractor and the

classifier, so the feature extractor attempts to maximise the loss on target instances. Note that the

GRL was only activated for target instances. If the classifier predicts a target instance as unknown

with probability less than t, the feature extractor will align the target instance with a source class.

If the classifier predicts the target instance as unknown with a probability greater than t, the feature

extractor is optimised to maximise the unknown class probability. To evaluate their methods the
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Office-31 dataset [60] was adapted for open-set classification, all classes were present in the target

but only 10 were present in the source. Both methods [136, 137] outperformed solutions tailored

for closed-set recognition [4] with the adversarial approach to open set recognition showing the

largest improvements.

More recent work have aimed a creating a solution that will work in both the partial and open-

set domain adaptation setting, where there is no prior information on the label space of the target

domain [138, 139]. Universal Domain Adaptation finds separate weights for target and source

instances. Each weight represents the probability that a given example is from a shared class.

A domain classifier is trained to distinguish between source and target examples. If the domain

of the source or target instance is predicted incorrectly, the instance is more likely to belong to

a shared class and is given a higher weighting. At test time, if the classifier response does not

exceed a threshold, then the instance is predicted as the unknown class. DANCE [139] proposed

to cluster target examples with Neighbourhood Clustering (NC), which brings visually similar

target examples closer together without specifying the number of classes in the target domain. NC

minimises the entropy over a distribution of similarities of one target example to all other target

examples and source class means. This encourages target examples to increase the similarity to the

few target examples likely from the same class, by move further away other examples. To compute

the similarity between target examples, all target examples cannot be used in one forward pass

through their network, therefore they store features in a memory bank.

Self-supervised methods discussed in Sec. 2.3.5 were shown to improve partial domain adap-

tation, as well as the conditional alignment approach MADA [86] in Sec. 2.3.3. The multi-modal

self-supervised objective in Chapter 4 is evaluated in an open-set domain adaptation setting where

the source and target can contain nouns and verbs that are not shared between the domains. In

Chapter 6 a conditional alignment approach is used for open-set adaptation in the context of cross-

modal retrieval.
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2.4 Conclusion

This chapter provided the definition of a domain shift, introduced the problem of unsupervised

domain adaptation, and offers related work to all technical chapters in this thesis. In particular,

Sec 2.3 provided an extensive review of domain adaptation works applied to deep learning ar-

chitectures, which outperform the shallow-based approaches described in Sec 2.2. Our work in

Chapter 4 extends adversarial training, described in Sec 2.3.3, to video based architectures, and

incorporates a self-supervised objective for domain adaptation, with inspiration from works de-

scribed in Sec 2.3.5. Our method is compared to baselines provided in Sec 2.3.2 and Sec 2.3.4.

Chapter 6 explores class conditional alignment for text-to-video retreival, with inspiration from

works in Sec. 2.3.6. Similar to the works in Sec 2.3.7, all technical chapters evaluate in an open-

set setting. The next chapter provides a review of video understanding datasets and models, before

outlining the related work for domain adaptation in video.
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Chapter 3

Literature on Action Understanding in

Video

An action is what someone does as they interact with their environment, in order to achieve a

desired goal. These describe movement through space, e.g. walking, running and gestures, as

well as interactions with object and humans, e.g. kick football, wash frying pan and shake hands.

Course-grained actions or activities describe movement over long periods of time, such as playing

football, braiding hair and making a salad, whereas fine-grained actions describe movement or

object interactions that last a matter of seconds, e.g. kick football, pick up hair brush, cut tomato.

Fig. 3.1 visualises several actions in video datasets, which lie on the spectrum from fine-grained to

course-grained.

In addition to the coarseness of the visual representation of actions, descriptions can vary in

their level of detail. Fig. 3.2 shows different possible descriptions for a single fine-grained ac-

tion. A less detailed description, add salt, could describe a large number of different fine-grained

actions, e.g. grinding salt into pan, pouring salt into pan, whereas the space of possible videos

reduces with more detail. The different descriptions also arise from the ambiguity of verbs, as
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Playing Chello

Pizza Tossing

Brush Hair

Archery

Cut In

Slice

Take Plate Stir Milk

Squeeze Lemon Dry Hands

e.g. MPII Cooking, EPIC-KITCHENS, Charades, Breakfast e.g. HMDB, UCF-101, ActivityNet, Kinetics

Coarse-grainedFine-grained

Figure 3.1: Visualisation of fine-grained and coarse-grained actions

many verbs can be used to describe the same action.

A variety of datasets exist for action understanding with different levels of granularity and de-

scriptions of actions (Sec. 3.1). Key action understanding datasets are highlighted in Sec. 3.1, with

a focus on describing the biases within the datasets. This is followed by a more in-depth discus-

sion of coarse fine-grained action understanding datasets, explaining that the unscripted nature of

dataset collection leads to a large location bias. This will provide better context of fine-grained

action understanding, and highlight the need for domain adaptation research for this problem.

Action recognition models predict the class belonging to a video (Sec. 3.2). To improve action

recognition performance on videos from a different domain to those used during training, domain

adaptation methods have been tailored for video (Sec. 3.3). Sections 3.2 and 3.3 provide related

work for Chapters 4 and 5, where we explore domain adaptation for action recognition. Sec. 3.2 is

used to provide an overview of the different architectures available for video. Sec. 3.2.3 and 3.2.5

are most relevant to Chapter 4 as these outline multi-modal architectures and self-supervision for

video. The remaining sub sections in Sec. 3.2 are generic for video, which provide context for
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add salt

pour salt into pan
sprinkle salt into pan

season water

More Detailed

Less Detailed

Figure 3.2: Fine-grained actions can be described using different level of granularity

all technical chapters. A comprehensive comparison of domain adaptation literature for action

recognition is provided in Sec. 3.3.

Other tasks utilise free-form descriptions of actions. Cross-modal retrieval methods aim to

retrieve video depicting actions that are semantically related to a free-from textual query, or vice-

versa (Sec. 3.4). Few domain adaptation works have addressed the problem of cross-modal re-

trieval, where the captioned videos during training are not from the same domain as the videos

used for retrieval (Sec. 3.5). Sections 3.4 and. 3.5 provide related work for Chapter 6 where we

explore domain adaptation for cross-modal retrieval.

3.1 Datasets for Action Understanding

This section summarises the different datasets for modelling actions in video. First, several coarse-

grained action recognition datasets that provided key breakthroughs for video understanding are

discussed (Sec. 3.1.1). This is followed by a comparison between fine-grained action recognition

datasets, with a emphasis on the different dataset collection strategies (Sec. 3.1.2). Lastly, sev-

eral key datasets that include textual descriptions of actions instead of action labels are discussed
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(Sec. 3.1.3).

3.1.1 Coarse-grained Action Recognition

The earliest datasets for action recognition were captured in controlled conditions, with very little

camera motion and background clutter, from a fixed viewpoint [140, 141, 142]. Actors performed

basic activities [140] (e.g. walking, running, jogging) with little variation of how they were per-

formed. To create datasets more indicative of real world scenarios, videos were collected from

sports broadcasts [143], movies [144] and YouTube [145]. This increased the diversity of record-

ing conditions and intra-class variability of the activities, however, the datasets were still small

with only 10-12 action classes. The following datasets (UCF-101 [25], HMDB51 [146], Activi-

tyNet [147] and Kinetics [26]) allowed significant breakthroughs for action recognition by scaling

course-grained datasets to a large number of videos and classes:

UCF-101 [25] contains unconstrained videos collected from YouTube. Videos have cluttered

backgrounds, occlusions, camera motion and a variety of different lighting conditions and

camera viewpoints. Unlike previous datasets [144] that used movie clips to increase the di-

versity of actions, most videos are not performed by actors and contain a mix of videos that

are shot by amateurs and professionals. The dataset contains 101 classes, adding an addi-

tional 51 classes ontop of previously collected datasets collected by the authors [145, 148].

Along with HMDB [146], these datasets were the primary benchmark for action recognition

for many years.

The authors grouped classes into 5 main categories: Human-Object Interaction, Body-Motion

Only, Human-Human Interaction, Playing Musical Instruments and Sports, however, many

actions can be recognised based on their appearance without any motion information. For

example, the detection of a piano in an image is sufficient to recognise the action: Playing

Piano. Without any motion information, a 2D-CNN trained on RGB images can achieve
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over 70% on the dataset [18]. There is a strong environmental bias in the dataset. The pres-

ence of a river or snow would be sufficient to classify Rowing or Skiing activities. Masking

out humans in the video with a black box can achieve 47% accuracy on the dataset [34],

despite only using background features from the scene.

HMDB51 [146] contains videos from 51 classes collected from movies and online sources. Ac-

tions are less environment specific than UCF-101 and focus on more generic activities de-

scribing human movement. Classes are grouped into five main categories: General Fa-

cial Actions, General Body Movements, Body Movements with Object Interaction and Body

Movements for Human Interaction. In addition, actions were not pre-determined before data

collection. For annotation, students were asked to watch videos and annotate any segment

where there was a single non-ambiguous human action exceeding a minimum quality stan-

dard.

ActivityNet [147] collected videos from YouTube, searching for a pre-determined taxonomy of

activity classes. The aim was to ensure that the dataset contains a diverse set of action that

are more representative of every day life. Activities are described in 4 layer hierarchy, with

203 activity classes in the lowest level. The top level activities are: Personal Care, Eat-

ing and Drinking, Household, Caring and Helping, Working, Socializing. and Leisure and

Sports and Exercises. Amazon Mechanical Turk was used to ensure that videos selected from

YouTube contained an activity, and were later asked to annotate temporal bounds. On aver-

age dataset collection produced 1.4 activities per video, therefore they proposed benchmarks

that go beyond trimmed activity recognition. They define untrimmed activity recognition

as the task of predicting the activity without the start and end times available, and action

detection as the task of predicting the start and end-times of all activities in an untrimmed

video.
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Kinetics [26] also collected videos from YouTube, but on a larger scale. The initial dataset con-

tained 400 action classes and over 15 times as many videos as the previous largest action

recognition dataset with manual annotation, ActivityNet. This dataset was intended for train-

ing large-scale deep learning architectures, to provide similar performance gains for action

recognition as ImageNet did for image recognition. To date, Kinetics-400 and the extension

of the dataset, Kinetics-700 [149], are the go-to datasets for evaluating video architectures.

Despite the large dataset collection, there is a strong bias towards visual features. Li et

al. [35] showed that Kinetics has a large bias towards the appearance of objects, scenes and

people. This bias was greater than both HMDB51 and UCF101, and slightly more than

ActivityNet. The score determined visual bias by considering the performance of a linear

classifier trained on images features from off-the-shelf, object, scene and person attribute

detectors.

3.1.2 Fine-grained Action Recognition

Exploiting internet databases, such as YouTube, is not suitable for collecting fine-grained actions,

as the meta-data attached to videos that describe the contents of the video are often too course-

grained. The camera setup from online databases is also inappropriate for many applications, e.g.

the majority of online content is taken from a third person perspective, that will be of little benefit

to egocentric applications.

Compared to course-grained datasets, collecting and annotating fine-grained actions requires

a large annotation effort. Figure 3.3 shows the recent surge in large-scale fine-grained action

datasets. Two approaches have attempted to achieve scalability: crowd-sourcing scripted ac-

tions [7, 8, 9], and long-term collections of natural interactions in homes [11, 15, 41]. While

the latter offers more realistic videos, many actions are collected in only a few environments.

For datasets with natural interactions, EPIC-KITCHENS [10] is the largest, with the most
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Figure 3.3: Fine-grained action datasets [7, 8, 9, 10, 11, 12, 13, 14, 15], x-axis: number of action
segments per environment (ape), y-axis: dataset size divided by ape. EPIC-Kitchens [10] offers
the largest ape relative to its size.

diverse number of environments. Despite this attempt to scale to large number of diverse actions,

there is still a strong environmental bias as the dataset only contains 37 different participants and

45 locations.

Crowd-sourcing

Crowd-sourcing platforms, such as Amazon Mechanical Turk (AMT), can be used to generate

videos of scripted actions. A set of actions are pre-determined and AMT workers are asked to

record themselves act out the actions. Note that actions must be able to be performed by the

general public, therefore crowd sourcing may be insufficient for a number tasks, such as operating

scientific or military machinery.

Charades [8] was the first dataset to use crowd-sourcing to generate both labels and videos. AMT

workers acted out house-hold activities from scripts written by a different set of AMT work-

ers. Scripts were generated from a set of verbs and nouns, selected by analysing movie

scripts from house-hold scenes. The most common actions (verb-preposition-noun triples)
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in the scripts were grouped into 157 action classes, and workers annotated the temporal

bounds for actions present in the videos. In total, 267 workers generated 10,000 videos from

their own homes, with an average duration 30 seconds per video. On average, there are 6.8

actions per video, each lasting 12.8 seconds.

Charades-Ego [9] uses the scripts from Charades [8] to crowd-source 4000 videos of paired first

and third person footage. Each video is on average 31.2 seconds long, with an alignment

error between first person and third person of 1.2 seconds. Participants were asked to hold

a camera to their forehead, or improvise their own head mount, therefore many actions are

unnatural as the actors use one hand. The dataset contains 68,536 actions from the same 157

classes as Charades.

Something-Something uses a similar approach to Charades [8] for dataset collection. Their

dataset is much larger and more fine-grained, but less natural than Charades, with work-

ers acting a single object interaction, e.g. spilling smth onto smth and opening smth. The

dataset focuses on learning verbs from videos, with all nouns replaced with smth in the an-

notation. In total, 1133 workers generated 108,500 videos. The average duration of a videos

were 4 seconds.

Towards Unscripted Actions

In order to collect footage of natural actions, participants are filmed over longer periods of time. All

natural interactions between the participants and their environment are observed over a recording

period. This comes at a cost, as the lack of scripting increases the annotation effort. It is expen-

sive to exhaustively annotate a large number of short actions, as well as their temporal bounds.

Some datasets collected video from a fixed camera [12, 13], while others use an egocentric view-

point to provide a clear viewpoint of object interactions. Often a single lab controlled environ-

ment [13, 14, 15, 31] is used to collect videos, although some datasets have increased the diversity
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of scenes by collecting data in participants homes [10, 11, 12, 30].

Many datasets collect videos in a single lab controlled environment [13, 14, 15, 31]:

GTEA Gaze [31] recorded unscripted activities during meal preparation from 14 different partici-

pants. However, the environment consisted of a single kitchen table and the food and objects

were constrained to 30 different kinds. They collected 94 unique actions, however due to

the long-tailed distribution of unscripted activities, they only considered the 25 actions that

occur multiple times in the training sequences and at least once in test.

EGTEA+ [14] includes unscripted actions from 32 participants from 7 meal preparation tasks:

American Breakfast, Turkey Sandwich, Cheese Burger, Greek Salad, Pizza, Pasta Salad, and

Afternoon Snack. Filming took place in a single kitchen, and natural actions were annotated

with approximately 200 different verbs, e.g. putting, pouring, flipping, dividing, etc. Videos

were taken from a egocentric viewpoint with SMI eye-tracking glasses, producing around 29

hours of video footage.

50-Salads [13] recorded 27 participants preparing two mixed salads from a wall mounted camera

above the same counter-top. Only the participant’s hands and arms are visible in the videos.

Annotations consists of three activities (cut and mix ingredients, prepare dressing, serve

salad), broken down into 17 fine-grained actions (e.g. peel cucumber, cut cheese, add salt).

MPII-Cooking 2 [15] recorded 30 participants preparing a single meal, starting from a clean and

empty kitchen. Eight different third person viewpoints are available for most videos. An-

notations consists of 59 composite activities (e.g. preparing onion) broken down into 67

fine-grained actions (e.g. move, cut, stir) paired with manipulated objects (e.g. pan, onion,

knife). Scripts from recipe books were used to obtain the taxonomy of composite activities,

but this collected independently from the collection of videos.

Some datasets have attempted to scale datasets to multiple environments by recording in partici-
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pants homes [10, 11, 12, 30]:

Activities of Daily Living (ADL) [11] collected house-hold actions from a chest-mounted cam-

era, across 20 participants in their own homes. Participants were asked to record 30 min-

utes of uninterrupted morning activity, which contain some of the 18 pre-determined action

classes. Examples include: making coffee, brushing teeth, watching tv, laundry, using com-

puter. The actions are more visually distinct and less fine-grained than other datasets [12,

13, 14, 15, 31, 41], and lasted on average 100 seconds.

Breakfast [12] recorded 52 participants in 18 different kitchens. Videos contain footage from 10

cooking activities (e.g. preparing coffee, fruit salad or scrambled eggs), annotated with fine-

grained actions (e.g. pour milk, take plate, crack egg). Footage is taken from a third person

viewpoint from different positions in each kitchen. Compared to other datasets with a fixed

viewpoint [13, 15], the actions are less visible with more occlusions.

EPIC-KITCHENS [10, 30] is the largest dataset of unscripted, natural actions. The initial dataset,

EPIC-KITCHENS-55 [30], collected videos from 32 participants in their own homes. Un-

like other datasets of natural actions [11, 12, 31], activities were not specified in advance. All

household activities were recorded that occurred in a three-day recording period, including

laundry, washing-up and cooking. 45 hours of videos were collected from a head-mounted

GoPro at full-HD.

Annotations used a ‘live commentary’ strategy, where participants re-watched their videos

and described fine-grained actions as they happened, in an audio file. Live commentary

encouraged annotators to densely annotate each video, while providing a rough time-stamp

for each action. In order to produce accurate annotations, participants described actions

in their native language. Amazon Mechanical Turk was used to transcribe audio files into

textual narrations and to label start and end-times of each action. Verbs and nouns in the

transcriptions were then parsed and grouped into verb and noun classes.

The extension, EPIC-KITCHENS-100 [10], added 55 hours of footage, from 16 of partici-
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pants in the original dataset collection and 5 new participants. This was collected two-years

later, with a different GoPro version, and half of the original participants had changed home.

This produces a domain gap between the original footage and the extension. Chapter 5

outlines the Unsupervised Domain Adaptation Challenge for the dataset.

In total EPIC-KITCHENS-100, contains 90K labelled actions, across 97 verb and 300 noun

classes.

3.1.3 Description Datasets

Instead of a single action class, some datasets contain free-form textual description of actions.

These can be used for a variety of tasks, including video captioning and text-to-video retrieval.

Most datasets obtain videos by querying the YouTube on a specific topic. The videos are

segmented into short clips depicting an action or activity, and a textual caption is paired with

the video clip. For example, YouCook2 [150] contains cooking videos collected from YouTube.

Videos are split into clips depicting the procedures (a series of fine-grained actions) used to create

a meal, and each clip is annotated with sentence (e.g. add a bit of Worcestershire sauce to mayon-

naise and spread it over the bread.). Other popular datasets used to evaluate cross-modal retrieval

tasks include MSR-VTT [151], which contains videos from more general categories, e.g. vehicles,

sports and TV shows, and HowTo100M [152] which contains instructional videos. HowTo100M

transcribes speech in instructional videos to generate textual captions, allowing the dataset to be

significantly larger than other description datasets (170x more videos than MSR-VTT). However,

the annotations are weakly aligned with the video, and the action described may not be present in

the video. Despite this, models trained on this datasets can generalise well to other datasets. Learn-

ing a cross-modal retrieval model on HowTo100M and evaluating on YouCook2 outperforms the

same model trained on YouCook2. Note that there is little domain shift between YouCook2 and

HowTo100M, as both contain cooking vidoes collected from YouTube, and some videos are com-
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mon to both datasets.

Other description datasets utilise videos from action recognition datasets. TACoS [153] and

Charades-STA [154] attach sentence level descriptions to a subset of videos from MPII-Cooking2 [153]

and Charades [8], respectively. EPIC-KITCHENS-100 [10] collected annotations by asking partic-

ipants to narrate their videos. These narrations have been used as a companion text for cross-modal

retrieval tasks. Chapter 6 uses the domain shift present in EPIC-KITCHENS-100 and the text nar-

rations to evaluate our proposed domain adaptation strategy for text-to-video retrieval.

3.2 Action Recognition Models

Action recognition is the task of assigning a class label to what someone is doing in a video. His-

torically, action recognition relied on hand-crafted features to represent salient regions of the video

useful for detecting actions (Sec. 3.2.1). Due to the success of deep learning for image classifica-

tion [69], handcrafted features were replaced with Convolutional Neural Networks (CNN) which

learn features jointly with the action classification task. Two approaches were used to include mo-

tion information into CNNs: extending convolutions over the temporal dimension (Sec. 3.2.2) or

with a consensus of networks trained on RGB and optical flow displacement vectors (Sec. 3.2.3).

These approaches were combined with consensus of multiple frames throughout the video to model

longer temporal structures (Sec. 3.2.4). In the absence of labelled data, temporal and multi-modal

properties of video are exploited in self-supervised objectives representations suited for action

recognition (Sec. 3.2.5).

Section 3.2.1 provides an historical background for action recognition before deep learning.

Sec. 3.2.2, Sec. 3.2.3, Sec. 3.2.4 outline models
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3.2.1 Handcrafted Features for Action Recognition

Historically, action recognition consisted of a pipeline of distinct stages. First, local features de-

scribing salient regions of a video are extracted [155, 156, 157, 158, 159], and encoded to create a

fixed length descriptor of the video [160, 161]. A learning algorithm, such as an SVM, is trained

on these descriptors to find decision boundaries separating different actions. This section provides

an overview of feature extraction and encoding methods for action recognition. Later sections will

consider deep learning approaches that model all stages of the pipeline using a neural network.

Feature Extraction

Initial works extended interest point detectors to the temporal dimension to detect salient regions

in a video [155, 156, 157]. The seminal work, Space Time Interest Points (STIP) [155] adapts the

Harris corner detector method to include temporal information, detecting regions with significant

changes in pixel intensity across time, as well as spatially. This captures salient regions that are

invariant to translation, rotation and illumination changes, which also have a non-constant motion

across the video. Other detectors have been proposed that considered the second order derivatives

of pixel intensities [157], and the use of separate filters for spatial and temporal dimensions to

increase the number of detected interest points [156].

Descriptors are used to specify the motion and appearance information at each interest point.

Optical flow is commonly used to capture motion information, which describes the apparent mo-

tion between frames. Laptev et al. [162] detected interest points using STIP and compute descrip-

tors over multiple spatial and temporal scales. For each scale, a histogram of orientated gradients

(HoG) and optical flow (HoF) are computed over a 3D volume, around the detected point to de-

scribe appearance and motion information, respectively. Klaser et al. [163] generalised HoG to 3D,

computing a histogram of the gradients with respect to both the spatial and temporal dimensions.

This captured motion information without the expensive computational cost of optical flow.
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Later action recognition methods used dense representations to describe a video [158, 159,

164]. Wang et al. [164] extracted features at regular spatial-temporal intervals instead of interest

points. This improved action recognition performance on UCF-sports [143] and Hollywood2 [144]

datasets, over extracting features only at key-point detection [155, 156, 157]. They also show that

HoGHoF [162] features outperform 3D-HoG [163] on these datasets.

Dense Trajectories (DT) [158] use optical flow to track densely sampled points through 15

frames of a video. Multiple descriptors, HoGHoF [162] and MBH [165], were computed along the

trajectories, instead of a fixed 3D volume to account for the change in spatial locations as an object

moves. They re-purpose the MBH descriptor for action recognition, which captures the changes

in motion of the optical flow field. This is computed as the histogram of gradients of the optical

flow field, and reduces the effect of background motion. MBH was the best performing descrip-

tor on all evaluated datasets (KTH, YouTube, HollyWood2 and UCF-sports), showing improved

performance with all descriptors combined with the DT.

Improved Dense Trajectories (iDT) [159] corrects for camera motion when computing dense

trajectories. The vectors found by matching SURF [70] features across frames, as well as vectors

of the optical flow field are used to provide correspondence between frames. RANSAC is then

used to warp the optical flow field, suppressing the camera motion. This improved the quality

of the descriptors, and trajectories could be removed that were similar to the camera motion. The

performance of the HoF [162] descriptor was improved most by their method, as the warped optical

flow field is less affected by camera motion.

Feature Encoding

Commonly, an SVM is used as the learning algorithm to find decision boundaries between actions

in feature space, but this requires a fixed length input. Feature encoding methods extract a fixed

length descriptor by clustering the videos descriptors into groups. The collection of the groups is
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Figure 3.4: Different options to combine temporal information into a CNN. Figure taken from [16]

called a visual codebook and each group is refered to as a visual word. The majority of action

recognition works [158, 162, 163] used the Visual Bag of Features [160] (BoF), which stores the

number of occurrences of visual words in local regions of the image. The codebook is found by

clustering the data into k visual words using k-means. Each local discriptor is assigned the closed

visual word, and a histogram of the word occurrences creates the encoded feature descriptor. Im-

proved Dense Trajectories [159] achieved increased performance using Fisher vectors [161], which

fits a Gaussian Mixture Model (GMM) to find visual words. The gradient of the log-likelihood of

the GMM is used to represent an image. This captures the 1st and 2nd order statistics of the

distribution of local features around visual words. Fisher vectors [166] require a much smaller

codebook than BoF [162], increasing computational efficiency, and the embedded descriptor can

be trained with a linear SVM, whereas BoF benefited from a non-linear SVM to separate actions.

The downside is that visual words produced by Fisher vectors are much larger in size than BoF.

3.2.2 Spatio-temporal Neural Networks

Karpathy et al. [16] explored how to include temporal information into the AlexNet [69] archi-

tecture used for image recognition (Fig 3.4). They proposed three strategies: early, late and slow
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fusion. Early fusion modifies the filters of the first convolutional layer to span the entire temporal

dimension as well channel dimension. Late fusion combines the activations from two single-frame

networks spaced 15 frames apart, which are fed into a fully connected layer. Slow-fusion extends

all convolutional layers to convolve across-space and time. Early fusion resulted in a worse perfor-

mance than the single frame architecture and late fusion provided similar performance to the single

frame architecture. Slow-fusion showed a small improvement over the single-frame architecture,

highlighting the benefit of fusing temporal information gradually. However, all methods still did

not utilise the temporal dimension effectively, and the slow-fusion model was not competitive with

traditional methods using iDTs [167].

C3D [168] shows that deeper 3D convolutional architectures can be competitive with the best

performing methods using iDTs [167]. This uses eight convolutional layers with zero padding to

preserve the size of the temporal dimension in higher layers of the network. In comparison, the

slow fusion model proposed by Karpathy et al. loses all temporal information by the third convo-

lutional layer. The work also experiments with different kernel sizes for the temporal dimension.

They show that using a kernel size of three for both the spatial size and temporal depth of the kernel

achieves the best performance. C3D improves on the slow fusion model of Karpathy et al. by 20%.

Their qualitative results show that the architecture first focuses on the appearance information for

the first few frames and then focuses on the salient motion.

Long-term Temporal Convolution (LTC) [169] increases the number of frames used as input,

beyond the 16 frames used by C3D. In order to keep a similar network complexity, the spatial

resolution of the input image was reduced. Increasing the input temporal dimension from 16 to

60 increased action recognition performance on UCF-101 by 8%. Increasing spatial resolution

showed improvements on UCF-101, however the improvement gain was only significant with net-

works using few frames as input.

To exploit advances in image-based architectures, Carreira et al. [26] inflated all convolutional

and pooling layer of a 2D-CNNs to three dimensions. This has the added benefit of using ImageNet
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pretrained models for video architectures by repeatedly copying the ImageNet weights across the

temporal dimension. They inflate the Inception-v1 architecture, which uses less than half the

parameters as C3D and substantially improved performance on UCF-101 [25], HMDB [146] and

Kinetics [26].

A large improvement for deep learning action recognition models was the development of

large-scale video datasets. Karpathy et al. [16] created the Sport-1M dataset, annotating YouTube

videos with labels automatically generated from the textual metadata. Action recognition perfor-

mance of their slow-fusion method on UCF-101 was improved by over 20% by pretraining on

Sports-1M, than training from scratch. Carreira et al. [26] proposed the Kinetics dataset for the

purpose of providing a large-scale dataset for pretraining video architectures. Although smaller in

size than Sports-1M, the manual annotation used in Kinetics provided cleaner labels, resulting in

improved performance when fine-tuning on UCF-101 [25] and HMDB [146].

Several works have reduced the computational complexity of 3D-CNNs by factorising convolu-

tions. 3D convolutions can be separated into a 2D convolution to learn spatial information followed

by a 1D convolution over time [170, 171]. The performance of factorised convolutions [171] is

comparable to I3D [26], but greatly reduces the number of parameters. Channel Separated Net-

work [172] factorises out the spacio-temporal interactions from the channel interactions. A 3D

convolution is applied to each channel dimension separately, followed by a point-wise, 1x1x1

convolution to learn interactions over the channels. This reduces computational complexity and

increases the performance compared to 3D convolutions. To increase performance further, design

choices of 3D-CNNs can be optimised through an architecture search [28]. Parameters of the input

video (temporal duration, frame rate and spatial resolution), and the number of convolutions layers

and filters are optimised for maximum performance on Kinetics [26], for a given computation cost

budget.

Convolutional layers have a small receptive field, so are unable to capture long-rage dependen-

cies of pixels across both spatial and temporal dimensions. The Non-local Block [17] (Fig. 3.5)
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Figure 3.5: The Non-local Block [17] uses self-attention to model the interactions between all
pixels in a video. Figure taken from [17].

uses self-attention [173] to model the interactions between all input features. The self-attention of

video x at input position, xi, is a weighted average over a representation learnt at all positions in

the video, xj . The similarity score between xi and xj determines which regions are given a higher

weighting in the output. Multiple instances of the Non-local block are inserted between 3D con-

volutional layers, increasing the performance of I3D on Charades [8] and Kinetics [26]. Recent

architectures [29] replaced all convolutional layers with self-attention, showing competitive re-

sults with state-of-the-art on Kinetics [26], EPIC-KITCHENS [10] and Something-Something [7]

datasets.

3.2.3 Two-stream Architectures

An alternative approach to learning spatio-temporal features is to use a two-stream approach [18,

19, 20, 27, 174, 175, 176]. One network is trained on RGB images to learn appearence information,

and another is trained on optical flow to learn motion information. Each stream is trained separately

and the class scores are combined during testing. This overcomes the high computational cost of
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Figure 3.6: The two-stream network fuses predictions from RGB and optical flow streams. Figure
taken from [18].

3D convolutions and the inability of early convolutional architectures to fully exploit the temporal

dimension [16]. Modern 3D convolutional architectures, such as I3D [26], benefit from using a

two-stream approach, fusing scores from a separate 3D CNN learned on RGB and optical flow.

The first two-stream approach was proposed by Simonyan et al. [18] (Fig. 3.6). The hori-

zontal and vertical displacement vectors from optical flow produced by 10 consecutive frames are

stacked and used as input. This provided a 7% improvement over using a single optical flow frame.

The authors also experiment with stacking dense trajectories [158] but this provided worse action

recognition accuracy on UCF-101 [25]. One benefit of using 2D CNNs is that ImageNet pretrain-

ing can be used for the spatial stream, however, the optical flow stream needs to be trained on

video data. To increase the amount of video training data, they train the optical flow stream on

both HMDB and UCF-101, using a separate classification head for each dataset. This improved

the classification performance on HMDB by 9%. Finally, they show that the optical flow stream

outperformed the RGB stream on both UCF-101 and HMDB, but the fusion of both streams pro-

vided the best performance. Their method outperformed Improved Dense Trajectories (iDT) [159],

and C3D [168] required additional iDT features in order to outperform the two-stream approach.
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Wang et al. [19] showed that using ImageNet pretraining on the optical-flow stream can im-

prove performance. The weights of the first layer were replaced by the average of the weights

across the RGB channels. Additional regularisation strategies were used including dropout, batch-

normalisation and augmentation strategies, such as corner cropping and scale jittering. The Ima-

geNet pretraining of flow and additional regularisation strategies improved two-stream fusion by

2%.

Rather than combining classification scores from optical flow and RGB streams at test-time,

Feichtenhofer et al. explored how to fuse the two streams during training [174]. Two fusion

approaches improved performance on UCF-101: concatenating convolutional feature maps from

each stream followed by a projection to reduce dimentionality, and simply summing the softmax

predictions during training. They showed that only concatenating, summing, or taking the maxi-

mum activation across feature maps leads to worse results than combining predictions at test time.

Late fusion of the last convolutional layer achieved best performance, and the earlier fusing takes

place, the lower the action recognition accuracy. The final architecture performs a 3D convolu-

tion and pooling operation in the fusion layer to include additional temporal information during

training.

The performance of the RGB stream can be improved by including motion information learnt

in optical flow stream at different layers. Feichtenhofer et al. [175] exploited a two-stream ResNet

architecture [177] for this purpose. The ResNet architecture is a stack of blocks, which uses

convolutions to learn a residual, f(x), between the input, x, and output, x + f(x). For each

layer, the residual of the RGB stream is multiplied with the residual of the optical flow stream.

Using residual information was necessary as combining feature maps led to poor performance. For

fusing information, multiplication outperformed summation, and only the RGB stream benefited

from optical flow and not vice-versa. This method improved action recognition accuracy over the

standard two-stream architecture [18] by 6% on UCF-101 and 9% on HMDB.

Two-stream approaches using different resolutions of input videos improve action recognition
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performance. Karpathy [16] trained 2D-CNNs on low and high resolution images, fusing the clas-

sification scores during training. The high resolution CNN takes in the center crop of the images,

mirroring the fovea in the human eye, where a small central portion of visual perception is observed

more clearly. Slow-Fast [27] uses a two-stream approach with different temporal resolutions. A

slow-stream acts on video sequence sampled at a low-frame rate, to capture appearance infor-

mation, and the fast-stream takes high-frame rate sequences to capture motion information. The

fast-stream replaces the optical flow stream in previous works [18, 175], which contains smaller

number of feature maps in the convolutional layers to reduce the number of paramters and compu-

tational complexity. Similar to Feichtenhofer et al. [175], lateral connections propagate residuals

of the fast-stream to the slow-stream. Fusing stream information achieved a 2% improvement of

Kinetics and the use of the fast-stream, instead of optical flow, improved performance by 1.7%.

Audio can be used as a third modality alongside RGB and optical flow. In the Temporal Bind-

ing Network [23], each modality is trained with a separate 2D-CNN backbone, and fused by con-

catenating convolutional features from each stream followed by a multi-layer perceptron to learn

interactions between the streams. The audio of an action may not be temporally aligned with the

motion, e.g. the motion of ‘putting down a cup’ occurs before the sound of the cup hitting the

table. Therefore modalities are sampled from a video with different temporal offsets. The addition

of audio improved action recognition performance on EPIC-KITCHENS-55 [41] by 4% and 2%

for the seen and unseen participants, respectively.

Our work in Chapter 4 adapts a multi-modal architecture for unsupervised domain adapta-

tion, proposing a self-supervision task to exploit the differing robustness of optical flow and RGB

modalities to environmental changes. This can be applied to any action recognition architecture

that late fuses feature representations from multiple modalities.
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Figure 3.7: Temporal Segment Network classify actions using a consensus of frame-level predic-
tions from the start, middle and end of a video. Figure taken from [19]

3.2.4 Temporal Consensus of Frames

To better model longer temporal structures, the consensus of multiple frames can be used during

training. Temporal Segment Network (TSN) [19] (Fig. 3.7) splits the video into three segments of

equal size, representing the beginning, middle and end of the video. A frame is sampled randomly

from each segment, and passed through the CNN to produce classification scores for individual

frames. The frame-level scores are averaged to produce a video-level prediction, which is used to

train the network end-to-end with a softmax cross-entropy loss. At test time, logits from 25 frames,

spaced equally throughout the video, are averaged. The method uses a two-stream approach, train-

ing optical flow and RGB streams separately, fusing video-level predictions at test time. The

consensus strategy provided a 1.5% improvement over original two-stream network [18].

Several works use recurrent networks to model interactions between frames in long temporal

structures [178, 179]. A 2D-CNN is connected to the input of an LSTM, and trained end-to-end

with a sequence of frames. Yue et al. [179] show that max-pooling CNN features across multiple

frames achieves competitive performance to that of an LSTM. TSN, which has no information on
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Figure 3.8: The Temporal Relation Network [20] models the interaction between different combi-
nations of frames. Figure taken from [20].

the ordering of frames, outperformed both approaches.

Temporal Relation Network (TRN) [20] (Fig. 3.8) extends TSN [19] with a learnable pool-

ing strategy that considers the temporal ordering of frames. CNN features from a subset of m

frames are sorted in temporal order and fed into an MLP to produce a multi-frame representation.

This considers the interaction between pairs of frames (m = 2), up-to the interaction between all

N sampled frames (m = N ). An m-frame relation, Tm, aggregates the representations from all

possible combinations of m frames, and the final classification score is the sum of all frame rela-

tions,
∑N

m=2 Tm. TRN showed comparable performance to TSN on activity recognition datasets,

UCF-101 [25] and Kinetics [26], and a substantial improvement on fine-grained action recogni-

tion datasets, Something-Something [7] and Charades [26]. This shows that temporal reasoning is

more important for recognising fine-grained actions than activities which have a larger bias toward

visual appearance.

The Temporal Shift Module (TSM) [176] uses the sampling strategy of TSN [19] to approxi-

mate 3D convolution with the same computational cost as 2D convolution. Before each convolu-

tion operation, part of the channel dimension is shifted forward and backwards in time. Therefore,
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feature activations for a given frame, Xt, at time t have some channel information replaced with

activation at times t − 1 and t + 1. This mirrors a convolution of size 3 across time, where the

output at time t, Yt = w1Xt−1 + w2Xt + w3Xt+1, is a weighted summation of the inputs over

different time-steps, where w1, w2, w3 are weights. To reduce data movement between time-steps,

only one eighth of the channels are shifted, increasing latency compared to the standard 2D-CNN

by only 3%. The authors noticed improved performance shifting the channels inside the residual

of a ResNet based architecture, this improved learning of spatial features as the original channel

information is preserved in the skip connections. TSM improved upon TSN on Kinetics [26] by

3.5%, and a larger 31.3% improvement on the fine-grained action recognition dataset, Something-

Something [7]. TSM required half the number of floating point operations compare to I3D [26],

and outperformed both TRN [20] and I3D on Something-Something.

3.2.5 Self-supervision

Self-supervision in video is used as a pretext task to learn visual representations of videos without

label information. This learnt representation should be easily adaptable for fine-tuning on down-

stream action recognition tasks, as the representation learnt through self-supervision disentangles

many explanatory factors of the videos. Self-supervised approaches for video exploit the temporal

and multi-modal properties of videos to generate ‘free’ labels to train representations.

Temporal Self-supervision

Shuffling the order of frames has been used to generate self-supervised tasks [180, 181, 182, 183].

Misra et al. [180] sampled three frames from a video and trained a network to predict when they

are in the correct temporal order. This pre-text task improves performance on UCF-101, when

fine-tuning with labelled data, over random initialisation. Odd-One-Out Network [181] trains a

network to detect which of three video sequences contains shuffled frames. To encode temporal
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information of each input video, they use the sum of the differences of RGB frames as input. This

improves down-stream action performance on UCF-101 compared to Misra et al. [180], due to the

more difficult classification task and the encoding of motion information.

Other works predict the order of shuffled frames [182, 183]. Ahsan et al. [183] splited video

frames across multiple time-steps into patches and trained a network to predict the order which

recreates the video. This requires the network to learn both spatial and temporal information.

All patches are passed through a 2D-CNN and fed into an MLP to solve the self-supervised task.

All of the above approaches use the AlexNet [69] as their 2D-CNN backbone, but fine-tuning

performance on UCF-101 does not outperform ImageNet pretraining.

Xu et al. [182] trained a 3D-CNN back-bone to predict the order of shuffled sequences of

frames. Fine-tuning a 3D-CNN on UCF-101 from scratch already outperforms the previous ap-

proaches [180, 181, 183]. Predicting the order of frames as a pre-text task increases performance

over random initialisation by 16% on UCF-101.

Reversing videos in time has been used to produce self-supervised tasks [184]. While some

time-reversed videos produce videos of valid actions (swipe lift reversed is swipe right), many ac-

tions in forward-time are irreversible and their reversed videos defy the laws of physics (e.g. crack

egg) [185] . Wei et al. [184] exploited this asymmetry of time by training a network to distinguish

forward-time videos from reversed-time videos. Their network predicts if a video is reversed from

a stack of optical flow frames as a pre-text task and is fine-tuned on action recognition datasets [25].

Artifacts from video encoding were removed prior to training, so the network doesn’t exploit the

cues to determine if a video is reversed. Their method improves action recognition accuracy on

UCF-101 [25] by 2% over ImageNet pretraining.
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Figure 3.9: The temporal alignment between audio and visual inputs is used to create self-
supervised representations. Figure taken from [21].

Multi-modal Self-supervision

Videos contain a variety of different modalities synchronised in time: gyroscopes and accelerator

sensors attached to robots [186], optical flow displacement vectors extracted from videos [187,

188], and audio [21, 189, 190]. Self-supervised objectives exploit the temporal correspondence

between modalities to learn video representations beneficial for action recognition.

The majority of multi-modal self-supervised approaches utilise the temporal correspondence

between audio and RGB [21, 189, 190]. The seminal work [21] (Fig. 3.9), proposed a binary

classification task which predicts if a paired image and audio input is sampled from the same, or a

different video. The visual and audio modalities are processed by separate CNNs and the features

from each modality are concatenated and fed into an MLP to predict temporal correspondence.

They show that the visual CNN produces spatial activations at pixel location of objects that produce

sound, despite complex backgrounds and scene clutter.

Several works use misaligned audio and visual modalities in a single video for a self-supervised

objective [189, 190]. Owens et al. [189] shifted the audio in half of the videos from AudioSet [191]
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by 2-5.8 seconds, and a 3D-CNN was trained to predict if the visual and audio modalities are

synchronised. A separate stream of five convolutional layers processes the audio waveform before

fusing into the video architecture after the second convolution. Their model is fine-tuned on UCF-

101, improving action recognition performance over I3D [26] trained on RGB from scratch by

14%, and randomly sampling of audio from different videos [21] by 3%. In addition, their method

outperforms self-supervised tasks that consider the temporal order of frames [180, 181, 182, 183].

Korbar et al. [190] used a curriculum learning strategy to learn the temporal correspondence

of modalities. For the first 50 epochs, a CNN is trained to align easy negatives, where audio is

taken from different videos to that of the visual modality. Later in training, 25% of mis-aligned

videos were hard negatives, where audio is sampled from the same video with a temporal offset

greater than 0.5 seconds. Hard-negatives improved the performance of their network fine-tuned on

UCF-101 by 9%. However, the performance decreased if hard-negatives were included from the

start of training. They use contrastive learning to embed audio and visual information processed

by a separate CNNs. When modalities are synchronised, the distance between the output of each

CNN is minimised, otherwise the distance is maximised. The binary classifier used in previous

work [21, 189] would not converge in the authors setup. Their method improves upon Owens et

al. [189] by 5% on UCF-101.

Optical flow has been used as a self-supervised task for pretraining video models [187, 188].

Wang et al. [187] trained a 3D CNN on a sequence of frames to predict a series of labels describing

motion and appearance. The derivative of optical flow was used to generate motion labels, and the

change in color at spatial positions across the frames was used to generate appearance labels.

Pretraining to predict motion information produced greater action recognition performance than

predicting appearance labels when fine-tuning on UCF-101. Predicting the optical flow field has

been applied as self-supervised task for first person action recognition [188]. A 2D CNN was first

trained to regress to the optical flow displacement vectors, before fine-tuning for action recognition

on the same dataset. The self-supervised task showed a 3.5% improvement on action recognition
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on EGTEA+ [14] over training from scratch.

Inspired by the audio-visual correspondence objective [21, 189], Chapter 4 proposes a tempo-

ral correspondence between multiple modalities (optical flow, RGB and audio) as a self-supervised

task for unsupervised domain adaptation. Ours is the first work to show the benefit of self-

supervision for domain adaptation in video.

3.3 Domain Adaptation for Action Recognition

Of the several domain shifts of using videos for action understanding, cross-viewpoint (or viewpoint-

invariant) action recognition has seen the most research attention [9, 192, 193, 194, 195, 196, 197].

These works focus on adapting to the geometric transformations of a camera but do little to com-

bat other shifts, like changes in environment. Works utilise supervisory signals such as skeleton

or pose [194, 196] and corresponding frames from multiple viewpoints [9, 192, 193, 197]. For

domain shifts other than viewpoint (e.g. changes in environment), corresponding frames are not

available in different domains.

Before 2018, few works had conducted UDA for action recognition without the use of skeleton

data or corresponding images across the domains. All used shallow models to align source and

target distributions of handcrafted features [36, 198, 199, 200]. It has only been recently that UDA

has seen significant research attention [1, 2, 37, 38, 42, 43, 44, 129]. Research has looked into

how to align the temporal dynamics of video [1, 2] and how to avoid uninformative background

frames [37, 43]. Other works have used self-supervised objectives for domain adaptation [43, 44]

and considered the multiple modalities of video for domain alignment [42, 44, 129]

Domain Adaptation approaches used either 3D convolutional architectures [2], or the interac-

tion between frames [1], to model the temporal dynamics. Jamal et al. [2] compared deep domain

adaptation to shallow-based UDA methods to align features from C3D [168]. For shallow based

approaches, they use Subspace Alignment (SA) [56] and Geodesic Flow Kernel (GFK) [3], on a
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stack of features extracted from C3D. Their deep domain alignment approach (DAAA), uses ad-

versarial training with gradient reversal layers [4] to align the activations of the final convolutional

layer of C3D. They tested their methods on cross-dataset adaptation on 5 coarse-grained action

recognition datasets: UCF50 [148], Olympics [201], KTH [140], MSR [202] and SonyCam [2].

Adversarial training outperforms SA and GFK on all benchmarks. The majority of UDA methods

for action recognition have since used adversarial training to align domains [1, 37, 43, 129].

Temporal Attentive Alignment (TA3N) [1] aligns temporal dynamics by placing multiple do-

main discriminators within the Temporal Relation Network (TRN) [20]. A domain discriminator

acts on each frame-relation, learning to distinguish between domains at different temporal scales

Additional domain discriminators act on the pooled video-level features and the input spatial fea-

tures. Video-level features are a weighted summation of frame-relations. Higher weighting is

given to frame-relations with low-entropy domain predictions, thus focusing video-level alignment

on frame-relations that have not been aligned. They show that both the alignment of the frame-

relations and the domain attention mechanism improve domain adaptation results on 5 benchmarks

of course grained action recognition. This includes three proposed in their work, using the datasets:

UCF-101 [25], HMDB [146], Kinetics [26] and GamePlay [1].

Several works used an attention mechanism to focus on informative frames for action recogni-

tion [37, 43]. Choi et al. [43] learnt a weighted summation of individual frame predictions, thus

giving a higher weight to informative frames for action recognition and less to background frames.

Temporal Co-attention Network (TCoN) [37] proposes to attend to informative frames which have

features in common to both source and target domains. To select informative frames, they use

self-attention to give higher weightings to frames with high similarity to other frames in the same

video. To select common features between domains, frame representations with high similarity to

all frames in the other domain are selected. The resulting co-attention is the product of both the

cross-domain similarity and self-attention scores. TCoN improves on TA3N [1] on various domain

adaptation benchmarks for coarse-grained action recognition, and proposes a new benchmark for
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gesture recognition using the Jester dataset [203].

Self-supervised approaches have been effective to align source and target domains [43]. These

learn a self-supervised task jointly on both source and target domains, while jointly optimising

the source classification task. Choi et al. [43] randomly shuffled the order of video clips in video

sequences, and predicted the correct temporal order of frames. This method improves on TA3N [1]

and TCoN [37] on the domain adaptation benchmark using coarse grained action recognition

datasets, UCF-101 [25] and HMDB [146]. Chapter 4 is the first work to explore self-supervision

for domain adaptation in video, which uses the temporal correspondence of multiple modalities.

Multiple modalities (RGB, Audio and Flow) have been used for domain adaptation [42, 44,

129]. Early approaches use RGB only [1, 2], or reported results on both RGB and Flow [37], how-

ever, the modalities are aligned independently and only fused during inference. The first approach

using multiple modalities for domain adaptation is presented in Chapter 4. This learns the temporal

correspondence between modalities as a self-supervised objective, jointly trained on both domains.

Spacio-temporal Contrastive Domain Adaptation (STCDA) [42] uses a contrastive loss to en-

sure that the distance between optical flow and RGB representations is minimised in feature space.

They apply the loss to representations of both modalities on individual clips (I3D or BNInception

features from 16 frames), and the pooled video representations aggregating 3 clips using a GRU.

In addition, they align the class means of the video representations, in source and target domains,

in Reproducing Kernel Hilbert Space. This is similar to the Contrastive Domain Discrepancy met-

ric (CDD) [130] in Sec. 2.3.6. Similarly to CDD, they obtain class labels for target videos by

clustering target videos with K-means, using the cluster assignment as pseudo-labels. Both target

pseudo-labelling and alignment are applied separately for each modality. Their method improves

on ours by 0.9% on our EPIC-KITCHENS-55 domain adaptation benchmark. Zhang et al. [129]

used a pseudo-labelling approach to train an action classification task with optical flow and RGB

target data. Pseudo-labels are generated for target data from the classification scores. Target data

is only selected for training if the classification scores from both RGB and flow exceed a threshold
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and predict the same class. Their domain adaptation strategy is evaluated on coarse grained action

recognition dataset, UCF-101 [25] HMDB [146] and Olympics [201], outperforming TA3N [1] by

a large margin.

RNA-Net [44] matches the feature norm of the audio and RGB to generalise to new domains.

This is similar to Xu et al. [113], which aims to match the feature norm between domains. The

RGB stream is an I3D network and the Audio stream is BNInception. They evaluate on our EPIC-

KITCHENS-55 domain adaptation benchmark (Chapter 4), for both domain generalisation and

adaptation. Matching feature norms improves single source domain generalisation by 4%, where

there is no access to target data during training. They extend their approach to domain adaptation,

matching the feature norms of both source and unlabelled target data. Their method provides a

5.8% improvement over training only on the source domain classification task. They compare to

our self-supervised loss in Chapter 4, tested on RGB and Audio, and outperform it by 1.3%. Our

method outperforms theirs when the optical flow modality is included.

Our work in Chapters 4 and 5 provide the only domain adaptation benchmarks for first-person

action recognition. Chapter 4 considers the domain gap due to changes in environment, and Chap-

ter 5 considers the domain gap that occurs during long-term collection of footage. Table 3.1 com-

pares the size of different domain adaptation benchmarks for action recognition datasets. With the

exception of Kinetics-Gameplay, our benchmarks provide the largest domain adaptation bench-

marks for action recognition.

3.4 Cross-modal Retrieval Models

In retrieval problems, a query (e.g. a single text, image or video instance) is used to retrieve

instances from a gallery (e.g. a database of texts, images or videos) which are semantically relevant

to the query. Cross-modal retrieval is the case were the queries and the gallery set contain different

modalities. For example, Chapter 6 focuses on text-to-video retrieval, which uses textual queries
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Paper Domain Pairs No. Instances No. Classes

Domain 1 Domain 2 Domain 1 Domain 2

Sultani et al. [36]
UCF50 ←→ HMDB 671 500 5

UCF50 ←→ Olympic 600 315 6

Jamal et al. [2]

MSR −→ SonyCam 202 90 3

KTH ←→ MSR 765 202 3

KTH −→ SonyCam 1530 180 6

Chen et al. [1]
UCF101 ←→ HMDB 2009 1200 12

Kinetics −→ Gameplay 46624 3374 30

Pan et al. [37] Jester (S) −→ Jester (T) N/A N/A N/A

Choi et al. [38] Kinetics −→ NECDrone 2942 1500 7

MM-SADA

(Chapter 4)

D2 ←→ D1 3245 1978 8

D3 ←→ D1 4871 1978 8

D3 ←→ D2 4871 3245 8

EPIC-KITCHENS-100

(Chapter 5)
2018 −→ 2020 16115 26115 3369

Table 3.1: Action recognition domain adaptation datasets. Key: −→ Domain Adaptation is evalu-
ated in one direction,←→ Domains are used as both source and target.

on a gallery of videos. To achieve this, the similarity between different texts and videos is learnt

on a large corpus of captioned videos.

Learning a joint embedding space is a common approach to perform text-to-video retrieval [22,
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152, 204, 205, 206, 207, 208, 209, 210, 211]. This projects both video and text into a shared

space to obtain compatible representations. Videos related to a given text query can be retrieved

efficiently via a similarity metric in the embedding space, and descriptors from the gallery set

can be pre-computed before any textual queries. Some recent approaches predict the semantically

between text and video using a transformer to model complex cross-modal interactions [212, 213],

however these are computationally expensive and inefficient when scaling to large gallery sets.

3.4.1 Learning an Embedding

To learn an embedding space, ranking losses are used to enforce alignment of text and videos.

These ensure that all videos that are semantically related to a textual query (positives) are closer in

space than those that are not relevant (negatives). The triplet loss, Eq. 3.1, is most commonly used

ranking loss in the literature [204, 205, 206, 207, 209], which acts on an anchor, a (a single text or

video instance), and sampled positive and negative instances from the other modality, b+ and b−.

The aim is to encourage the distance, d, between positive pairs (a and b+), to be greater than the

distance between negatives (a and b−), by at least a margin, γ.

H(a, b+, b−) = max(d
(
h(a), h(b+)

)
− d
(
h(a), h(b−)

)
+ γ), 0) (3.1)

Most works [204, 205, 206, 207, 209] minimise a bi-directional triplet loss which uses both text

and video as anchors: H(t, v+, v−) + H(v, t+, t−). This considers the distance of positive and

negative videos, v+ and v−, to a text anchor, t, as well as positive and negative texts, t+ and t− to

an video anchor, v.

Rather than using all possible triplets in a mini-batch, training with a single negative that is

closest to the query can improve retrieval performance [214]. This is referred to as hard negative

mining and focuses the optimisation on triplets with the most incorrect semantic structure in the

embedding space. Training with hard negatives improves text-to-video performance when training
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and evaluating on the same [209], or different datasets [204].

In order to obtain positive and negative sets, the relevancy between texts and videos in datasets

needs to be determined. Many datasets use human annotators to create textual descriptions for

videos [150, 151], or generate automatic captions from audio transcriptions of the video [152].

The captioned text is used as a single positive instance, and all other textual descriptions in the

dataset are considered negatives. Wray et al. [215] showed that defining a single text as relevant

is problematic as there will exist other text that would describe the video equally well or bet-

ter. Instead, they propose a set of non-binary relevancy metrics considering the semantic distance

between the captioned text and other texts in the dataset. One such metric (Eq. 3.2) uses the inter-

section over the union of words, w, for different parts-of-spech (i.e. verbs, nouns and adverbs), P ,

to measure the relevancy between texts, yi and yj . A weight, αp is used to trade-off different parts

of speech in the relevancy metric:

SPoS(yi, yj) =
∑
p∈P

αP
|wpi∩w

p
j |

|wpi∪w
p
j |

(3.2)

Large-scale pretraining from weakly captioned videos from online source has been shown to

have good zero-shot and performance on downstream datasets [152], however many videos are

labelled with text that is weakly related, incorrect or mis-aligned in time. This is a particular issue

for HowTo100M [152], which automatically generates text captions from speech in instructional

videos. MIL-NCE et al. [208] utilises a loss with Noise Contrastive Estimation (NCE) [216] and

multiple instance learning to handle the noisy data. The key idea is to use a bag of positive texts

instead of a single positive text for every video. Texts in the video closest in time to the ground-

truth (temporally aligned) text are chosen as additional positive examples.
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3.4.2 Representing Text

A common approach to represent words in text is to learn a word embedding, which maps words

onto a continuous space such that semantically related words are closer than those that are not

related. Word2Vec is an efficient strategy to learn word embeddings [217], which trains a feed-

forward neural network to solve a word association task on a large text corpus. Many text-to-video

retrieval methods [22, 206, 207, 208, 209, 218] use the skip-gram model [217], where the task

is to predict the surrounding words based on current word. Directions in the embedding space

produced by Word2Vec describe semantic properties of words. Therefore, learning an embedding

between Word2Vec and visual features allows retrieval of videos from unseen words not seen in the

training text corpus (zero-shot retrieval). Action2Vec [206] exploits Word2Vec to perform zero-

shot classification of verbs. They learn an embedding between features extracted from C3D [168]

and verbs encoded by Word2Vec.

To represent textual captions, word embeddings are pooled to form a text descriptors. Several

works have used Recurrent Neural Networks (RNN) [210, 218], or transformers (BERT [219]) [205]

to capture the interactions between word embddings to form textual descriptors. Burns et al. [220]

compared different pooling operations of text embeddings for cross-modal image retrieval tasks.

They showed that averaging Word2Vec embeddings performs comparably to modelling sentences

with LSTMs or using a pretrained BERT embedding. Miech et al. [208] showed max-pooling word

embeddings to represent text outperformed more complex sentence representations using RNNs or

transformers [219] for cross-modal retrieval tasks on YouCook2 [150] and MSR-VTT [151].

Various works create representations from a subset of words that provide meaningful concepts

to describe actions [22, 204, 218]. A seminal work for cross-modal video retrieval parses subject-

verb-object triplets from each text [218], with each word represented by a Word2Vec embedding.

A Recursive Neural Network combines and projects the Word2Vec embedddings into the visual-

text embedding space.
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Figure 3.10: Joint Part of Speech Embedding (JPOSE) [22] learns a separate embedding for verbs
and nouns. A final embedding is learnt from the concatenation of each part-of-speech embedding.
Figure taken from [22]

Later works learnt text representations for different parts-of-speech in the text (i.e. verbs and

nouns) [22, 204]. Representations for part-of-speech have been modeled by separate functions [22]

or as part of a hierarchical semantic graph [204], with nodes representing verbs, nouns and captions

at different layers of the graph. Unlike Xu et al. [218], these works learn a visual embedding to

align the video with different syntactic properties.

Joint Part of Speech Embedding (JPOSE) [22] (Fig. 3.10) average the Word2Vec embeddings

of individual parts-of-speech (verbs and nouns) as the input text representation. A visual and text

embedding is learnt for each part-of-speech, with triplet losses to ensure that videos and text depict-

ing the same verb, or noun, are close in space. The embedding spaces are concatenated and fed into

a final embedding which ensures modalities depicting the same action (verb-noun combinations)

are close. JPOSE is evaluated on EPIC-KITCHENS [41] and MSR-VTT [151], showing their

method improves cross-modal retrieval performance over a single embedding trained on actions.

Chapter 6 proposes a domain adaptation strategy to improve text-video retrieval performance of

JPOSE [22] on target videos from a different domain to videos used during training. This difficulty

of this task is that the text modality in the target domain is not available during training.

Chen et al. [204] modeled the text as a hierarchical semantic graph with different levels for
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nodes describing different syntactic properties: verbs, nouns phrases or the entire sentence. Edges

represent the semantic role between nodes at different levels. A Relational Graph Convolutional

Network (R-GCN) [221] projects the textual representations for each node into a text-visual em-

bedding space. This models the interactions between adjacent nodes, with some weights specific

to the semantic role. Similar to Wray et al. [22], a separate projection maps the visual features into

embedding space of nouns, verbs and captions, which is enforced using a triplet loss. The average

similarity score obtained from each embedding space is used rank textual queries to videos. They

showed improved text-video performance on MSR-VTT, compared to learning a single embedding

space for a captions.

3.4.3 Learning from Multiple Visual Experts

Many text-video retrieval works learn a separate embedding for different visual ‘experts’ [205,

207, 209, 210]. Experts can be representations of modalities (e.g. RGB, optical flow and audio)

or feature extractors recognising different visual cues (e.g. networks pretrained to detect faces,

objects or actions). Mithun et al. [210] learnt a separate embedding for embedding object features

and action features with text. The final similarity score is the sum of the scores obtained from each

embedding. Object features were extracted from a model trained on ImageNet. Action features are

a concatenation of spatio-temporal features from I3D, pretrained on Kinetics, and audio features.

Learning a separate embedding for object and action features improved text-video and video-text

retrieval performance on MSR-VTT and MSVD datasets, compared to learning a joint embedding

across all experts, or a single embedding between text and a concatenation of all visual features.

Increasing the number of visual experts improves cross-modal retrieval performance [207], but

not all visual experts/modalities are available in all videos. The Mixture of Experts (MEE) [209]

learns a similarity score between text and a varying number of visual experts (appearance, mo-

tion, audio and face descriptors). This learns a weight for each expert, based on the content of the
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caption, in addition to an embedding between text and each expert present in a training video. To

allow videos to contain a different number of modalities, the softmax is taken over the weights

of each experts present in a video. The final similarity score is then a weighted sum of the sim-

ilarity scores using the expert weights. They show that learning from captioned images from

COCO [222], which do not contain motion of audio information, improves text-video retrieval

performance of MSR-VTT[151]. Further improvements were achieved using face descriptors from

training videos that contain face detections. Instead of learning an embedding per expert, Collab-

orative Experts [207] learns an embedding for all pair-wise interactions of visual experts. Their

work is evaluated with eight visual experts, including OCR, scene and object features. They show

that both the learning of pair-wise interactions and the additional experts improve text-video re-

trieval performance on MSR-VTT. Gabeur et al. [205] extended the approach, using a transformer

to learn the interactions between all available visual experts.

3.5 Domain Adaptation for Retrieval

It is common to evaluate text-video retrieval on a gallery set of the same domain to that used during

training. Recent work has shown that learning an embedding on large-scale datasets of collecting

weakly paired videos and text provides good performance on cross-modal retrieval when evaluated

on a different target dataset [152], however, fine-tuning on the target dataset improves performance

considerably. Domain adaptation aims to improve target cross-modal retrieval performance by

leveraging the gallery set of target videos during training, without the paired textual queries. This

reduces that annotation effort of pairing textual captions with each target video.

Most works related to domain adaptation for retrieval were proposed in the context of person

re-identification where the aim is to retrieve instances of an individual across different cameras.

The gallery set used in training does not contain the same set of individuals used during testing,

therefore this is an extreme setting of the open-set domain adaptation problem (Sec. 2.3.7) where
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no labels are shared between domains. To overcome the domain shift between cameras, generative

models learnt with similarity preserving constraints learn to transfer the style between domains [96,

97, 98, 99], similar to the generative models discussed in Sec. 2.3.3, or exploit pseudo-labels

obtained by joint source and target clustering [118, 223, 224]. Different from the pseudo-labelling

methods discussed in Sec. 2.3.6, unsupervised clustering on the target domain is conducted as the

label space in the source in distinct from the target. Closer to our retrieval work in Chapter 6, some

methods use a curriculum learning paradigm to progressively adapt the retrieval space [225, 226].

In contrast to the above literature, where the retrieval task is performed within a single modality

(namely images) only few domain adaptation works have considered cross-modal retrieval [227,

228, 229]. This is where the query (e.g. text) is a different modality to that of the gallery (e.g.

images). Similarly to Person-ReID, this is an open-set domain adaptation problem as there will

be many captions in the target domain that are not present in the source, and vice-versa. Initial

work [227] learnt correlations between captions and images using a scene graph and Maximum

Mean Discrepancy (MMD) for domain alignment. However this doesn’t address the differing

class distributions in each domain as MMD does not utilise class information.

Recently, two concurrent works to ours, conduct UDA for text-to-video retrieval [228, 229].

Similar to our approach in Chapter 6, Chen et al. [228] used a pseudo-labelling strategy for do-

main alignment. Their method assigns source captions to target videos with an iterative, mutual-

exclusion selection mechanism. A contrastive margin loss is trained on these captioned target

videos to learn a cross-modal embedding on target data. In addition they preserve the knowledge

of a set of predefined concepts in the embedding space. Labels for these concepts are obtained

by the classifier response of an ImageNet pretrained model. A classifier is trained to predict these

concepts labels from the embedding space used for retrieval. This work doesn’t address the fact

that some target instances may be incorrectly labelled and should not be used for training. Our

work in Chapter 6, addresses this problem with a robust confidence measure for sampling pseudo-

labelled target videos. Liu et al. [229] avoided aligning target videos to source textual captions,
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and instead attempts to align concepts. They train two prototypical classifiers in the cross-modal

embedding space, one for the source and one for the target, where labels are found by respectively

clustering the source text and target video representations. To align domains, they maximise the

mutual information between the prototype assignments of both modalities.

3.6 Conclusion

This chapter introduced the datasets and models used in video understanding. Section 3.1 showed

that fine-grained action recognition datasets have a large bias towards few environments, highlight-

ing the need for domain adaptation methods for fine-grained action understanding. The literature

on action recognition models (Sec. 3.2 and 3.3) provides related work for Chapters 4 and 5. In

particular, Sec 3.2.5 describes multi-modal self-supervision and is re-purposed for domain adapta-

tion in Chapter 4. Sec 3.3 reviewed domain adaptation works tailored for action recognition, which

some are evaluated for fine-grained action recognition in Chapters 4 and 5, while others took inspi-

ration from our multi-modal domain adaptation strategy, proposed in Chapter 4. The literature on

cross-modal retrieval (Sec 3.4 and 3.5) provides related work for Chapter 6. In particular, Sec 3.4.2

describes the Joint Part-of-Speech Embedding model [22], which we adapt for domain adaptation

in Chapter 6.
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Chapter 4

Adapting Action Recognition Models to

New Environments

Supervised approaches rely on collecting a large number of labelled examples to train discrimi-

native models. However, due to the difficulty in collecting and annotating fine-grained actions,

many datasets collect long untrimmed sequences. Often collection occurs in a single [13, 15] or

few [8, 30] environments, with a limited number of participants and tools. This lack of diverse

examples can lead to poor generalisation in new locations.

Although significant attention has been given to deep Unsupervised Domain Adaptation (UDA)

in other vision tasks [4, 71, 73, 74, 76, 83], few works have attempted UDA for video data [1, 2],

prior to this work. Surprisingly, none have tested on videos of fine-grained actions. Additionally

all these approaches only consider video as images (i.e. RGB modality), and do not exploit the

multi-modal nature of video.

Videos are highly multi-modal providing multiple different views of the same data (e.g. ap-

pearance, audio and motion). Each modality will have differing level of robustness to domain

changes, which has not been exploited for domain adaptation. This is in contrast to self-supervised
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Figure 4.1: The proposed UDA approach for multi-modal action recognition. Improved target
domain performance is achieved via multi-modal self-supervision on source and target domains
simultaneously, jointly optimised with multiple domain discriminators, one per-modality.

approaches that have successfully utilised multiple modalities within video when labels are not

available during training [21, 189, 190]. Additionally, self-supervised tasks have been shown to

benefit domain adaptation for image classification and semantic segmentation [110, 114].

This chapter proposes the multi-modal UDA strategy, MM-SADA (Fig. 4.1), which combines

domain adversarial alignment [4], with multi-modal self-supervision, to adapt fine-grained action

recognition models to unlabelled target environments. The self-supervised objective exploits the

differing levels of robust of each modality to environmental changes, to create a more robust rep-

resentation for the domain shift. While this can generalise to a number of modalities, this work

focuses on RGB, optical flow and audio.

A detailed description of the MM-SADA is provided in Sec. 4.1, which is tested on the first

domain adaptation benchmark for fine-grained action recognition (Sec. 4.2). MM-SADA, instan-

tiated with RGB and optical flow modalities (Sec. 4.3), outperforms source-only generalisation,
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previous UDA methods for action recognition [1, 2] and alternative domain adaptation strategies

such as batch-based normalisation [101], distribution discrepancy minimisation [73] and classifier

discrepancy [5]. In addition, the self-supervised task can be applied to audio, which improves both

the recognition of actions and objects in the target environment (Sec. 4.4).

This chapter expands on our publication [40], which only considered RGB and Optical Flow,

with additional experiments with Audio (Sec. 4.4). In addition the publication only considered

closed-set domain adaptation of 8 classes, whereas this chapter extends to all verb and noun classes

in an open-set setting. We also provide more experimental results of the performance of the self-

supervised task and individual modality performance (Sec. 4.3).

4.1 Multi-modal Domain Adaptation

This section outlines the proposed action recognition domain adaptation approach: Multi-Modal

Self-Supervised Adversarial Domain Adaptation (MM-SADA). An overview of MM-SADA is pro-

vided in Fig. 4.2, visualised for action recognition using two modalities: RGB and Optical Flow.

We incorporate a self-supervision alignment classifier, C, that determines whether modalities are

sampled from the same or different actions to learn modality correspondence. This takes in the

concatenated features from both modalities, without any labels. Learning the correspondence on

source and target encourages features that generalise to both domains. Alignment of the domain

statistics is achieved by adversarial training, with a domain discriminator per modality that pre-

dicts the domain. A Gradient Reversal layer (GRL) reverses and backpropagates the gradient to

the features. Both alignment techniques are trained on source and unlabelled target data, whereas

the action classifier is only trained with labelled source data.

The next section details MM-SADA, generalised to any two or more modalities. First the prob-

lem of domain adaptation is revisited and multi-stream late fusion is outlined, before describing

the adaptation approach.
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4.1.1 Unsupervised Domain Adaptation (UDA) for Action Recognition

A domain is the distribution over the input population X and the corresponding labels Y, which

is described in more detail in Chapter 2. In this chapter, the source domain, S = {Xs, Y sDs}1,

is collected from a single recording environment, which is used to learn a representation, G(·),

over some learnt features, F (·), that minimises the empirical risk, ES[Ly(G(F (x)), y)], given

input videos with action labels {(x, y)}. The goal is to minimize the empirical risk on a target

domain, T = {X t, Y t,Dt}, which is collected in a different recording environment, such that the

distribution of videos in the source and target domains differ, Ds 6= Dt. In UDA, labels from the

target domain are not available during training, thus methods minimise both the source risk and

the distribution discrepancy between the source and target domains [46].

1A domain is defined in Chapter 2. The definition in this chapter excludes features space for clarity, as we homo-
geneous setting where feature spaces is are same for the source and target domains
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4.1.2 Multi-modal Action Recognition

When the input is multi-modal, i.e. X = (X1, · · · , XM) where Xm is the mth modality of the

input, fusion of modalities can be employed. Most commonly, late fusion is implemented, where

we sum prediction scores from modalities and backpropagate the error to all modalities, i.e.:

Ly =
∑
x∈{S}

−y logP (x) where: P (x) = σ
( M∑
m=1

Gm(Fm(xm))
)

(4.1)

where Gm is the modality’s task classifier, and Fm is the modality’s learnt feature extractor. The

consensus of modality classifiers is trained by a cross entropy loss, Ly, between the task label, y,

and the prediction, P (x). σ is defined as the softmax function. Training for classification expects

the presence of labels and thus can only be applied to the labelled source input.

4.1.3 Multi-modal Adversarial Alignment

Both generative and discriminative adversarial approaches have been proposed for bridging the

distribution discrepancy between source and target domains. Discriminative approaches are most

appropriate with high-dimensional input data present in video. Generative adversarial approaches

require a huge amount of training data and temporal dynamics are often difficult to reconstruct.

Discriminative methods train a discriminator, D(·), to predict the domain of an input (i.e. source

or target), from the learnt features, F (·). By maximising the discriminator loss, the network learns

a feature representation that is invariant to both domains.

To extend adversarial training to a multi-modal architecture, we propose to use a domain dis-

criminator per modality that penalises domain specific features from each modality’s stream. Each

separate domain discriminator, Dm, is thus used to train the modality’s feature representation Fm.

Given a binary domain label, d, indicating if an example x ∈ S or x ∈ T, the domain discriminator,
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for modality m, is defined as,

Lmd = −
∑

x∈{S,T}

d log(Dm(Fm(x))) + (1− d) log(1−Dm(Fm(x))) (4.2)

This loss is maximised with respect to the feature extractor weights,maxθFmLmd and minimized

with respect to the domain discriminators weights, minθDmLmd . θFm and θDm are the weights of

Fm and Dm, respectively.

An alternative approach would be to train a single domain discriminator on a combined rep-

resentation from both modalities. The combined representation could be the concatenation of all

modalities, or the outer product between two modalities. However, initial experiments showed

that learning a separate domain discriminator per modality was more effective for improving tar-

get action recognition performance. To benefit from multiple modalities, this chapter proposes a

multi-modal self-supervised objective, which is outlined next.

4.1.4 Multi-modal Self-supervised Alignment

Prior approaches to domain adaptation have mostly focused on images and thus have not explored

the multi-modal nature of the input data, where each of the modalities (RGB, optical flow and

audio) are robust to different environmental changes. Optical flow is robust to appearance changes

and background textures as it represents the apparent motion between frames. Some actions pro-

duce distinctive sounds that are robust to visual appearance, such as the crack in cracking an egg or

the audible click when flicking a switch or turning on a stove. For actions with a large variation in

sound and motion across participants, RGB will be more robust. For example, in the action open a

parcel, the parcel could be cut open, ripped open or neatly unfolded. The visual representation of

hands interacting with the object may be more robust than pure motion information.

Therefore, this chapter proposes a multi-modal self-supervised task to align domains by learn-
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Figure 4.3: The self-supervised classifier predict the temporal correspondence of modalities, opti-
mised over both source and target inputs.

ing from different modalities. This exploits that modalities are synchronised in time and present

in both source and target domain. Multi-modal self-supervision has been successfully exploited

as a pretraining strategy [21, 230] (Chapter 3, Sec 3.2.5). However, we show that self-supervision

for both source and target domains can also align domains. Note that the self-supervised objective

has no knowledge of which modality is more robust during training. This is advantageous as the

robustness of each modality will vary depending on the action performed in the input video, and

allows flexibility for different applications with different modalities.

The proposed approach learns the temporal correspondence between modalities as a self-

supervised binary classification task (Fig. 4.3). For positive examples, indicating that modalities

correspond, we sample modalities from the same action. These could be from the same time, or

different times within the same action. For negative examples, each modality is sampled from a

different action. The network is thus trained to determine if the modalities correspond. This is op-

timised over both domains. A self-supervised correspondence classifier head, C, is used to predict

if modalities correspond. This shares the same modality feature extractors, Fm, as the action clas-

sifier. Given a binary label defining if modalities correspond, c, for each input, x, and concatenated
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features of the multiple modalities, we calculate the multi-modal self-supervision loss as follows:

Lc = −
∑

x∈{S,T}

c logC(F 0(x), ..., FM(x)) + (1− c) log(1− C(F 0(x), ..., FM(x))) (4.3)

4.1.5 Proposed MM-SADA

The Mutli-Modal Self-Supervised Adversarial Domain Adaptation (MM-SADA) approach is de-

fined as follows. The classification loss, Ly, is jointly optimised with the adversarial and self-

supervised alignment losses. The within-modal adversarial alignment is weighted by λd, and the

multi-modal self-supervised alignment is weighted by λc. Optimising both alignment strategies

achieves benefits in matching source and target statistics and learning cross-modal relationships

transferable to the target domain.

L = Ly + λd
∑
m

Lmd + λcLc (4.4)

Note that the first loss Ly is only optimised for labelled source data, while the alignment losses

∀m : Lmd and Lc are optimised for both unlabelled source and target data.

4.2 EPIC-KITCHENS for Action Recogntion Domain Adapta-

tion

The EPIC Kitchens dataset [30] offers a unique opportunity to test domain adaptation for fine-

grained action recognition, as it is recorded in 32 environments2. Similar to previous works for

action recognition [2, 4], MM-SADA is evaluated on pairs of domains. The three largest kitchens,

in number of training action instances, are selected to form the domains. These are P01, P22, P08,

2This refers to the initial dataset collection, EPIC-KITCHENS-55 [30], and not the extension [10].
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Figure 4.4: Three kitchens from EPIC-Kitchens selected as domains to evaluate our method.

which we refer to as D1, D2 and D3, respectively (Fig. 4.4).

This chapter proposes two benchmarks for unsupervised domain adaptation, closed set domain

adaptation and open set domain adaptation.

4.2.1 Closed Set Domain Adaptation

Closed set domain adaptation analyses the performance for the 8 largest action classes: (‘put’,

‘take’, ‘open’, ‘close’, ‘wash’, ‘cut’, ‘mix’, and ‘pour’), which form 80% of the training action

segments for these domains. This ensures sufficient examples per domain and class, without bal-

ancing the training set. The label imbalance of these 8 classes is depicted in Fig. 4.5 which also

shows the differing distribution of classes between the domains. Most domain adaptation works

evaluate on balanced datasets [3, 4, 60] with few using imbalanced datasets [78]. EPIC-Kitchens

has a large class imbalance offering additional challenges for domain adaptation. The number of

action segments in each domain are specified in Table 4.1, where a segment is a labeled start/end
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Domain D1 D2 D3

Ref. EPIC Kitchen P08 P01 P22

Training Instances 1543 2495 3897

Test Instances 435 750 974

Table 4.1: Number of action segments per do-
main in the closed-set benchmark.

time, with an action label.

4.2.2 Open Set Domain Adaptation

A more challenging scenario exists when the label spaces between source and target differ, this

is referred to as Open Set Domain Adaptation. In this setting we evaluate on all verbs and nouns

collected in each domain. Note that some verbs and nouns may present in source and not in target,

and visa versa. Whilst the majority of our analysis focuses on the closed-set domain adaptation

(Sec. 4.3), we showcase that our self-supervised alignment objective can improve target perfor-

mance in the open-set scenario (Sec. 4.4).

Tables 4.2 and 4.3 show quantitative statistics for various training sets of the domains in the

open set benchmark. Approximately half of the classes are not shared between the domains, as

shown in Table 4.2 which states the Intersection over Union (IoU) between the classes in the source

and target domains. Table 4.3 states the percentage of target video clips with a class label present

in the source. While the vast majority of target videos (greater than 95%) belong to a shared verb

class, less than 85% of target videos belong to a shared noun class. Therefore, open-set domain
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adaptation will be more challenging for classification of nouns than verbs.

Target

D1 D2 D3

So
ur

ce

D1 - 0.47 0.49

D2 0.47 - 0.51

D3 0.49 0.51 -

(a) Verbs

Target

D1 D2 D3

So
ur

ce

D1 - 0.38 0.47

D2 0.38 - 0.40

D3 0.47 0.40 -

(b) Nouns

Table 4.2: IoU of verb and noun classes between domains in the open-set benchmark

Target

D1 D2 D3

So
ur

ce

D1 - 0.95 0.96

D2 0.95 - 0.98

D3 0.94 0.96 -

(a) Verbs

Target

D1 D2 D3

So
ur

ce
D1 - 0.74 0.85

D2 0.74 - 0.75

D3 0.79 0.77 -

(b) Nouns

Table 4.3: Percentage of target videos from a class in the source domain, in the open-set domain
adaptation benchmark

4.3 Closed Set Adaptation Experiments with RGB and Optical

Flow3

First, the architecture and implementation details are outlined in Sec. 4.3.1, followed by a com-

parison against baseline methods noted in Sec. 4.3.2. Results are presented in Sec. 4.3.3, with an
3Results from the CVPR paper [40]
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ablation study of the method’s components in Sec. 4.3.4 and qualitative results including feature

space visualisations are provided in Sec. 4.3.5. An analysis of the proposed domain adaptation

strategy on individual modalities, and a comparison to previous work using only RGB [1, 2], is

provided in Sec. 4.3.6.

4.3.1 Implementation Details

Architecture. The inflated 3D convolutional architecture (I3D) [26] is used as the backbone for

feature extraction, for each modality (Fm), and is trained end-to-end with action classifier, G. In

this work, F convolves over a temporal window of 16 frames from videos sampled at 30 frames per

second. For short action clips that contain less than 16 frames, temporally adjacent frames to the

action clip are used. This improves action recognition performance over the original I3D sampled

strategy, which repeats frames from the beginning of the clip. In training, a single temporal window

is randomly sampled from within the action segment each iteration. In testing, as in [19], we use

an average over 5 temporal windows, equidistant within the segment. The weights of F were

initialised from I3D pretrained on Kinetics [26]. The RGB and optical flow frames were provided

publicly [30]. The output of F is the result of the final average pooling layer of I3D, with 1024

dimensions. G is a single fully connected layer with a softmax activation to predict class labels.

Each domain discriminator Dm is composed of 2 fully connected layers with a hidden layer of

100 dimensions and a ReLU activation function. A dropout rate of 0.5 was used on the output of

F and 1e − 7 weight decay for all parameters. Batch normalisation layers are used in Fm and

are updated with target statistics for testing, as in AdaBN [101]. For data augmentation, random

crops, scale jitters and horizontal flips are applied to videos as in [19]. Image widths and heights

are scaled by {1, 0.875, 0.75} during scale jittering and are resized to 224. During testing, only

center crops are used. The self-supervised correspondence function C (Eq. 4.3) is implemented

as 2 fully connected layers of 100 dimensions and a ReLU activation function. The features from
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both modalities are concatenated along the channel dimension as input to C.

Training and Hyper-parameter Choice. Models are trained using the SGD optimiser and mo-

mentum in two stages. First the network is trained with only the classification and self supervision

losses, Ly + λcLc, at a learning rate of 1e − 2 for 3K iterations. Then, the overall loss func-

tion (Eq. 4.4) is optimised, applying the domain adversarial losses Lmd , and reducing the learning

rate to 2e− 4 for a further 6K steps. The self-supervision hyper-parameter, λc = 5 was chosen by

observing the performance on the labelled source domain only, i.e. this has not been optimised

for the target domain. Note that while training with self-supervision, half the batch contains cor-

responding modalities and the other non-corresponding modalities. Only source examples with

corresponding modalities are used to train for action classification. The domain adversarial hyper-

parameter, λd = 1, was chosen arbitrarily; we show that the results are robust to some variations

in this hyper-parameter in an ablation study. Batch size was set to 128, split equally for source and

target samples. On average, training takes 9 hours on an NVIDIA DGX-1 with 8 V100 GPUs.

4.3.2 Baselines

For all results, the top-1 target accuracy is reported, and averaged over the last 9 epochs of training

for robustness. The first baseline evaluates the impact of domain shift between source and target

by testing using a multi-modal source-only model (MM source-only), trained with no access to

unlabelled target data. Additionally, 3 baselines are proposed for unsupervised domain adaptation

as follows:

– AdaBN [101]: Batch Normalisation layers are updated with target domain statistics (see Sec 2.3.4

for further details).

– Maximum Mean Discrepancy (MMD): The multiple kernel implementation of the commonly

used domain discrepancy measure MMD is used as a baseline [73] (see Sec 2.3.2 for further

details). This directly replaces the adversarial alignment with separate discrepancy measures
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D2) D1 D3 ) D1 D1 ) D2 D3 ) D2 D1 ) D3 D2 ) D3 Mean

MM Source-only 42.5 44.3 42.0 56.3 41.2 46.5 45.5

AdaBN [101] 44.6 47.8 47.0 54.7 40.3 48.8 47.2

MMD [73] 43.1 48.3 46.6 55.2 39.2 48.5 46.8

MCD [5] 42.1 47.9 46.5 52.7 43.5 51.0 47.3

MM-SADA 48.2 N+5.7 50.9N+6.6 49.5N+7.5 56.1H-0.2 44.1N+2.9 52.7 N+6.3 50.3 N+4.8

Supervised target 62.8 62.8 71.7 71.7 74.0 74.0 69.5

Table 4.4: Top-1 accuracy on the target domain, for MM-SADA, compared to different alignment
approaches. On average, MM-SADA outperforms the source-only performance by 4.8%.

applied to individual modalities.

– Maximum Classifier Discrepancy (MCD) [5]: Alignment through classifier disagreement is

used. This uses two multi-modal classification heads as separate classifiers. The classifiers

are trained to maximise prediction disagreement on the target domain, implemented as L1 loss,

finding examples out of support from the source domain (see Sec 2.3.3 for further details). We

use a GRL to optimise the feature extractors.

Additionally, as an upper limit, we also report the supervised target domain results. This is a

model trained on labelled target data and only offers an understanding of the upper limit for these

domains. Supervised target performance is highlighted in the table to avoid confusion.

4.3.3 Comparative Results

First, the proposed method, MM-SADA, is compared to the various domain alignment techniques

in Table 4.4. This shows that MM-SADA outperforms batch-based [101] (by 3.1%), classifier

discrepancy [5] (by 3%) and discrepancy minimisation alignment [73] (by 3.5%) methods. The

improvement is consistent for all pairs of domains. Additionally, it significantly improves on the
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(a) Target D1 (b) Target D2 (c) Target D3

Figure 4.6: Accuracy on target during training epochs. Solid line is MM-SADA and dotted line is
source-only performance.

source-only baseline by up to 7.5% in 5 out of 6 cases. For a single case, D3 ) D2, all baselines

under-perform compared to source-only. MM-SADA has a slight drop (-0.2%) but outperforms

other alignment approaches. The small performance drop is revisited in the ablation study.

Figure 4.6 shows the top-1 accuracy on the target during training (solid lines) vs source-only

training without domain adaptation (dotted lines). Training without adaptation has consistently

lower accuracy, except for our failure case D3 ) D2, showing the stability and robustness of MM-

SADA during training, with minimal fluctuations due to stochastic optimisation on batches. This

is essential for UDA as no target labels can be used for early stopping.

Figure 4.7 compares the performance of individual classes for MM-SADA and source-only.

Confusion matrices are normalised with respect to the number of instances in the respective ground-

truth class. For clarity, we show three pairs of domains: D1 ) D2, D2 ) D1 and D3 ) D1. The

additional pairs of domains can be found in Appendix A.2. MM-SADA increases the recall of the

majority of actions classes, over source-only. This is shown by the more pronounced diagonal of

the confusion matrix produced by MM-SADA, and the increase in Macro-averaged Recall (AR).

Overall, the classes with the fewest examples (cut, mix and pour) show the greatest improvement

in recall, as shown in the confusion plots of D1 ) D2 and D2 ) D1. For D3 ) D1, the recall for 6
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source-only AR = 32.2

MM-SADA AR = 48.0

(a) D1)D2

source-only AR = 32.2

MM-SADA AR = 45.4

(b) D2)D1

source-only AR = 42.8

MM-SADA AR = 47.1

(c) D3)D1

Figure 4.7: Confusion matrices and Macro-averaged Recall (AR) of MM-SADA (bottom) and
source-only (top). Our method improves performance for a number of different classes.

out of 8 classes increases, with only pour and wash decreasing in performance.

4.3.4 Ablation Studies

The first ablation study assesses the impact of the different alignment losses. The second analyses

several design decisions of the self-supervised task, comparing the proposed method to: the self-

supervised objective trained only on source, and to an alternative sampling strategy to predict

temporal correspondence.
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λd λc D2 ) D1 D3 ) D1 D1 ) D2 D3 ) D2 D1 ) D3 D2 ) D3 Mean

source-only 0 0 42.5 44.3 42.0 56.3 41.2 46.5 45.5

MM-SADA (Self-Supervised only) 0 5 41.8 49.7 47.7 57.4 40.3 50.6 47.9N+2.4

MM-SADA (Adversarial only) 1 0 46.5 51.0 50.0 53.7 43.5 51.5 49.4N+3.9

MM-SADA (Adversarial only) 0.5 0 46.9 50.2 50.2 53.6 44.7 50.8 49.4N+3.9

MM-SADA 0.5 5 45.8 52.1 50.4 56.9 43.5 51.9 50.1N+4.6

MM-SADA 1 5 48.2 50.9 49.5 56.1 44.2 52.7 50.3N+4.8

Table 4.5: Ablation of MM-SADA, showing the contribution of the various loss functions (Eq 4.4).
When λd = 0, modality adversarial is not utilised. When λc = 0, self-supervision is not utilised.

Ablation on alignment losses

Table 4.5 compares the individual contributions of different components of MM-SADA. The self-

supervised component on its own gives a 2.4% improvement over no adaption. This shows that

self-supervision can learn features common to both source and target domains, adapting the model

to better fit the target domain. Importantly, this on average outperforms the three baselines in Ta-

ble 4.4. Adversarial alignment per modality gives a further 2.4% improvement as this encourages

the source and target distributions to overlap, removing domain specific features from each modal-

ity. Compared to adversarial alignment only, MM-SADA improves in 5 of the 6 domains and by

up to 3.2%.
For the single pair noted in Sec. 4.3.3, D3 ) D2, self-supervision alone outperforms source-

only and all other methods reported in Table 4.4 by 1.1%. However when combined with domain

adaptation using λd = 1, the overall performance of MM-SADA reported in Table 4.4 cannot beat

the baseline. In Table 4.5, we show that when halving the contribution of adversarial component to

λd = 0.5, MM-SADA can achieve 56.9% outperforming the source-only baseline. Therefore, self-

supervision can improve performance where marginal alignment domain adaptation techniques

fail.
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Figure 4.8: Robustness of the average top-1 accuracy over all pairs of domains for various λd on
the target domain.

Self-Supervision D2 ) D1 D3 ) D1 D1 ) D2 D3 ) D2 D1 ) D3 D2 ) D3 Mean

Sync. 44.2 50.2 48.0 54.6 41.0 49.4 47.9

Seg. Corr. 41.8 49.7 47.7 57.4 40.3 50.6 47.9

Table 4.6: Comparision of two self-supervision tasks for modality correspondence: determining
modality synchrony vs. determining whether modality samples come from the same segment. The
two approaches perform comparably on average.

Figure 4.8 plots the performance of MM-SADA as λd changes. Note that λc can be chosen by

observing the performance of self-supervision on source-domain labels, while λd requires access to

target data. We show that our approach is robust to various values of λd, with even higher accuracy

at λd = 0.75 than those reported in Table 4.5.

The choice of self-supervised task

Figure 4.9 compares training the self-supervised task jointly on both source and target domains,

to training only on the source domain. For the self-supervised task applied only to source, the

batch-normalisation layers are updated with target data to conduct a fair comparison. Figure 4.9a

shows that applying the self-supervised task jointly to both domains (BLUE), is a necessity to im-
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(a) Action accuracy on Target (b) Self-supervised objective accuracy on Target

Figure 4.9: The impact of training our self-supervised objective on both Source and Target or only
Source. Training the self-supervised objective on both domains increases the accuracy of action
recognition (a) and the self-supervised objective on Target (b).

prove target domain performance. If self-supervision is applied only to source (ORANGE), target

performance will decrease compared to only training with the action classification loss (GREEN).

Training on target data learns target specific features needed to solve the correspondence task, lead-

ing to the increase in action recognition performance. Figure 4.9b compares the accuracy of the

self-supervised task on target test data. Applying the self-supervised loss to target data improves

temporal correspondence prediction accuracy by over 10%.

Two approaches for multi-modal self-supervision are compared in Table 4.6. The first, which

has been used to report all results above, learns the correspondence of RGB and Flow within the

same action segment. This is referred as ‘Seg. Corr.’. The second learns the correspondence only

from time-synchronised RGB and Flow data, which is referred to as ‘Sync’. The two approaches

are comparable in performance overall, with no difference on average over the domain pairs. This

shows the potential to use a number of multi-modal self-supervision tasks for alignment.
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Figure 4.10: Qualitative results for MM-SADA and source-only, showing success and failure cases.

4.3.5 Qualitative Results

Figure 4.10 shows qualitative results of MM-SADA relative to source-only performance, with three

success cases and one failure case for two pairs of domains. Without adaptation, models cannot

utilise appropriate visual cues in the target environment, i.e. appearance of a chopping board,

knife, sink or tap, therefore the model fails to predict cut and wash. Both adapted and non-adapted

models struggle with ambiguous examples, where different actions are occurring using both hands.

Figure 4.11 shows the t-SNE [231] visualisation of the RGB (Fig. 4.11a) and Flow (Fig. 4.11b)

feature spaces Fm. Several observations are worth noting from this figure. First, Flow shows

higher overlap between source and target features pre-alignment (first row). This shows that Flow

is more robust to environmental changes. Second, self-supervision alone (second row) changes

the feature space by separating the features into clusters, that are potentially class-relevant. This is

most evident for D3 ) D1 on the RGB modality (second row, third column). However, alone this

feature space still shows domain gaps, particularly for RGB features. Third, MM-SADA (third

row) aligns the marginal distributions of source and target domains.

Figure 4.12 shows a video from the source domain (D3), and a video from the target domain
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(a) RGB

(b) Flow

Figure 4.11: t-SNE plots of RGB and Flow feature spaces produced by source-only, self-supervised
alignment and the proposed model, MM-SADA. Target is shown in red and source in blue. Our
method better aligns both modalities.
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Source-Only Self-Supervision MM-SADA

Source Domain Video Target Domain Video

Figure 4.12: A source and target video of the same action class, cut, highlighted in the RGB feature
space of source-only, self-supervised and MM-SADA models. The videos are better aligned with
MM-SADA.

106



4.3. CLOSED SET ADAPTATION EXPERIMENTS WITH RGB AND OPTICAL FLOW

(D1), in the feature space produced by the source only, self-supervised and MM-SADA models.

Both videos depict the same action class, cut. The change in location and objects leads to the videos

being far apart in the features space of the source-only model. However, with self-supervision the

model becomes more robust to environmental changes and the videos become closer in feature

space, but not fully aligned. By combining self-supervision with adversarial alignment, MM-

SADA, the domains are aligned. Other methods that could show the additional invariance of

MM-SADA to environmental changes is Grad-CAM [232]. Grad-CAM highlight which regions

of the image are used by the network for the action recognition task. We hypothesise the network

would focus more on pixels where actions take place, rather than the background environment.

4.3.6 Performance of individual modalities

In order to assess the performance of individual modalities, the multi-modal action classification

loss is replaced with a separate loss per modality. The classification loss for RGB and Flow are

defined in Eq. 4.5. The self-supervision loss is still applied to both modalities.

Lmy =
∑
x∈{S}

−y log σ
(
Gm(Fm(xm))

)
∀m ∈ {RGB,FLOW} (4.5)

Baselines

We compare against recent video domain adaptation methods4, DAAA [2] and TA3N [1], which

align the RGB modality. Note that DAAA directly applied adversarial training to 3D convolutions,

so it is equivalent to our adversarial-only ablation on the RGB modality. TA3N applies domain

adversarial training to parts of a Temporal Relation Module [20], which takes extracted features as

input. For a fair comparison we extract features from our I3D source-only network trained on the

RGB modality as input features for TA3N.

4An explanation of these methods is provided in Chapter 3, Sec. 3.3
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D2 ) D1 D3 ) D1 D1 ) D2 D3 ) D2 D1 ) D3 D2 ) D3 Mean

RGB source-only 33.9 39.0 38.8 46.4 34.2 37.9 38.4

RGB (AdaBN) 34.0 39.8 42.4 45.7 35.9 40.6 39.7

RGB (self-supervised-only) 37.4 43.2 45.0 50.1 40.9 45.0 43.6

DAAA / RGB (adversarial-only) 42.1 41.6 47.2 44.2 38.9 44.5 43.1

RGB (MM-SADA) 44.9 42.1 43.8 48.8 43.6 48.6 45.3

TA3N (source-only) 34.9 41.1 38.8 44.6 36.5 40.0 39.5

TA3N 35.9 43.2 41.1 43.5 40.0 41.4 40.9

Flow source-only 42.8 47.0 51.1 61.2 40.4 47.7 48.4

Flow (AdaBN) 44.4 48.6 51.6 60.6 43.3 48.0 49.4

Flow (self-supervised-only) 45.5 51.0 50.9 59.7 45.1 51.1 50.6

Flow (adversarial-only) 47.9 49.8 54.7 61.6 48.3 54.9 52.9

Flow (MM-SADA) 46.8 51.7 53.2 60.0 47.8 52.5 52.0

Table 4.7: Ablation of MM-SADA on individual modalities, comparing to previous domain adap-
tation works on RGB, TA3N [1] and DAAA [2].

Results

Table 4.7 shows the impact of the proposed method on the performance of the modalities indi-

vidually. Predictions are taken from each modality separately before late fusion. RGB, the less

robust modality, benefits most from MM-SADA, improving over source-only by 6.9% on average,

whereas Flow improves by 1.6%. The inclusion of multi-modal self-supervision provides 5.2%

and 2.2% improvements for RGB and Flow, compared to only using adversarial alignment. This

shows the benefit of employing self-supervision from multiple modalities during alignment. While

Flow is generally more robust than RGB, it still benefits from multi-modal supervision with the

less robust modality, as well as adversarial training. Future research should focus on how to effec-
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tively combine adversarial training with self-supervision, as the Flow modality with MM-SADA

has worse performance than with adversarial training alone.

Table 4.7 also compares the various components of MM-SADA to TA3N. Note that target per-

formance is larger for TA3N trained only on source (TA3N source-only) than MM-SADA trained

only on source. This is because TA3N models longer temporal structures with the temporal rela-

tion module. However, TA3N is less effective for domain adaptation with target data than both the

proposed self-supervised and adversarial alignment strategies. This shows that back-propagating

alignment losses through the feature extractor leads to better target domain performance, as TA3N

acts on extracted features. Note that the proposed self-supervised loss alone outperforms TA3N.

Given that Flow is expensive to compute, it is advantageous to avoid Flow for time critical ap-

plications with a small computation cost budget. This section showed that exploiting optical flow

greatly benefits domain adaptation for RGB. For deployment, action recognition can be performed

purely on the RGB modality, while benefiting from the robustness learned from Flow during train-

ing.

4.4 Open Set Adaptation Experiments with RGB, Optical Flow

and Audio

Audio has been shown to improve first-person action recognition due to the distinct sounds from

different actions [23]. Many sounds will also be robust to participant and environmental changes,

as actions performed with objects of similar materials will produce similar sounds. This section

shows that self-supervision with audio improves domain adaptation. In addition, experiments are

conducted in the more realistic open-set setting, where the number of classes is not restricted. The

self-supervised domain adaptation strategy improves the performance of recognising both the type

of action (verbs) and the interacted objects (nouns).
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Figure 4.13: Temporal Binding Window Network (TBN) [23] with multi-modal self-supervision.
A random modality is replaced with another instance from the batch to generate non-corresponding
examples.

4.4.1 Experimental Setup

Multi-modal self-supervision is applied to the state-of-the art multi-modal architecture, TBN [23].

Fig. 4.13 shows the experimental setup with self-supervision applied to RGB, optical flow and au-

dio. Note that the adversarial alignment component was removed due to instability during training

with the chosen architecture, which led to inconsistent results between training runs. The minimax

game played between the feature extractor and the domain discriminator is known to suffer from

instability issues [233]. There are several key changes from the architecture in Fig. 4.2: the classi-

fier, G, acts on the concatenation of all modalities, and instances of non-corresponding modalities

are sampled in feature space instead of at the input. Individual components of the architecture and

training procedure are discussed in more detail as follows:

Backbone. The backbone for each modality, F , is BN-inception. FRGB and FAudio are pre-

trained on ImageNet and F Flow is pretrained on Kinetics. This was the pretraining strategy used
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in TBN [23], which was shown to be effective. Audio is extracted as in TBN [23], creating a 2D

spectrogram centered from a 1.28 second window around the current frame. RGB and optical flow

frames were provided publicly [30]. Only the first batch normalisation layer is updated in F , the

rest are frozen and use the statistics from the pretrained models.

Action and Correspondence Classifiers. Both the action classifier G, and correspondence clas-

sifier, C, are multi-layer perceptions with hidden dimensions of size 512. They take as input a

concatenated representation from all modalities followed by a multi-layer perception. G produces

125 logits for verbs and 352 logits of nouns. C is a binary classifier.

Random Modality Replacement. In order to generate non-corresponding examples, a random

modality is replaced by another instance in the mini-batch. Replacement is only applied to half

the batch, with the other half containing corresponding modalities. This enables all source inputs

to be used for action classification, while still generating non-corresponding instances for the self-

supervised task.

Training. The network was trained with SGD and momentum, with a learning rate of 0.01 for 120

epochs and 0.001 for a further 40 epochs. The momentum value was 0.9. Dropout of probability

0.5 was used on the activations of the hidden layers of C and G. A batch size of 128 was used

for both source and target domains. The self-supervised weighting was Lc = 5 and no adversarial

domain alignment was used, Ld = 0. During training, a single video segment is used to reduce

GPU memory requirements of the model, rather than the consensus of multiple segments used in

TBN [23]. At test time, the consensus of 25 segments in the video is used. The network is trained

with the same augmentation strategy as TBN [23].

4.4.2 Results

Table 4.8 shows the action recognition accuracy on the target domains for verbs and nouns, re-

spectively. The addition of the self-supervised objective (MM-SADA), improves performance
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Metric Method D2 ) D1 D3 ) D1 D1 ) D2 D3 ) D2 D1 ) D3 D2 ) D3 mean

Verb
Source-only 28.3 27.0 32.1 45.8 27.6 42.1 33.8

MM-SADA 25.4 33.2 44.1 49.3 35.6 43.7 38.5N+4.70

Noun
Source-only 11.3 10.2 11.8 19.0 10.3 19.3 13.6

MM-SADA 12.7 14.0 14.1 24.2 10.7 21.5 16.2N+2.60

Table 4.8: Impact of multi-modal self-supervision (RGB, flow and audio) on the open-set domain
adaption benchmarks. Both verb and noun classification improve with the self-supervised loss.

compared to source-only by 4.7% for verbs and 2.6% for nouns, on average. MM-SADA improves

verb classification performance for all but one benchmark, D2 → D1, however, noun classifica-

tion performances increases for all benchmarks. This shows that self-supervision is beneficial for

multiple tasks, and is useful in the open-set setting, where less than 85% of target videos have a

noun label from a class in the source domain.

To asses the impact of self-supervision on each modality, several experiments were conducted

to answer two questions: which modalities should be included for domain adaptation, and what

is the performance of each modality on the self-supervised task? To reduce computation, these

experiments were only conducted on the D2→ D3 open set benchmark.

Which modalities should be included for domain adaptation?

Table 4.9a reports the target domain performance of the TBN architecture trained with two modal-

ities as input (RGB and audio or RGB and Flow), and with all three modalities (RGB, Flow and

audio). For each architecture, target performance with our proposed self-supervised loss is com-

pared to no self-supervision (source-only). The proposed self-supervised objective provides the

largest improvement over source-only with RGB and audio as input, with an 8.7% and 7.1% in-

crease in accuracy for verbs and nouns. Self-supervision between RGB and Flow also improves
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Metric Method RGB+Audio RGB+Flow RGB+Flow+Audio

Verb
Source-only 29.19 32.85 42.11

MM-SADA 37.89N+8.70 35.45N+2.60 43.74N+1.63

Noun
Source-only 13.50 16.18 19.27

MM-SADA 20.57N+7.07 17.64N+1.46 21.54N+2.27

(a) Accuracy

Metric Method RGB+Audio RGB+Flow RGB+Flow+Audio

Verb
Source-only 4.58 6.77 10.95

MM-SADA 9.39N+4.81 8.87N+2.10 12.69N+1.63

Noun
Source-only 4.71 6.32 7.66

MM-SADA 7.25N+2.54 6.98N+0.66 8.60N+0.94

(b) Macro-averaged Recall

Table 4.9: Action recognition performance on the target domain for different combinations of
modalities. Experiment conducted on the open-set benchmark: D2 → D3. All three modalities
provide the highest performance, and self-supervision consistently outperforms source-only.
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target performance, albeit not as much as RGB and audio. This shows the benefit of including

audio in the self-supervision objective. All three modalities as input to the model achieves the best

target domain performance. This is due to the better modelling of actions in the source domain. Ta-

ble 4.9b reports Macro-averaged Recall on the target domain, such that all classes are given equal

weighting in the metric. Macro-averaged Recall is consistently larger than source-only, therefore,

self-supervision must improve both the minority and majority classes of verbs and nouns.

What is the performance of each modality on the self-supervised task?

Fig. 4.14 ablates the accuracy of the self-supervised task for each modality. For 50% of instances,

the ablated modality is replaced with another instance in the batch, and the remaining instances

contain corresponding modalities. The analysis is conducted on the model trained with RGB, Flow

and audio as input. Ablating RGB and Flow produces a similar accuracy, which averaged across

both domains is 83.6% and 84.3%, respectively. The correspondence accuracy of audio is smaller,

with 71.8% target accuracy, showing that learning the temporal alignment between audio with the

other modalities is a harder task to learn than between RGB and Flow.

4.5 Conclusion

This chapter proposed a multi-modal domain adaptation approach for fine-grained action recog-

nition, utilising multi-modal self-supervision and adversarial training per modality. The self-

supervised task of predicting the correspondence of multiple modalities was shown to be an ef-

fective domain adaptation method. On its own, this can outperform domain alignment meth-

ods [5, 73], by jointly optimising for the self-supervised task over both domains. In addition,

self-supervision can be applied to a number of different modalities, showing improved target per-

formance with RGB, optical flow and audio, on both the classification of verbs and nouns. Together
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random chance

Figure 4.14: Accuracy of correspondence classifier when replacing a specified modality for 50%
of the input instances. Experiment conducted on the open-set benchmark: D2→ D3.

with adversarial training, the proposed approach outperforms non-adapated models by 4.8% on

verb classification in the closed-set setting. In conclusion, aligning individual modalities whilst

learning a self-supervision task on source and target domains can improve the ability of action

recognition models to transfer to unlabelled environments.

This chapter has assumed each multiple-modality has a differing robustness to domain changes.

Our self-supervised alignment loss may not be beneficial if all modalities have a similar level of

robustness to domain changes. Additionally, we assumed each action was segmented, i.e. an

action detector already exists in the target domain. This is exploited by adversarial alignment

objective, which would be impacted by additional source and target classes in both domains. Our

self-supervised object does not align marginal distributions and is applied on a per-instance basis,

so will be more robust to additional classes in each domain.
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Chapter 5

The EPIC-KITCHENS-100 Unsupervised

Domain Adaptation Challenge for Action

Recognition

The majority of fine-grained action recognition datasets collect data over a short recording pe-

riod [12, 13, 14, 15, 30, 31], where video footage from each participants is collected over a few

days. The data can be split into training and test sets in different ways. Commonly the same record-

ing environment, recording equipment and activities are present in both splits [12, 13, 14, 15, 31].

The advantage of that strategy is that the train and test sets are sampled from the same distribution,

but the disadvantage is practicality. Participants may change homes, interact with novel objects and

tools, or be filmed with a different type of camera, after the initial dataset collection. Therefore,

the performance of action recognition models may drop over time. To reduce the cost of annotat-

ing footage over later recording periods, this chapter proposes to adapt models to environmental

changes by collecting unlabelled data.

While Chapter 4 focused on bias introduced by filming in different locations, this chapter
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focuses on different domain shifts that naturally occur due to the collection of fine-grained action

recognition dataset. This chapter uses a greater variety of different locations within each domain,

therefore, location bias is no longer the leading causes of the domain shift. However, changes

in camera equipment and interactions with novel objects and tools still has a large impact on the

target domain performance. This chapter highlights the need for domain adaptation methods to

consider these visually subtle causes of domain shift, and provides a benchmark for the research

community.

The EPIC-KITCHENS-100 dataset collects videos over two distinct recording periods, taken

two years apart, which introduces a domain gap within the dataset (Sec. 5.1). This chapter pro-

poses the Unsupervised Domain Adaptation Challenge (Sec. 5.2), where the task is to adapt action

recognition models, trained on the initial recording period, to the footage taken two years later.

A carefully chosen train, validation and test split is proposed. How to form a validation set is a

particular issue for unsupervised domain adaptation, since no labelled data from the target domain

should be used during training. The difficulty of the benchmark is showcased across a series of

baselines, evaluated across the multiple modalities available in the dataset: appearance, motion and

audio (Sec. 5.3). The domain adaptation baseline, TA3N [1], was adapted for the challenge and

acts on extracted features that are made publicly available. A public competition for the challenge

was hosted on Coda-Lab, where the winning solutions proposed multi-modal solutions (Sec. 5.4).

5.1 The Domain Gap in EPIC-KITCHENS-100

EPIC-KITCHENS-100 extended EPIC-KITCHENS-55 [41] with additional footage collected two-

years later. Videos in the extension were recorded by 16 subjects that participated in EPIC-

KITCHENS-55. Interestingly, half (8 subjects) had moved homes over the past two years. All par-

ticipants were asked to collect 2–4 days of their typical kitchen activities, as in EPIC-KITCHENS-

55. Footage was captured using a head mounted GoPro Hero7 black. This is two generations
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Figure 5.1: Frames from EPIC-KITCHENS-100 showcasing returning participants, who filmed in
the same (top) or different locations (bottom) between recording periods.
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Figure 5.2: Frames from the original footage (Source) and the extension two-years later (Target),
for participants who changed or stayed in the same location between recording periods.
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newer than the camera used in EPIC-KITCHENS-55, with a built-in feature for HyperSmooth

video stabilisation. Sample frames are shown in Fig. 5.1.

In EPIC-KITCHENS-100, there is a domain gap between the videos in the extension (Target)

and the videos in the initial collection of footage (Source) due the following properties:

• Hardware and capturing. Extended footage uses a newer camera model with onboard video

stabilisation.

• Locations. 8 subjects have moved home, resulting in changed surroundings.

• Long-term temporal offsets. EPIC-KITCHENS-100 is filmed 2 years after EPIC-KITCHENS-

55. In the same environment, changes such as wear and tear, new objects and different object

positions are observed. Participant behaviour can also change over time.

To encourage the development of methods which tackle the domain gap, Sec. 5.2 outlines the

proposed benchmark on unsupervised domain adaptation for action recognition.

5.2 The Unsupervised Domain Adaptation Challenge

This section defines the proposed unsupervised domain adaptation challenge for EPIC-KITCHENS-

100 (Sec. 5.2.1). A particular emphasis was given to designing training, validation and test splits

suited for domain adaptation (Sec. 5.2.2). This is an open-set domain adaptation problem as there

is not a complete overlap of action classes between the source and the target domains (Sec. 5.2.3).

Finally, the proposed benchmark is compared to other domain adaptation benchmarks, in images

and video (Sec. 5.2.4).

119



CHAPTER 5. THE EPIC-KITCHENS-100 UNSUPERVISED DOMAIN ADAPTATION
CHALLENGE FOR ACTION RECOGNITION

5.2.1 Definition

Each video in EPIC-KTICHENS-100 is associated with a noun, describing the main object of

interaction, and a verb, describing the object manipulation. Verbs were manually clustered into

verb classes, Cv, with synonyms, describing the same manipulation, assigned to the same class.

Similarly, nouns were clustered into noun classes, Cn. Given a set of training videos, with an

action label assigned to each, a = (v ∈ Cv, n ∈ Cn), the task is to predict the action labels for a set

of unseen videos. However, when the test set is collected in a later recording period to the training

set, a domain gap may be present. Therefore, we propose the unsupervised domain adaptation

challenge, which is defined next.

Unsupervised Domain Adaptation (UDA) utilises a labelled source domain and learns to adapt

to an unlabelled target domain. Videos recorded in 2018 are used as the labelled source, and newly

collected videos are used as the target. Both source and target videos are available during training,

but the target videos are not annotated with action labels. The task is to predict the action labels of

target video not seen during training. The difficulty of this challenge stems from the fact that the

source and the the target domain come from distinct training distributions, due to the collection of

videos two years later.

5.2.2 Splits

This challenge assesses models’ ability to adapt to additional footage without labels. Thus, the

following splits are defined; Source: labelled training data from 16 participants (collected in 2018)

and Target: unlabelled footage from the same 16 participants collected in 2020. This ensures the

gap in the domains is related to the capturing of the data ‘two years later’.

For unsupervised domain adaptation, labels from the target domain should not be used for

both training and validation. However, without a labelled validation set, it is difficult to select

optimal hyper-parameters for any proposed domain adaptation solution. This can limit the ability
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No. Classes

Split Domain No. Participants No. Instances Verb Noun Action

Train
Source 12 16115 86 219 1663

Target 12 26115 87 227 2031

Val
Source 4 5002 69 147 821

Target 4 7906 77 170 1089

Test
Source 12 4298 65 170 802

Target 12 5909 80 161 937

Table 5.1: Training, validation and test splits for the unsupervised domain adaptation challenge.

to provide a fair comparison between different baselines.

The train, validation and test splits are shown in Table 5.1. 4 participants are reserved for

validation and the remaining 12 participants are used for training and testing. This allows hyper-

parameters to be selected using the validation participants, without accessing labelled target data

from the training participants. Next, the train and test splits are discussed, followed by a detailed

description of the validation procedure.

Train and Test Splits

Train and test splits are defined for each domain, and contain the same 12 participants. Half of

these participants have changed kitchen between domains, while the other participants collected

footage in the same kitchen.

Target videos are split into: Target Train and Target Test. The first are unlabelled videos used

during domain adaptation, while the second are videos used for evaluation, as in the VisDA 2017
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Challenge [88]. Similarly, source videos are split into: Source Train and Source Test. The first

provides labelled videos used to learn the action recognition task, while the second is used to

evaluate the performance of action recognition without the domain shift. The number of action

instances per split are reported in 5.3. The challenge is evaluated by top-1 action accuracy on

Target Test.

Validation Splits for Hyper-parameter Tuning

As the target domain is unlabelled, no labelled data is available for hyper-parameter tuning. There-

fore, the training data is split to create Source Val and Target Val, with data collected by 4 of the

16 participants. Similar to the training splits, half of the participants are of returning kitchens and

half are of changing kitchens.

For hyper-parameter tuning, models are trained on labelled data from Source Val and unlabelled

from Target Val. The performance on Target Val can be used to asses the impact of different hyper-

parameters. Note that action labels are available for Target Val, but Target Train is unlabelled.

This ensures that no labelled target data is used from the participants in the train and test splits for

validation.

To obtain the results for the challenge, a new model is trained on Source Train and unlabelled

Target Train, using the hyper-parameters optimised from the validation split. This model is evalu-

ated on Target Test to obtain results.

5.2.3 Open-set Adaptation due to Zero-Shot Actions

Due to the unscripted nature of the data collection, a negligible number of verb and noun classes

in the target domain are not present in the source domain. Table 5.2 shows the number of target

videos that do not contain a verb, noun or action label present in Source Train. The vast majority

of verb or noun labels in Target Train are present in the Source Train. Only 0.4% and 3.0% of the
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No. Target Instances not in Source Train No. Target Classes not in Source Train
Split Verbs Nouns Actions Verbs Nouns Actions

Target Train 99 (0.4%) 783 (3.0%) 3566 (13.7%) 8 40 1073
Target Test 6 (0.1%) 178 (3.0%) 792 (13.4%) 4 20 353

Table 5.2: The number of target verb, noun and actions labels that are not present in Source Train.
This showcases the open-set nature of the dataset, providing additional challenges for domain
adaptation.

verb and noun labels in Target Train are absent in Source Train, respectively. These have not been

removed from the dataset. However, 13.7% actions (exact verb-noun combinations) did not exist

in Source Train, these are referred to as the zero-shot actions. Note that it is still possible to predict

these actions as both verbs and nouns were present in the source domain. In addition, the zero-shot

actions belong to 1073 action classes or 63% of all action classes in Target Train.

The open-set nature of the dataset brings additional challenges to the dataset. How methods

align the source and the target domain, given many target videos depict actions that are not present

in the source, remains an interesting research direction.

5.2.4 Related Datasets

This section provides a brief comparison of the proposed benchmark with other unsupervised do-

main adaptation (UDA) benchmarks. UDA benchmarks have traditionally used images [60, 78,

88, 234], with recent attempts to use video [1, 2, 235] adapting across public datasets (e.g.UCF

to Olympics). EPIC-KITCHENS-100 is the first to propose a within-dataset domain adaptation

challenge in video. Video-based UDA raises additional challenges, such as aligning temporal

information across domains [2], attending to relevant transferable frames [1], and avoiding non-

informative background frames [37].

Table 5.3 shows that EPIC-KITCHENS-100 provides several advantages over other video-

based benchmarks, such as the largest number of instances, classes, and the fact it is multi-
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Dataset Train Test Classes M AAL Year Real/Syn

Im
ag

e

Office [60] 4110 N/A 31 1 N/A 2010 Real

Office↔ Home [78] 15500 N/A 65 1 N/A 2017 Real

VisDA-C [88] 280157 N/A 12 1 N/A 2017 Real/Syn

DomainNet [234] 363534 37706 345 1 N/A 2019 Real/Syn

Source Target Test*

V
id

eo

UCF↔ HMDB (small) [36] 482 350 150 5 1 4.7± 2.5 2018 Real

UCF↔ Olympic [2] 601 250 54 6 1 6.6± 4.5 2018 Real

UCF↔ HMDB (full) [1] 1438 840 360 12 1 4.0± 5.8 2019 Real

IEMOCAP→ AFEW [235] 6611 795 N/A 4 2 N/A 2018 Real

Kinetics↔ Gameplay [1] 43378 2625 749 30 1 N/A 2019 Real/Syn

EPIC-KITCHENS-100 16115 26115 5909 3369 3 2.8± 5.2 2020 Real

Table 5.3: Comparison of domain adaptation classification datasets. M: Modalities. AAL: Average
Action Length. *: Note that Test* refers to Target Test

modal. In addition, all the video-based UDA datasets focus on closed-set adaptation, whereas

EPIC-KITCHENS-100 has additional challenges due the partial overlap of action labels between

domains.

5.3 Evaluation

This section evaluates several baselines, defined in Sec. 5.3.1, on the UDA challenge. Implemen-

tation details are provided in Sec. 5.3.2, and the results are presented in Sec. 5.3.3, for RGB, Flow

and Audio modalities.
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5.3.1 Baselines

The ‘Source-Only’ baseline provides a lower-bound of domain adaptation performance, where

labelled source data is used for training and no adaptation to target data is attempted. Two possible

upper-bounds are used, ‘Target-Only’ and ‘Source+Target’, where labelled target data is used.

‘Target-Only’ only uses target data, whereas ‘Source+Target’ uses both source and target data.

Neither of these are UDA methods, but offer an insight into the domain gap.

Temporal Attentive Alignment (TA3N) [1] is used for the domain adaptation baseline. This

trains a Temporal Relation Module [20] with adversarial domain alignment and a domain attention

mechanism. TA3N was reviewed in Chapter 3, Sec. 3.3.

5.3.2 Implementation and Training Details

The TBN feature extractor [23], is trained on the union of Source Train and Source Val. We make

these features publicly available. The available code from Chen et al. [1] is used to train and

evaluate all baselines. The code is modified to consider multi-modal input, by concatenating the

features from all modalities as input. This automatically increased the number of parameters in the

first fully connected layer.

The performance of TA3N is improved by initialising the domain discriminators before the

gradients are reversed and back-propagated. In our implementation, the domain discriminators’

hyper-parameters, which weight the gradient back-propagated by the gradient reversal layer, are

annealed similar to that in [4]:

η =
2

1 + exp(−p)
− 1 (5.1)

where p is the training progress that linearly increases from 0 to 1. The domain discriminator

hyperparameters are annealed up to the value specified in TA3N, i.e. λs = 0.75η, λr = 0.5η and

λt = 0.75η. TA3N applies categorical entropy minimisation to the output of the action classifier,
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for target videos at input. The weighting of the entropy loss is set to γ = 0.003. Models are trained

for 30 epochs at a learning rate of 3e−3, reduced by a factor of 10 at epochs 10 and 20.

5.3.3 Results

Table 5.4 reports the results for the baselines on Target Test. These show significant performance

improvements when using multi-modal data compared to RGB (11.7% increase in top-1 verb accu-

racy and 4.1% in nouns). For individual modalities, Flow achieves highest verb performance and

RGB achieves highest noun performance. The domain gap is evident when comparing the lower

and upper bounds. ‘Source-only’ has consistently worse performance, for all input modalities,

compared to models trained with target labelled data. TA3N is able to partially decrease this gap,

providing a 2.5% improvement in verb accuracy and 2.4% in nouns. This dataset provides a UDA

benchmark that is less saturated than existing datasets [2].

Figure 5.3 visualises the feature space of a model trained on all modalities, showing limited

overlap between source and target. TA3N aligns the features demonstrating the capability of UDA.

Figure 5.4 visualises the feature space for models trained on individual modalities. TA3N shows

improved alignment for RGB. For all modalities, target videos are not well clustered into action

classes, compared to that of source videos, in both the source-only and adapted models. Future

research could improve local alignment of action classes in source and target, in addition to im-

proving the clustering of target videos.

Table 5.5 reports the accuracy on Target Test separately for instances recorded by participants

who moved home, or stayed in the same location. The performance increase of TA3N over ‘source-

only’ is greatest for participants who moved home. However, the performance of TA3N is far

from the upper-bound performance, regardless of whether the participant moved or stayed in the

same location between recording periods. This indicates that other factors have a larger impact on

the domain shift, i.e. the different camera used and temporal progression of two-years between
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Target Accuracy

Top-1 (%) Top-5 (%)

Modality Baseline Verb Noun Act. Verb Noun Act.

RGB

Source-Only 32.8 21.2 10.7 72.6 43.9 22.6

TA3N [1] 32.1 21.6 11.1 71.7 44.1 22.5

Target-Only 39.7 32.3 18.3 80.8 56.2 34.0

Source+Target 41.1 33.0 18.8 80.4 58.5 35.2

Flow

Source-Only 42.8 19.2 12.7 74.5 38.5 23.8

TA3N [1] 43.2 20.1 12.8 74.5 41.2 25.0

Target-Only 53.8 26.7 20.2 84.2 49.1 34.5

Source+Target 52.4 27.3 19.8 82.4 50.3 35.4

Audio

Source-Only 31.4 12.8 8.5 64.8 28.4 16.0

TA3N [1] 32.0 13.3 8.9 66.0 29.1 16.5

Target-Only 41.7 19.1 13.4 77.2 39.6 23.6

Source+Target 41.8 19.8 13.8 77.1 40.6 24.3

RGB+Flow
+Audio

Source-Only 44.4 25.3 16.8 69.7 48.4 29.1

TA3N* [1] 46.9 27.7 19.0 72.7 50.7 30.5

Target-Only 59.1 40.3 30.4 85.0 65.0 47.8

Source+Target 59.4 41.9 31.3 85.3 66.6 49.2

Table 5.4: Unsupervised domain adaptation results on Target Test with lower (source-only) and
upper (target-only and source+target) bounds.
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Figure 5.3: UMAP [24] of feature spaces for models train on all modalities. The UDA baseline
shows better alignment. Source videos are shown as blue, Target are shown are orange.
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(a) RGB

(b) Flow

(c) Audio

Figure 5.4: UMAP [24] of feature spaces for models trained on individual modalities. Source
videos are shown as blue, Target are shown are orange.
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Target Top-1 Accuracy (%)

Returning Kitchen Changing Kitchen

Baseline Verb Noun Act. Verb Noun Act.

Source-Only 44.0 25.5 16.7 45.2 24.7 17.0

TA3N [1] 45.9 27.6 18.6 N+1.9 49.2 27.9 19.8 N+2.8

Target-Only 57.9 40.8 29.8 62.0 39.2 31.8

Source+Target 58.0 41.7 30.6 62.6 42.4 33.0

Table 5.5: Accuracy on Target Test broken down by participants who recorded in the same kitchen,
or changed kitchen across domains. Models were trained with all modalities as input (RGB, Flow
and Audio).

recordings periods.

5.4 Challenge Submissions

A public competition for the Unsupervised Domain Adaptation challenge was hosted on CodaLab.

In total, there were 166 submissions, across 10 different teams. 4 teams submitted technical reports

which are summarised later in this section.

Figure 5.5 shows the results achieved from the participants. All submissions outperformed

the baseline model trained only on the source domain (EPIC TA3N SOURCE ONLY) and three

submissions outperformed the UDA baseline (EPIC TA3N) by at least 5.76% action accuracy.

The majority of submissions did not submit predictions for Source Test, which were optional for

the submission on CodaLab. This would have provided additional insights into how much each

submission improves action recognition in general compared to overcoming the domain gap. We
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encourage next year’s submissions to consider providing the Source Test scores.

5.4.1 Technical Reports

The technical reports for the Unsupervised Domain Adaptation challenge, in order of their over-

all rank on the public leaderboard, are given in this section. Most solutions exploited multiple

modalities for domain adaptation, and the best performing solutions used additional backbone ar-

chitectures compared to the baselines which used TBN.

VI-I2R (Rank 1) This method is based on the Temporal Attentive Adversarial Adaptation Net-

work (TA3N) [1], augmented with hand-centric features. To locate hands, a Multi-level Entropy

Attention Alignment (MEAA) [236] is used to train the detector. Additional hand-labelled hand

bounding boxes are used, in comparison to other methods which use pre-trained hand detectors.

M3EM (Rank 2) The main idea is that early fusion between modalities can help improve features

across modalities. This is handled by a Multi-Modal Mutual Enhancement Module (M3EM). This

contains a Semantic Mutual Refinement (SMR) module which finds the most transferable features,

and a Cross Modality Consensus (CMC) module which finds the most transferable regions. The

best result uses an ensemble which also includes object features, and is guided by a hand feature

extractor.

PoliTO-IIT (Rank 3) The approach is based on an audio-visual Relative Norm Alignment Net-

work (RNA-Net) [44] with added flow, applied to source and target separately. Both TA3N and

RNA are used for adaptation. Additional losses are incorporated—Temporal Hard Norm Align-

ment (T-HNA) and Min-Entropy consistency (MEC) to encourage consistency between different

modalities.

PyKale (Rank 5) The approach uses transformer encoding on top of the input features to give

whole video embeddings. Adversarial domain classification is used after fusing results from each

modality, treating each domain separately. Results are not significantly better than TA3N, which
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shows that just using a standard non-video domain adaptation technique is insufficient.

These works showed the benefit of domain adaptation through the fusion of multiple modalities

(M3EM), in addition to aligning the feature norms of individual modalities (PoliTO). The use of

local visual ques, such as object features (M3EM) and hand-centric features (VI-I2R), have also

been shown to benefit domain adaptation. However, some issues were not addressed by these

works. The partial-overlap of actions classes is still an open challenge, in addition to the long-tailed

distribution of classes in source and target. All works focused on aligning the marginal distributions

across domains, which may not achieve discriminative clustering of target videos. Local alignment

of classes through pseudo-labelling approaches (see Sec 2.3.6) may improve domain adaptation.

5.5 Conclusion

This chapter showcased the domain gap between the videos captured two-years apart in the EPIC-

KITCHENS-100 dataset, that occurs due to subtle changes in the environment and recording con-

ditions. The proposed Unsupervised Domain Adaptation challenge is the first to tackle this do-

main gap for action recognition, and provides one of the largest domain adaptation benchmarks for

video. While action recognition performance on Target can be improved by recent video domain

adaptation solutions [1], accuracy is far from the upper-bound when models are trained on labelled

Target data. The challenge has led to the development of several novel multi-modal domain adap-

tation solutions, proposed by the research community, with scope for future research to further

improve domain adaptation performance.
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Chapter 6

Domain Adaptation for Text-to-Video

Retrieval

Using natural language queries to search for video sequences is the most intuitive interface for

video search engines. Example applications include finding short and precise action sequences in

long instructional videos, e.g. for educational purposes. Text-to-video retrieval is typically ap-

proached by training a joint video-text embedding following a learning-to-rank objective. Thanks

to this, retrieval comprises of computing distances between representations of textual queries and

representations of videos in a gallery. Building a reliable joint embedding space requires large

amounts of accurately annotated video-caption pairs [22, 152, 204, 205, 206, 207, 208, 210],

where captions come from manual annotations, query logs or transcribed audio. These works

assume the training set allows for learning a robust representation that generalises to the test/target

videos. However, the appearance of certain actions can change due to new environments or record-

ing equipment. This introduces a visual domain gap between the captioned video sequences and

the gallery set to retrieve relevant videos from, rendering the trained joint embedding space sub-

optimal.
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Figure 6.1: Given video-text pairs (denoted by circles and stars) in source (blue), and video-only
target set (purple), the proposed alignment method reduces the domain gap between the source
videos and the target videos using pseudo-labels and cross-domain ranking. The learnt and aligned
space can then be used for retrieving a ranked list of target videos using previously unseen text
queries.

This chapter addresses the challenge of a visual domain gap in the context of text-to-video

action retrieval, assuming that no captions are available for the target gallery. Experiments are

conducted on the EPIC-KITCHENS-100 dataset [10], composed of two distinct sets of videos fea-

turing fine-grained actions. Chapter 5 showed a significant domain shift which alters performance

when tested for action recognition. Instead, this work provides the first attempt to use this dataset

for domain alignment in action retrieval.

Experiments show that the marginal alignment of the distribution over videos [57, 73], inde-

pendent of the text, is insufficient to fix the domain gap. Instead, this chapter proposes to lever-

age pseudo-labels for the target videos in a unified learning-to-rank approach which effectively

combines captioned source video sequences and uncaptioned target videos (see illustration in Fig-

ure 6.1). Given the domain gap, pseudo-labelling is noisy. Therefore, this chapter proposes a

robust confidence measure to determine the reliability of pseudo-labels, combined with a sampling

strategy that ensures all actions are aligned, rather than only the most confident or common actions.
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For better adaptation, disentangled embeddings are learnt, where each embedding specialises in a

different parts-of-speech (i.e. verb and nouns) within the caption.

To summarise, the contributions of this chapter are threefold. First, the problem of Unsuper-

vised Domain Adaptation (UDA) for text-to-video retrieval is introduced. In this setup, training

only has access to i) a source domain composed of video-caption pairs and to ii) videos (without

captions) from the target gallery set. Second, a cross-domain learning-to-rank strategy is pro-

posed which mixes samples from the source and the target domains thanks to an iterative pseudo-

labelling and robust sampling strategy. Third, extensive experiments are conducted on the EPIC-

KITCHENS-100 dataset which validate our approach. Our method outperforms state-of-the-art

UDA approaches [130, 133, 134] which were adapted for action retrieval.

6.1 Method

This work tackles the problem of text-to-video retrieval, where the goal is to retrieve relevant

videos from a target gallery of videos V t, given any text query wt. To achieve this, a source

gallery of paired videos, V s, with their captions, W s, is used to learn a cross-modal embedding.

However, a domain shift is known to exist between V s and V t. The aim is to leverage the paired

source set, and the single-modality target set (i.e.videos only), for training a text-to-video retrieval

model which will be applied to the target set.

An overview of the proposed method is provided in Fig. 6.2. This section presents a text-

to-video retrieval system which performs well when aligned video-caption pairs are available for

training, e.g. as in our source domain (Sec. 6.1.1). Our work builds on this baseline with a domain

adaptation strategy (Sec. 6.1.2), which learns a cross-domain embedding to align source and target

videos that depict similar actions. To overcome the absence of the text modality in the target do-

main, a robust pseudo-labelling strategy is applied to the target gallery (Sec. 6.1.4). This relies on

prototype-based confidence estimation to reduce noise in the labelling process. For better adapta-
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Figure 6.2: Proposed alignment strategy for the disentangled embedding space of verbs. (a) Do-
main gap between target videos (grey) and video-caption source pairs (colored according to their
verb - wash/green, cut/orange, peel/purple) (b) Target videos inherit pseudo-labels from their near-
est source video, with a confidence defined by the verb prototypes. Over epochs, pseudo-labelling
is updated. We show one video pseudo-labelled as cut in epoch n, and wash in n+1 with increased
confidence. (c) Cross-modal losses (Ls) are jointly trained with cross-domain losses L×s→t, L

×
t→s.

Relevant (green arrow) and irrelevant (red arrow) relations are used to train the embedding space
with only the most confidently pseudo-labelled target videos.

tion, an embedding is learnt for each part-of-speech in the text caption, and alignment losses are

applied to each (Sec. 6.1.5).

6.1.1 Training for Text-to-video Retrieval with Captioned Videos

Given a set of videos, V s, and their corresponding captions, W s, one can learn a joint video-

text embedding space, following a learning-to-rank approach with the hinge-based triplet ranking

loss. Two embedding functions f : V s → Ω and g : W s → Ω which respectively produce

representations for videos and text in the embedding space Ω are learned. The triplet ranking loss

is defined in Eq. 6.1, where a is the anchor, b+ and b− are relevant and irrelevant samples for that

anchor, γ is a constant margin, d(·, ·) is the distance function and h ∈ {f, g} is the appropriate
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embedding function, f or g, depending on the modality. Therefore:

H(a, b+, b−) = max(γ + d
(
h(a), h(b+)

)
− d
(
h(a), h(b−)

)
, 0) (6.1)

Classical text-to-video retrieval approaches [204, 205, 207, 208] sample triplets within video-

caption pairs from (V s,W s) and optimize cross-modal losses Eq 6.2, where vi, vk ∈ V S and

wi, wj,∈ W S and θ are the parameters of the embedding functions h.

L(θ) =
∑

H(vi, wi, wj) +
∑

H(wi, vi, vk), (6.2)

While these approaches typically already perform well, videos/captions of similar actions are not

explicitly encouraged to be close in the embedding space. Inspired by previous approaches which

learn a cross-modal embedding [22, 237], we use both cross-modal and within-modal losses be-

tween sets of relevant items. When the anchor is a video, combining the cross-modal and within-

modal losses produces:

Lv→ws (θ) =
∑

H(vi, wj, wk) +
∑

H(vi, vl, vm)

with wj ∈ W s
i+, wk ∈ W s

i−, vl ∈ V s
i+, vm ∈ V s

i−

(6.3)

where V s
i+ are all videos relevant to the anchor video vi and V s

i− are irrelevant ones. Similarly,

W s
i+/W s

i− is the set of all captions relevant/irrelevant to the anchor video vi.

In addition, cross-modal and within-modal losses are defined where the anchor is a text caption:

Lw→vs (θ) =
∑

H(wi, vj, vk) +
∑

H(wi, wl, wm)

with vj ∈ V s
i+, vk ∈ V s

i−, wl ∈ W s
i+, wm ∈ W s

i−

(6.4)

where V s
i+/V s

i− are all videos relevant/irrelevant to the anchor text wi, and W s
i+/W s

i− is the set of all
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captions relevant/irrelevant to the anchor text wi.

The training for the cross-modal embedding is then defined as:

Ls = Lv→ws + Lw→vs (6.5)

The following section shows how an embedding space trained on the source domain S = (V s,W s)

can be adapted for the target video gallery V t.

6.1.2 Cross-domain Cross-modal Embedding

Reducing the domain shift by aligning marginal distributions of the source and the target video

sequences [4, 73] often leads to sub-optimal solutions, as it does not consider the alignment of local

distributions between the two galleries. This work proposes a cross-domain cross-modal approach

instead, which aligns videos in the source and the target domain that depict similar actions. To

overcome the lack of captions in the target gallery V t we instead propose using pseudo-labels to

model cross-modal relevance.

For simplicity, we refer to the source video vsi ∈ V s as si, and the target video vti ∈ V t as ti.

We define the source-to-target and target-to-source cross-domain ranking objectives as:

L×s→t(θ) =
∑

H(si, tj, tk)| tj ∈ V t
si+
, tk ∈ V t

si−

L×t→s(θ) =
∑

H(ti, sj, sk)| sj ∈ V s
ti+
, sk ∈ V s

ti−

(6.6)

where V t
si+
/V t

si− are relevant/irrelevant sets of target videos for the source video si and V s
ti+
/V s

ti−

are the relevant/irrelevant sets of source videos for the target video ti. These relevant sets are

defined by the pseudo-labelling strategy described in Sec. 6.1.4.

We then train the source embedding objectives (see Section 6.1.1) along with the cross-domain
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ranking objectives:

L = Ls + λ1L
×
s→t + λ2L

×
t→s (6.7)

where λ1 and λ2 are weights to balance the corresponding cross-domain losses.

Importantly, note that this is an iterative process during training. As the joint embedding space

is trained, target videos are pseudo-labelled, and are used to generate triplets for cross-domain

ranking. Target videos can potentially be assigned to different pseudo-labels at each iteration. For

robust learning, we adjust the assignments to the relevance sets at the end of each training epoch.

6.1.3 Defining Relevancy

Most benchmarks in text-to-video retrieval consider each video in the gallery to be relevant to a

single caption [150, 151, 152] . However, there may be multiple captions in the dataset that could

describe the action depicted in the video equally well. In fact, many videos in EPIC-KITCHENS-

100 [10] have identical captions. This work considers a video relevant to a set of captions, in line

with recent works [215, 238, 239]. Finding these sets of relevant videos/captions requires addi-

tional knowledge, such as visual clustering [224], attributes [240], or semantic similarity between

captions [215, 238, 239].

In our experiments, we use the verb and noun classes within EPIC-KITCHENS [10] to define

the relevancy between videos and captions. The verb and noun classes were formed by grouping

synonyms available within the dataset. Therefore, two captions are relevant to each other if both

are assigned to the same verb class and the same noun class. Similarly, the videos attached to the

captions will also be relevant to each other. This enables relevancy sets to be defined for the source

domain losses in Eq. 6.5.

Cross-domain losses require relevancy sets between source and target videos. However, in

the absence of the text modality in the target domain, relevancy between source and target videos

cannot be determined using the same strategy. Therefore, we utilise a pseudo-labelling method to
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determine these relevancy sets, which is outlined next.

6.1.4 Pseudo-labelling and Prototype-based Sampling

In order to sample triplets for the cross-domain losses in Eq. 6.6, we need pairs of relevant videos

between the source and the target sets. Therefore, we propose: i) a pseudo-labelling strategy to

determine relevant video pairs across domains, and ii) an associated prototype-based confidence

measure to select which target videos to use for training.

In standard DA, which often assumes a single modality and a classification task, typical ap-

proaches use the softmax scores of the source classifier to produce pseudo-labels [104, 126], or la-

bel propagation on the nearest neighbour graph built with the joint source and target sets [124, 241].

Taking inspiration from these strategies, and replacing pseudo-labelling with the process of assign-

ing to each target video a relevant set of source videos, we proceed as follows. As in classical label

propagation, the target video inherits the relevance property of the closest source video, i.e. a rele-

vant/irrelevant query to the nearest source video is considered relevant/irrelevant to the target video.

Formally, if sn̂ is the nearest source video to the target video, ti, i.e. n̂ = arg minn d(f(ti), f(sn)),

we assign:

V s
ti+

= {V s
sn̂+
∪ {sn̂}};V s

ti− = V s
sn̂−

(6.8)

Similarly, the target video is considered relevant to each source video in its relevant set. However,

this process which associates videos across the source and the target domains might be error prone,

and relying on too many erroneous relevance pairs would degrade the model. On the other hand,

trusting too few would not be sufficient to align the domains. Consequently, to handle such a

trade-off, we propose to robustly measure the confidence of the labelling process and to use these

confidence scores to select target videos.

Prototype Confidence (PC). We propose to calculate confidence scores based on the distance be-

tween the target videos and the source prototypes of their closest source video sn̂ in the embedding
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Pseudo
Labelling

Figure 6.3: Pseudo-Labelling with Prototype Confidence (PC). A target video, ti, is assigned a rel-
evant set of source videos (all points in orange), from the nearest source video, sn̂. The confidence
of the pseudo-labelling, αti is determined by the distance to the source prototype µp̂.

space, as shown in Fig. 6.3. A source prototype is defined as the barycentre of the sets of relevant

videos as described in Sec. 6.1.3. All videos within one set V s
si+

are relevant to each other and

share the same relevance properties, e.g. they show the same action. We calculate the prototype

for this set V s
p by:

µp =
∑
si∈V s

p

f(si) (6.9)

Let µp̂ be the prototype corresponding to the source video sn̂, i.e. sn̂ ∈ V s
p̂ , and therefore

V s
sn̂+

= V s
p̂ . Then, the confidence measure for pseudo-labelling the target video, ti, is calculated as

a function of the distance to the prototype µp̂, more precisely:

αti = e−d(f(ti),µp̂). (6.10)

Note that we propose to calculate the distance between the target video and the closest proto-

type µp̂, rather than the closest source video sn̂, so we increase the robustness by avoiding outliers

and considering the distance of the target video to all relevant source videos.

142



6.1. METHOD

Importantly, the embeddings f(ti), f(sn̂) and prototypes µp̂ depend on the learnt embedding

function f , and hence they continuously change over training iterations. Subsequently, the pseudo-

labelling and the confidence scores are also continuously changing, but it would be extremely

costly to update them for all target videos after every model update. Fortunately, this change is

progressive and updating them at the end of every epoch is sufficient.

Prototype Based Sampling (PBS). Using the proposed prototype confidence scores, we can sam-

ple the most reliable target videos, and use them for training our cross-domain losses (Eq. 6.6).

However, selected target videos do not only need to be reliable, they also need to widely cover

the different actions. Without sufficient coverage, some actions can be poorly aligned. As training

progresses, the variety of selected actions may decrease as the labelling gets biased towards actions

that are already aligned.

To avoid only aligning a few confident actions, and ignoring the others during domain align-

ment, we leverage the source prototypes. Let us consider the set of all target videos that are

pseudo-labelled using the source prototype p, i.e. their relevant source videos are V s
p . We would

like to select the most confident of these, per prototype, to maintain coverage. We thus propose to

sample the top x% most confident target videos assigned to each prototype, i.e. we rank the videos

assigned to V t
p based on the confidence scores αti and take the top x% of the list, for each prototype.

Thus, Our proposal can deal with imbalanced sets, maintaining the distribution of pseudo-labels,

when sampling the most confident ones.

To summarise, we align an embedding space (Sec. 6.1.1) by pseudo-labelling, sampling the

most confident target videos per prototype, and iterating.

6.1.5 Disentangled Embedding for Domain Adaptation

Recent works in text-to-video retrieval have shown that learning multiple embedding spaces for

different syntax in the textual caption may be beneficial [22, 204]. These learned a separate em-
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Figure 6.4: The JPOSE architecture learns a separate embedding between each disentangled parts-
of-speech in the caption (i.e. verbs and nouns) and the video features.

bedding for the nouns, verbs and sentences in the text [22, 204]. Due to our focus on fine-grained

actions, we follow the JPoSE architecture [22].

The advantage of JPoSE is that it separates the learning of objects (i.e. nouns) from their

manipulations (i.e. verbs). This is in contrast to a single embedding which is more likely to

overfit to certain object interactions (i.e. noun-verb pairs), which could affect the ability of the

retrieval system to generalise to new noun or verb categories. An overview of JPoSE is given in

Fig 6.4. The caption is parsed into the verbs and nouns, and a separate embedding for each is

trained. This disentangles the learning of objects and manipulations in the video, since the same

visual feature are used in both embeddings. The embedding vectors in all disentangled spaces

(visual or textual) are then concatenated to form the final embedding space used for retrieval. Each

embedding is trained using its own set of triplets involving embedding-specific relevance relations.

In the ‘verb’ embedding, all captions involving the verb (e.g. ‘cut’) are considered relevant to one

another, regardless of the object. Conversely, in the ‘noun’ embedding, all captions involving the

same noun are considered relevant.

Source domain losses (Eq 6.5 in Sec. 6.1.1) enforce the alignment between text and video in

each embedding space. Given Lp
s is the loss for part-of-speech p, the combined loss for the source
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domain is:

Ls = LVERB
s + LNOUN

s + LFINAL
s (6.11)

Aligning Target Videos in a Disentagled Embedding

The disentangled spaces learn generic concepts about actions, i.e. objects and manipulations, that

are likely to be common to both source and target domains. This is in contrast to the precise verb-

noun combinations (the action) learnt in the final embedding space. Therefore, it is hypothesised

that alignment of disentangled spaces would achieve better domain adaptation than aligning the

final embedding space.

Each embedding space is adapted to the target domain with the cross-domain alignment losses

(Sec. 6.1.2) and the target video pseudo-labelling strategy (Sec. 6.1.4). Target pseudo-labelling

is applied independently on each embedding space. For example, in the ‘verb’ embedding, the

target video will inherit a relevancy set of video that share the same verb prototype as the nearest

source video. The alignment losses are jointly optimised with source domain losses. Our proposed

alignment strategy can be applied to any number of embedding spaces:

Ours-Final Source and target videos are aligned in the final embedding space used to conduct

retrieval.

L = Ls + λF1 L
×FINAL

s→t + λF2 L
×FINAL

t→s (6.12)

Ours-PoS Source and target videos are aligned in the disentangled embedding spaces.

L = Ls+λ
V
1 L
×V ERB

s→t + λV2 L
×V ERB

t→s

λN1 L
×NOUN

s→t + λN2 L
×NOUN

t→s

(6.13)
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Ours Source and target videos are aligned in all embedding spaces.

L = Ls+λ
V
1 L
×V ERB

s→t + λV2 L
×V ERB

t→s

λN1 L
×NOUN

s→t + λN2 L
×NOUN

t→s

λF1 L
×FINAL

s→t + λF2 L
×FINAL

t→s

(6.14)

The advantage of Ours is that alignment is conducted in multiple views of the same video

features. Alignment in the disentangled embedding space may correct pseudo-labelling errors in

the final embedding space, and vice versa.

6.2 Experimental Evaluation

First, the proposed domain adaptation benchmark for text-to-video retrieval is defined in Sec 6.2.1,

followed by the implementation details of our method which is are detailed in Sec 6.2.2, and

the comparative baselines are presented in Sec. 6.2.3. The comparative results of our method

to the baselines is reported in Sec. 6.2.4, as well as an ablation of aligning different embedding

spaces. Next, the design choices of pseudo-labelling approach are analysed in Sec. 6.2.5. The

benefits of learning the disentangled embedding spaces over a single embedding are showcased

in Sec. 6.2.6. Finally, the qualitative results of our method are presented in Sec. 6.2.7, including

feature visualisations of the embedding spaces.

6.2.1 Dataset and Evaluation

Dataset. The proposed method is evaluated on EPIC-KITCHENS-100 [10], which provides videos

associated with free-form narrated captions of egocentric actions. The Source/Target split is eval-

uated in the context of action recognition in Chapter 5, but considers the class labels and not the
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Split Domain Participants Video Gallery Text Queries

TRAIN Source / Target 12 / 12 16115 / 26115 4756 / [5907†]

VAL Source / Target 4 / 4 5002 /7906 1805 / [2822∗]

Table 6.1: Proposed EPIC-KITCHENS benchmark. Note that [target text queries] are never used
for training. †: only used for evaluation *: only used for optimising hyper-parameters.

captions. The domain shift results from recording footage in different environments and recording

periods, and is discussed in detail in Chapter 5.

Proposed Benchmark. This chapter proposes the first benchmark for domain alignment in fine-

grained text-to-video retrieval (see Table 6.1). The proposed benchmark considers all videos from

the TRAIN/VAL UDA action recognition challenge (Chapter 5), as these contain released cap-

tions1. The VAL split of the UDA challenge is only used to select the hyperparameters. Once the

hyperparameters are decided, the model is trained on the TRAIN split. The model is trained with

Source videos and their captions, but only Target videos are used (no captions). At test time, the

model is evaluated by ranking the Target videos for each Target text query.

Evaluation. For evaluation, the gallery of videos is ranked in order of similarity to each text query

in the final embedding space. Given many videos can be relevant to the same caption, we consider

two metrics that determine the quality of the entire returned ranking: Mean Average Precision

(mAP) and Normalised Discounted Cumulative Gain (nDCG), as proposed by the multi-instance

action retrieval challenge for EPIC-KITCHENS-100 [10]. First, we outline how the relevancy is

computed between text queries and videos, before defining the metrics.

Actions in EPIC-KITCHENS-100 can be fully described by the verbs and nouns in the text

captions, therefore, we use the verb and noun classes to determine relevancy. We denote wVi and

wNi as the verb and noun classes for a textual query, wi. Similarly, vVj and vNj are the verb and

1The Test split in the challenge does not have released captions publicly available
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noun classes for a video in the gallery, vj . The relevancy R between wi and vj is defined as the

averaged Intersection-over-Union of the verb and noun classes:

R(wi, vj) =
1

2

(
|wvi ∩ vvj |
|wvi ∪ vvj |

+
|wNi ∩ vNj |
|wNi ∪ vNj |

)
(6.15)

Mean average precision (mAP) is the mean of the Average Precision (AP) evaluated for each

query, wi. AP is the area under the precision-recall curve, given a ranked gallery of videos, Vr,

containing N relevant videos to wi. This requires calculating the precision value of the first k

retrieved videos in the ranking, P@k, for every kth relevant video in the ranking.

AP (wi, Vr) =
1

N

|Vr|∑
k=1

P@k(Vr)× Ik (6.16)

The disadvantage of mAP is that it assumes binary relevancy, as represented by the indicator

function, I . For the kth video in the ranking, vk, the indicator function, Ik, is set to 1 ifR(wi, vk) >

0.5 and 0 otherwise.

The advantage of nDCG is that it allows non-binary relevancy. Given a query text, wi, and a

ranked gallery of videos, Vr, nDCG is defined as the Discounted Cumulative Gain (DCG) over the

Ideal Discounted Cumulative Gain (IDCG):

nDCG(wi, Vr) =
DCG(wi, Vr)

IDCG(wi, Vr)
(6.17)

with the DCG being given by:

DCG(wi, Vr) =

|Vr|∑
j=1

R(wi, vj)

log(j + 1)
(6.18)

IDCG represents the maximum possible nDCG score, which normalises the metric. Given V̂r is
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the gallery of videos sorted in order of relevance, then IDCG(wi, Vr) = DCG(wi, V̂r).

6.2.2 Implementation Details

Model and Pretraining. For our experiments, we use the public implementation of JPoSE [22]

as our base network and modify it for domain adaptation as described in Sec. 6.1.2 and 6.1.4. As

often in DA, first the network is pre-trained on source and use it to initialise the proposed do-

main alignment network. Then the proposed model is trained with cross-modal and cross-domain

ranking losses, where the source-target associations are obtained with the proposed target video

pseudo-labelling and sampling strategy. At the end of each epoch, the relevance sets are updated.

Architecture and Input Features. Video input features, V , are extracted from a TBN [23] model

pre-trained on the source domain videos from Train and Val splits. The 3072 dimensional feature

vector is a concatenation of RGB, Flow and Audio features—where audio is the natural sound

recorded with the video. The text features are a Word2Vec [217] descriptor of length 200, trained

on the Wikipedia corpus [242].

The base architecture is defined in JPOSE [22] where f(vi) and g(wi) are multi-layer percep-

trons with hidden layer sizes of 228 and 1664, respectively. The output video and text embeddings

are vectors of length 256. The action descriptor is of length 512, which is the concatenation of the

video and text embeddings.

For optimisation, weights are optimised by SGD with a learning rate of 0.01 and momentum

of 0.9. We also adopt a hard-negative mining strategy for the source-domain losses. This consid-

ers only negative examples from the nearest 30% of action prototypes to the action prototype of

the query. This decreased the number of epochs required for training the Source-Only model, in

addition to a small gain in text-to-video retrieval performance, as shown in appendix B.1.

Hyper-parameter Selection. The weights for the alignment losses, λ×s,t = λ×t,s = 0.1 were found

best when tuning on Val with values λ×s,t, λ
×
t,s ∈ {0.01, 0.1, 1.0}. The weights of the source losses,
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λs, were those defined in JPoSE [22]. The distance metric, d, used for pseudo-labelling and confi-

dence measures was the cosine distance.

To obtain results on the test set (Train Target), the network is then trained with all losses using

the hyper-parameters selected from the Val set. The network is trained for n epochs, where n

indicates the number of epochs used to train the best performing model on the Val set.

6.2.3 Baselines

As a lower bound, we include the non-adapted Source-Only results. Additionally, we implement

per-domain standardisation PDS which is a simple alignment technique where the input distri-

bution of each domain is standardised separately2. PDS decreases the domain shift. All meth-

ods —including ours—are trained with these standardised features. We compare our method to

classification-based (i.e. typical) domain alignment methods, that we modified for the task of

cross-modal video retrieval. All methods were hence trained and tested with the exact same proto-

col. We list them below.

From shallow models we test CORAL [57], which aligns second order statistics, and from

deep models we consider:

MMD [73] which minimises the discrepancy between source and target embeddings in Reproduc-

ing Kernel Hilbert Space (see Sec. 2.3.2 for more details).

GRL [4] which optimizes a domain discrimination loss in an adversarial manner (see Sec. 2.3.3

for more details).

Deep alignment methods, MMD and GRL, are optimised jointly with the source cross-modal em-

bedding. The weighting of the MMD loss, λmmd = 0.01, and GRL, λGRL = 0.0001 were found

using a grid-search in the range of [0.0001, 0.001, 0.01, 0.1, 1.0].

2For Source-Only, both Source and Target videos are standardised with the statistics of Train Source, whereas
PDS standardises Target videos with the statistics of Train Target
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We also compare to more recent conditional alignment approaches (discussed in detail in

Sec. 2.3.6), and adapt these by replacing the notion of classes with groups of relevant videos that

share the same prototype. In particular, we evaluate:

MSTN [133] which minimizes the Euclidean distance between the source and target prototypes.

TPN [134] which minimises the MMD between the source and target examples per prototype.

CDD [130] where the MMD is minimised within each prototype while maximised across exam-

ples belonging to differing prototypes.

For fairness, all conditional alignment methods use the same pseudo-labelling strategy as our

method and, to make sure conditional alignment baselines have a sufficient number of instances

per prototype, we compare alignment of the disentangled Part-of-Speech (PoS) embeddings.

The conditional alignment approaches (MSTN, TPN and CDD) utilise our proposed pseudo-

labelling strategy. First the networks are trained on the source domain, similarly to Ours. For these

baselines, we implement class-aware sampling [130] which ensures sufficient number of examples

for each prototype. This samples 30 instances from 32 different classes each mini-batch. For

classes containing less than 30 instances all instances of the class are used and classes containing

less than 3 samples are not sampled. The weighting for each loss is λMSTN = 0.1, λTPN = 0.1,

λCDD = 0.005 for MSTN, TPN and CDD, respectively. These were found using a grid-search in

the range of [0.0001, 0.001, 0.005, 0.01, 0.1, 1.0].

6.2.4 Comparative Results

Table 6.2(a) shows how the proposed method performs against models trained solely on source

(Source-Only) and both marginal and conditional alignment baselines. We report retrieval results

on Target VAL (referred to as Val) and on Target TRAIN (referred to as Test3). Surprisingly,

the simpler marginal alignment methods (PDS and CORAL) yield better performance than the
3We report best Val epoch based on nDCG and use it as early stopping criteria when testing on Target TRAIN.
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Method Alignment Space Val (Target VAL) Test (Target TRAIN)

PoS Final M C nDCG mAP nDCG mAP

(a)

Source-Only × × × × 40.45 7.32 35.25 5.05

PDS X × X × 40.78 7.65 35.96 5.42

CORAL [57] X × X × 40.70 7.79 36.32 5.38

MMD [73] X × X × 40.60 7.49 36.26 5.43

GRL [4] X × X × 42.45 5.20 36.64 5.61

TPN [134] X × X X 42.19 8.27 36.86 5.73

CDD [130] X × X X 42.00 8.48 36.48 5.80

MSTN [133] X × X X 42.85 8.63 37.62 5.87

Ours-PoS X × X X 43.14 8.59 38.06 6.21

(b)
Ours-Final × X X X 43.07 8.85 37.74 6.20

Ours X X X X 44.00 9.10 38.21 6.34

Table 6.2: (a) Comparison with alignment baselines (M: Marginal alignment, C: Conditional align-
ment). TPN, CDD, MSTN use our sampling strategy for fair comparison. (b) Which space(s) to
use for alignment: Disentangled Part-of-Speech or the Final embedding (see Sec. 6.1.5).

deep models (MMD) for our benchmark, but overall they provide marginal improvements over

the Source-Only model. Adversarial training (GRL) provides a larger improvement, however, we

find this to be highly unstable as training progresses. The conditional alignment approaches (TPN,

CDD, MSTN) perform better than marginal alignment, with MSTN performing the best. Our

approach (Ours-PoS), using cross-domain alignment, outperforms all baselines on Test.

Table 6.2(b) shows two alternatives of the proposed model: Ours-Final, where the domains are

aligned in the final embedding space, and Ours, where all embedding spaces are aligned. Even

with single-view domain alignment (Ours-Final), our approach outperforms all baselines. Finally,

by aligning all embeddings (Ours) jointly, we observe further improvements over Ours-PoS.
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(a) Labelling Method

Method Val Test

Proto 43.55 37.92± 0.12

Ours 44.00 38.21± 0.08

(b) Confidence Method

Method Val Test

Neighbour 43.79 37.64± 0.30

Ours 44.00 38.21± 0.08

(c) Target Video Sampling Method

Method Val Test

All 42.66 36.53± 0.14

Uniform (60%) 43.57 37.88± 0.08

Ours (60%) 44.00 38.21± 0.08

Table 6.3: Ablation Studies on labelling, confidence and sampling of pseudo-labels for text-to-
video Retrieval (nDCG). Mean and standard deviation over 3 runs, reported on the Test set.

6.2.5 Analysis of Target Pseudo-labelling Design Choices

This section verifies several design choices of our proposed target pseudo-labelling strategy . First,

the proposed pseudo-labelling, confidence and sampling strategies are compared to alternative ap-

proaches. Next, the impact of varying the proportion of pseudo-labelled target data during training

is assessed. Finally, an analysis of the pseudo-labels produced by the proposed and alternative

strategies is presented.

Table 6.3 answers the following questions on the target pseudo-labelling strategy:

How to pseudo-label? Table 6.3a shows that inheriting from the nearest source video performs

better than using the nearest prototype’s label (Proto) because it makes fewer assumptions on the

target distribution.
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How to assign confidence? Table 6.3b shows that the proposed confidence measure α—based on

the distance to the prototype—is more robust than using a confidence based on the distance to the

closest source video instead (Neighbour).

How to sample target videos? In Table 6.3c we compare the proposed sampling strategy to uniform

sampling (Uniform). By sampling confident examples per prototype, this ensures a variety of

actions is covered, thus improving the domain alignment. Without our sampling strategy, target

videos are sampled from fewer actions as training progresses. Both sampling approaches, Uniform

and Ours, outperform training with all pseudo-labelled target videos.
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Figure 6.5: Performance as we vary the proportion of target sampled.

How many are relevant? Figure 6.5 shows the impact of training with different proportions of

labelled target examples. The results are shown on Val. Removing the least confident examples

significantly improves target performance and that training with the most confident 60% performs

best. As expected, using all target instances (100%), which would include erroneous pseudo-labels,

leads to a substantial drop in performance. This validates our sampling proposal.

Table 6.4 compares the impact of the proposed method if pseudo-labelling or alignment uses

source text, instead of source videos. In both experiments cross-domain alignment is conducted in
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(a) Pseudo-Labelling Modality

Source Modality Val Test

Text 42.54 37.41± 0.13

Video (Our-PoS) 43.14 38.06± 0.12

(b) Alignment Modality

Source Modality Val Test

Text 42.81 38.08± 0.06

Video (Our-PoS) 43.14 38.06± 0.12

Table 6.4: Ablation on which source modality to use for pseudo-labelling and alignment, reporting
retrieval performance on Target (nDCG). Mean and standard deviation over 3 runs reported on the
Test set.

the disentangled part-of-speech embedding spaces, and is compared to Ours-PoS.

Which source modality should be used for pseudo-labelling? Table 6.3a shows that it is best to

pseudo-label target videos based on the nearest source videos, rather than the nearest source text.

Pseudo-labelling using source text introduces multiple sources of errors, induced by the visual

domain shift, and the misalignment between text and video. Pseudo-labelling using source videos

is more accurate, as only the visual domain shift is a source of error.

Which source modality should be used for alignment? Table 6.3b compares alignment of target

videos with relevant source texts or source videos. Similar performance on Test is achieved by

aligning target videos with source text or source videos sharing the same prototypes. The smaller

validation set (Val) shows improved performance by aligning target videos to source videos. This

is due to the fact there are fewer captions than videos, such that aligning source and target videos

is less likely to over-fit domain alignment.

Next, the accuracy and diversity of the pseudo-labels is analysed as training progresses. Fig-

ure 6.6 shows the pseudo-label accuracy over training epochs, which compares Ours to the alter-

native pseudo-labelling approaches, Neighbour and Proto, defined in the discussion of Table. 6.3.

Note that pseudo-label accuracy improves over training iterations as the domains are better aligned.

Ours, with the robust prototype-based confidence measure, outperforms using the distance to the
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Analysis of the accuracy of the pseudo-labels assigned to target videos

(a) Action (Final Embedding) (b) Verb (c) Noun

Figure 6.6: Pseudo-label accuracy for target videos in the final, verb and noun embedding as train-
ing progresses. Ours (BLUE) produces more accurate labels as training progresses compared to
alternative pseudo-labelling strategy, Proto (GREEN), and confidence measure, Neighbour (OR-
ANGE).

Analysis of the diversity of target video pseudo-labels

(a) Action (Final Embedding) (b) Verb (c) Noun

Figure 6.7: The percentage of prototypes (pseudo-labels) assigned to target videos in the final, verb
and noun embedding as training progresses. We see that Ours (BLUE) maintains a greater variety
of labels than uniform sampling (ORANGE).
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Architecture Method Val (nDCG) Test (nDCG)

SE
PDS 33.76 31.26± 0.04

Ours 34.58 31.67± 0.09

DE
PDS 40.78 35.96± 0.14

Ours 44.00 38.21± 0.08

Table 6.5: Comparison between a disentagled embeddding for each part-of-speech (DE) vs. a
single embedding (SE). PDS is trained only with source-domain losses, and Ours is trained with
the addition of cross-domain alignment losses. Sec. 6.2.3 for details on PDS.

nearest source video as the confidence measure (Neighbour). Pseudo-labelling based on the nearest

source prototype (Proto) incorrectly labels more target examples.

Our prototype sampling strategy produces more diverse pseudo-labels, compared to uniform

sampling. Figure 6.7 shows the percentage of prototypes assigned to all target examples as pseudo-

labels. Our proposed sampling strategy ensures that the target videos are assigned to a large variety

of prototypes, however, using uniform sampling favors assignments to prototypes corresponding

to large clusters, introducing an increasing bias towards them.

6.2.6 Single Embedding vs. Disentangled Embeddings

The architecture used throughout this thesis (including Ours) consists of a disentangled embedding

for each part-of-speech (DE). This section compares the performance of DE to a single embedding

(SE). SE is implemented with the same architecture as a single disentangled embedding (verb or

noun). Table 6.5 reports retrieval performance on Target for each architecture. Comparing to each

architecture trained with source-domain losses (PDS), DE produces higher retrieval performance

on the target gallery of videos compared to SE. This shows that learning disentangled embeddings
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is more suited for retreival than a single embedding, even without domain alignment. With the

addition of cross-domain alignment losses (Ours), retrieval performance for both architectures

improves. However, the relative improvement of domain adaptation on Test is 2.3% for DE and

0.4% for SE. This shows that our method is beneficial for both architectures, but is most effective

when disentangled embedding spaces are learnt.

6.2.7 Qualitative Results

First, this section shows examples of videos retrieved from the embedding learned with Source-

Only, and the proposed method, Ours. Next, feature spaces are visualised showing the alignment

of source and target videos, in addition to the alignment of target videos to target text queries.
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1 10

Pour oil from bottle 
into bowl

Lather cutting board

P01_105_696

4 11

Turn chicken

14 50

P26_117_104

Put rolling pin in drawer

12 2

P04_109_539

Query:

Corresponding 
Video

Rank of video:

:

Figure 6.8: Qualitative results of text-to-video retrieval. We show the query caption and the corre-
sponding video along with the change in rank, A ← B, of the proposed method (A) and Source-
Only baseline (B).

Figure 6.8 shows how the rank of the first relevant video to specified text queries changes

from the Source-Only model and Ours. Ours results in more relevant videos retrieved higher

in the ranking, however, some failure cases exist. The video of ‘put rolling pin in drawer’ is

retrieved lower in the ranking, with videos depicting actions of moving utensils retrieved higher in

the ranking.

Fig. 6.10 shows the UMAP visualisation of the final embedding space for Source-Only (Top)

and Ours (Bottom). Ours not only shows greater alignment of source (BLUE) and target (OR-

ANGE) videos but more distinct clusters of videos depicting the same action/part-of-speech. The
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Figure 6.9: UMAP visualisation of final embedding, Target in ORANGE and Source in BLUE.
Top: Source-Only, Bottom: Ours
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(a) Verb Embedding

(b) Noun Embedding

Figure 6.10: UMAP visualisation of the disentagled part-of-speech embeddings, Target in OR-
ANGE and Source in BLUE. LEFT: Source-Only, RIGHT: Ours
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6.3. AN EXPLORATION INTO CROSS-DATASET ADAPTATION FOR FINE-GRAINED
ACTION RETRIEVAL

UMAP visualisations in the disentangled part-of-speech embedding space is shown in Fig. 6.10.

The embedding spaces for Source-Only (LEFT) show a larger domain shift between videos in the

noun embedding than the verb embedding. However, our proposed method (RIGHT) is able to

align both verb and noun embedding spaces.

Fig. 6.9 shows the UMAP visualisation of the target videos (ORANGE) and target text (other

colours). Target-text were used as queries to evaluate text-to-video retrieval, but were not present

during training. For clarity, we only show the text embedding from the 20 verb/noun prototypes

with the most videos. Target text is aligned with target video clusters.

6.3 An Exploration into Cross-dataset Adaptation for Fine-grained

Action Retrieval

The source and target domain in this chapter contained videos of cooking actions from a first

person perspective. However, one may want to retrieve video snippets of fine-grained actions from

instructional videos on the web. This work would adapt a text-to-video retrieval system trained

on EPIC-KITCHENS to a smaller dataset of instructional cooking videos taken from the web,

YouCook2 [150].

YouCook2 is a dataset of cooking videos taken from the web, with annotated actions. In total,

15,000 descriptions of short action sequences have temporal annotations, in contrast to the 90,000

annotated fine-grained actions in EPIC-KITCHENS-100. Due to the larger size, EPIC-KITCHENS

will be the source domain, while YouCook2 will be the target domain. The difficulty of this text-

to-video retrieval task is the large domain shift between the two datasets in both the video and text

modalities:

The Visual Domain Gap YouCook2 contains instructional videos, while EPIC-KITCHENS con-

tains video footage of participants unscripted, household activities. This leads to a large
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(a) Noun embedding

(b) Verb embedding

Figure 6.11: UMAP visualisation of chosen target text queries and all target videos. Visualising
text queries from 20 part-of-speech prototypes which have the most videos. Target videos are
shown in ORANGE.
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ACTION RETRIEVAL

Figure 6.12: Example frames from EPIC-KITCHENS-100 (Left) and YouCook2 (Right)

difference in the video content and the type of camera shots, as shown in Fig. 6.12. While

the camera shots vary in YouCook2, most action sequences are extreme closeups on the ac-

tion, taken from a third person perspective. This is in contrast to the first person footage

in EPIC-KITCHENS. In addition, the videos in YouCook2 can contain transitions between

different camera shots, and text is sometimes overlaid onto the video.

Careful consideration will be needed to choose the feature extractor for the visual modalities,

as this must perform well on both first person and third person video. Future research could

focus on training a feature extractor to perform well on downstream tasks for both first-

person and third person video. This was explored recently in Ego-Exo [243], which utilised

knowledge distillation losses to learn egocentric ques from third person video when training

models on Kinetics [26].

Different Temporal Granularity The annotated temporal bounds of actions in YouCook2 con-

tain multiple fine-grained actions. The mean length of an action sequence is 19.6s. In con-
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trast, EPIC-KITCHENS contains a single annotated fine-grained action that lasts on average

3.7s. A cross-modal embedding trained on single actions (i.e. EPIC-KITCHENS), may not

generalise to the multiple actions described in captions of YouCook2’s video sequences.

Future research could combine consecutive instances from EPIC-KITCHENS, in order to

model action sequences instead of a single action. The input video would span the length

of multiple actions, while the text modality could contain the nouns and verbs describing all

actions depicted in the video .

Semantic Shift The meaning of verbs between YouCook2 and EPIC-KITCHENS differs greatly.

YouCook2 annotations typically describe instructions, similar to that in a recipe book (e.g.

‘add oil to pan’ and ‘season water’). While annotations in EPIC-KITCHENS describe how

the action is taking place (e.g. ‘pour oil into pan’ and ‘sprinkle salt into pan’ ).

In order to simplify the problem, a small portion of the YouCook2 videos should be re-

annotated in the style of EPIC-KITCHENS, and used for evaluation. Initial research can

then focus on overcoming the visual domain gap, while avoiding the issue of the semantic

shift between the text captions. Later research could utilise a limited number of YouCook2

captions to learn how to map EPIC-KITCHENS captions into the style of YouCook2.

Given the challenges we found with this exploration, this direction was not further explored

and next steps are left for future work.

6.4 Conclusion

In this work, we have introduced the problem of unsupervised domain adaption for text-to-video

retrieval. Given a source dataset of captioned videos for training, the goal is to perform retrieval

on a distinct target set of uncaptioned videos. Our experiments show that marginal alignment

approaches commonly used for domain adaptation lead to underwhelming results on this task,
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as they are unable to align the local structure of the embeddings. At the heart of our proposed

approach lies an iterative pseudo-labelling process, which associates source and target samples

at train time. These pseudo-labelled samples fuel our cross-domain cross-modal learning-to-rank

approach which aligns the source and the target video galleries. Our experiments validate this strat-

egy and highlight the importance of selecting confident target examples, using source prototypes,

during alignment.

This work is not without limitations. Our work assumes the text in the source and target do-

mains is written in a similar style, with a large overlap in their vocabulary. However, in addition

to video, text could also exhibit a large domain shift. Future work could explore the domain shift

between the text in the source and the target domain.

This work has helped mitigate the impact of misalignment due to differing classes in source

and target domains with our prototype sampling strategy, which aims to sample on classes that are

shared between the source and the target domains. In addition, aligning individual parts-of-speech

helps in this open-set setting as verbs and nouns are more likely to be common to both domains,

compared to their combinations (actions) which will be less likely to be shared in both domains.

The limitation of our approach is that it still assumes a large overlap of verb and noun classes.

Future work could look into the open-set setting where there is severely limited overlap in classes.
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Chapter 7

Conclusion

Dataset bias remains an issue for fine-grained action understanding, since datasets collect long,

untrimmed videos, with a limited number of participants, locations and cameras. Surprisingly,

little attention has been given to the domain shift between videos during training, and videos en-

countered when models are deployed. This thesis explored unsupervised domain adaptation in

order to improve the performance of fine-grained action understanding tasks under a domain shift.

Several domain shifts were shown to affect the performance of fine-grained action understand-

ing tasks. Chapter 4 showed that training fine-grained action recognition models with videos cap-

tured in a single location, greatly impacts the ability of models to generalise to new environments.

In addition, Chapter 5 highlighted a domain shift that occurs between the videos of the same partic-

ipants captured two-years apart. The wear and tear in the environment, new objects, and different

cameras used to film the participants, all contribute to the domain shift between the footage taken

two-years apart. This affects the performance of both action recognition (Chapter 5) and text-to-

video retrieval (Chapter 6).

Video provides additional opportunities for domain adaptation compared to image based ap-

proaches, including the presence of multiple time-synchronised modalities. Chapter 4 showed that
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three modalities available to video (appearance, motion and sound) have differing levels of robust-

ness to changes in the environment, which can be exploited for domain adaptation. The proposed

multi-modal self-supervised objective improves the recognition of both the verbs and nouns used

to describe actions, when evaluated in the target environment. This was the first work in video to

use multiple modalities for domain adaptation, and has inspired further research into multi-modal

domain adaptation [42, 44, 129].

Self-supervision is an effective domain adaptation method in the open-set setting, as shown in

Chapter 4. Unlike common approaches in domain adaptation, which assume the ideal feature rep-

resentation is one where the source and target videos aligned (Chapter 2), self-supervision does not

impose assumptions on the distributions of each domain. This is important for open-set adaptation

as the domains do not share the same label space. Self-supervision provides a promising direction

for future open-set domain adaptation research.

Chapter 6 explored domain adaptation in the context of text-to-video. This showed that align-

ing videos that depict the same action, outperforms methods that align the marginal distributions of

the source and target domains. In the absence of text descriptions of actions in the target domain,

a pseudo-labelling strategy was proposed. A robust confidence measure was proposed to select the

most confidently pseudo-labelled target videos for training. This improved retrieval performance

by reducing the impact of noisy pseudo-labels. Rather than aligning visual representations of ac-

tions (verb-noun combinations), Chapter 6 showed that separating learning of objects (nouns) from

manipulations that are independent of the object (verbs) can improve target domain performance.

This improvement is due to the learning of more generic semantic concepts that are more likely to

be shared by videos in both source and target domains.

The collection of untrimmed, unscripted video provides a practical setting for domain adapta-

tion, whereas most domain adaptation benchmarks are created from curated datasets [1, 2, 60, 78,

88, 234]. Many action recognition datasets [25, 26, 146] contain carefully selected videos, such

that the vast majority are relevant for the task of action recognition. In addition, the videos are often
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trimmed such that the action is depicted in most of the video. Prior domain adaptation benchmarks

use these datasets as an unlabelled target domain [1, 2]. However, this ignores the fact that these

videos are chosen specifically for the target task, and will differ greatly from uncurated real-world

footage. Datasets of fine-grained actions provide long, untrimmed videos, by observing the nat-

ural interactions of participants with their environments. This provides a promising direction for

evaluating unsupervised domain adaptation.

7.1 Future Work

This thesis, in-particular Chapter 4, showed the benefits of using multiple modalities of video,

via self-supervision, to improve domain adaptation for fine-grained action recognition. However,

several limitations of the current approach exists which are discussed further in Section 7.1.1. In

addition, Chapter 6 showed the benefits of aligning local structures with the action understanding

task in mind, using pseudo-labels to reason about the action labels for target videos. However,

this didn’t fully exploit the multiple modalities of video, which we discuss in more detail in Sec-

tion 7.1.2.

Several outstanding challenges remain for domain adaptation for fine-grained action under-

standing. The first is the assumption of actions can be detected effectively in the target domain and

the task is to only recognise the actions. This is discussed in more detail in Section 7.1.3. The sec-

ond is the requirement of target data that is needs to be available, and is discussed in Section 7.1.4.

Finally, the same semantics of labels are needed for both the source and target domain classes, and

is discussed further in Section 7.1.5.
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7.1.1 Additional or Improved Self-supervised Objectives

Chapter 4 showed that self-supervision is an effective strategy to utilise multi-modal video data for

domain adaptation. However, the separate loss for the distribution alignment and self-supervision

do not always work well together. Future work can look into how to combine the distribution

alignment and multi-modal self-supervision into a single loss.

The training of the temporal correspondence objective could be improved with the use of hard-

negatives to increase the difficulty of the self-supervised task. The proposed self-supervised loss

showed little signs of over-fitting, despite the saturated training loss. Hard-negatives may be able

to further improve the temporal correspondence between modalities, as this would focus the loss

on non-corresponding modalities that are temporally close in time.

Additional self-supervised objectives may be useful for domain adaptation of fine-grained ac-

tions. Recent work has also shown that predicting the temporal order of frames can improve do-

main adaptation for course-grained actions [43]. Improved target performance could be achieved

by jointly optimising multiple self-supervised objectives, which applied to both source and target,

may enable the model to learn different properties of video that are common to both domains.

7.1.2 Classifier Adaptation with Multi-modal Agreement

Chapter 4 focused on utilising multiple modalities to align the feature representations from both

source and target domains. However, the classifier has not been refined with target data to improve

action recognition. Additionally, Chapter 6 showed the benefits of refining models with pseudo-

labelled target videos to improve action understanding.

Many pseudo-labels (classifier predictions) will be incorrect and it is hypothesised that the

consensus from multiple modalities can increase the proportion of pseudo-labels matching the

ground-truth. Given the classifier response, pm(xt), from m ∈ M modalities, a subset of target
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examples, X t
c can be selected to refine the multi-modal classifier.

X t
c = {x ∈ X t | argmax pm(xt) = argmax pm

′
(xt) ∀m ∈M ∧m′ ∈M} (7.1)

Recent work [129] has shown large improvements using a similar multi-modal consensus strat-

egy on more balanced datasets. However, our initial experiments training with a selected subset

produced by the consensus of Flow and RGB modalities worsened action recognition performance,

as it exaggerated the bias towards the overly confident majority classes. A future research direc-

tion could find out how to overcome the large class imbalance, when generating pseudo-labels with

multi-modal data.

7.1.3 Domain Adaptation for Action Detection

The main limitation of this thesis is the assumption that start and end times of actions in the

target domain are available during training. In practice, this would require an additional annotation

effort, or a generic action detector to determine the start and end times. Ideally, domain adaptation

methods should be able to adapt to untrimmed video in the target domain.

7.1.4 Domain Generalisation

For some applications, it may be impractical to collect any video data from the target domain. This

would require models to generalise to new domains, without observing target data. Future research

could train models on multiple source domains (e.g. video from multiple participants) in order to

generalise to an unseen target domain (e.g. an unseen participant).
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7.1.5 Cross-dataset Domain Adaptation

Finally, this work only considered the domain gap between videos within EPIC-KITCHENS-100,

however, cross-dataset adaptation also introduces additional challenges. The semantics between

the action labels and/or descriptions will vary due the ambiguous nature of verbs. In addition there

will exist a larger visual shift, especially in the case of a viewpoint change.
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Appendix A

MM-SADA Results

A.1 Individual Performance of Modalities

The performance of the individual modalities of the source-only, adversarial-only and MM-SADA

models are shown in Fig A.1. Note that these models were trained with the late-fusion of modal-

ities, and their multi-modal performance is shown in Table 4.5. MM-SADA outperforms both

adversarial-only and source-only, on both RGB and Flow.

A.2 Additional Confusion Plots

The confusion plots for MM-SADA and source-only, evaluated on the domain pairs not provided

in Fig. 4.7, are shown in Fig. A.1
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A.2. ADDITIONAL CONFUSION PLOTS

Source-Only AR = 25.8

MM-SADA AR = 33.6

(a) D1)D3

Source-Only AR = 36.7

MM-SADA AR = 39.6

(b) D2)D3

Source-Only AR = 58.8

MM-SADA AR = 58.7

(c) D3)D2

Figure A.1: Confusion matrices of MM-SADA (bottom) and Source-Only (top) for domain pairs
not shown in Fig. 4.7.
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APPENDIX A. MM-SADA RESULTS

D2 ) D1 D3 ) D1 D1 ) D2 D3 ) D2 D1 ) D3 D2 ) D3 Mean

RGB source-only 37.0 36.3 36.1 44.8 36.6 33.6 37.4

RGB (Adversarial-only) 37.8 41.1 45.7 45.1 38.1 41.2 41.5

RGB (MM-SADA) 41.7 42.1 45.0 48.4 39.7 46.1 43.9

Flow source-only 44.6 44.4 52.2 54.0 41.1 50.0 47.7

Flow (Adversarial-only) 45.5 46.8 51.1 54.6 44.2 47.1 48.2

Flow (MM-SADA) 45.0 45.7 49.0 58.9 44.8 52.1 49.3

Table A.1: Ablation of MM-SADA on individual modalities, reporting predictions from each
modality stream before late fusion. Different from Table. 4.7, modalities are trained with a single
multi-modal action classification loss.
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Appendix B

Text-to-Video Retreival

B.1 Hard Negative Mining for Source Domain Losses

The negative examples for the source domain triplet losses (Eq. 6.5), are randomly selected from

instances assigned to the nearest 30% of prototypes to the anchor, after the fifth epoch. This

percentage found best through a grid search in range: [10%, 30%, 50%, 70%, 90%, 100%]. For the

first 5 epochs, negative instances are randomly sampling from all prototypes, as distances between

examples will not be semantically meaningful before an embedding is learnt.

Figure B.1 compares the proposed hard-negative sampling strategy to randomly sampling from

all prototypes as done in JPOSE [22]. The main improvement of hard-negative mining is the faster

convergence, only 10 epochs is needed to reach the same performance of JPOSE [22] after 50

epochs.
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Figure B.1: Comparison of hard-negative mining negatives vs. random sampling.
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Saminger-Platz. Central moment discrepancy (cmd) for domain-invariant representation

learning. In International Conference on Learning Representations, 2017.

[76] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adapta-

tion. In European Conference on Computer Vision Workshop, 2016.

[77] Bharath Bhushan Damodaran, Benjamin Kellenberger, Rémi Flamary, Devis Tuia, and
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