230 research outputs found

    Unsupervised Domain Adaptation for Automatic Estimation of Cardiothoracic Ratio

    Get PDF
    The cardiothoracic ratio (CTR), a clinical metric of heart size in chest X-rays (CXRs), is a key indicator of cardiomegaly. Manual measurement of CTR is time-consuming and can be affected by human subjectivity, making it desirable to design computer-aided systems that assist clinicians in the diagnosis process. Automatic CTR estimation through chest organ segmentation, however, requires large amounts of pixel-level annotated data, which is often unavailable. To alleviate this problem, we propose an unsupervised domain adaptation framework based on adversarial networks. The framework learns domain invariant feature representations from openly available data sources to produce accurate chest organ segmentation for unlabeled datasets. Specifically, we propose a model that enforces our intuition that prediction masks should be domain independent. Hence, we introduce a discriminator that distinguishes segmentation predictions from ground truth masks. We evaluate our system's prediction based on the assessment of radiologists and demonstrate the clinical practicability for the diagnosis of cardiomegaly. We finally illustrate on the JSRT dataset that the semi-supervised performance of our model is also very promising.Comment: Accepted by MICCAI 201

    Curriculum semi-supervised segmentation

    Full text link
    This study investigates a curriculum-style strategy for semi-supervised CNN segmentation, which devises a regression network to learn image-level information such as the size of a target region. These regressions are used to effectively regularize the segmentation network, constraining softmax predictions of the unlabeled images to match the inferred label distributions. Our framework is based on inequality constraints that tolerate uncertainties with inferred knowledge, e.g., regressed region size, and can be employed for a large variety of region attributes. We evaluated our proposed strategy for left ventricle segmentation in magnetic resonance images (MRI), and compared it to standard proposal-based semi-supervision strategies. Our strategy leverages unlabeled data in more efficiently, and achieves very competitive results, approaching the performance of full-supervision.Comment: Accepted as paper as MICCAI 2O1

    CEmb-SAM: Segment Anything Model with Condition Embedding for Joint Learning from Heterogeneous Datasets

    Full text link
    Automated segmentation of ultrasound images can assist medical experts with diagnostic and therapeutic procedures. Although using the common modality of ultrasound, one typically needs separate datasets in order to segment, for example, different anatomical structures or lesions with different levels of malignancy. In this paper, we consider the problem of jointly learning from heterogeneous datasets so that the model can improve generalization abilities by leveraging the inherent variability among datasets. We merge the heterogeneous datasets into one dataset and refer to each component dataset as a subgroup. We propose to train a single segmentation model so that the model can adapt to each sub-group. For robust segmentation, we leverage recently proposed Segment Anything model (SAM) in order to incorporate sub-group information into the model. We propose SAM with Condition Embedding block (CEmb-SAM) which encodes sub-group conditions and combines them with image embeddings from SAM. The conditional embedding block effectively adapts SAM to each image sub-group by incorporating dataset properties through learnable parameters for normalization. Experiments show that CEmb-SAM outperforms the baseline methods on ultrasound image segmentation for peripheral nerves and breast cancer. The experiments highlight the effectiveness of Cemb-SAM in learning from heterogeneous datasets in medical image segmentation tasks
    • …
    corecore