14 research outputs found

    Improving Commonsense Causal Reasoning by Adversarial Training and Data Augmentation

    Full text link
    Determining the plausibility of causal relations between clauses is a commonsense reasoning task that requires complex inference ability. The general approach to this task is to train a large pretrained language model on a specific dataset. However, the available training data for the task is often scarce, which leads to instability of model training or reliance on the shallow features of the dataset. This paper presents a number of techniques for making models more robust in the domain of causal reasoning. Firstly, we perform adversarial training by generating perturbed inputs through synonym substitution. Secondly, based on a linguistic theory of discourse connectives, we perform data augmentation using a discourse parser for detecting causally linked clauses in large text, and a generative language model for generating distractors. Both methods boost model performance on the Choice of Plausible Alternatives (COPA) dataset, as well as on a Balanced COPA dataset, which is a modified version of the original data that has been developed to avoid superficial cues, leading to a more challenging benchmark. We show a statistically significant improvement in performance and robustness on both datasets, even with only a small number of additionally generated data points.Comment: 7 pages + pages references, 4 figures, 3 tables, paper accepted at AAAI202

    Knowledge-driven Data Construction for Zero-shot Evaluation in Commonsense Question Answering

    Full text link
    Recent developments in pre-trained neural language modeling have led to leaps in accuracy on commonsense question-answering benchmarks. However, there is increasing concern that models overfit to specific tasks, without learning to utilize external knowledge or perform general semantic reasoning. In contrast, zero-shot evaluations have shown promise as a more robust measure of a model's general reasoning abilities. In this paper, we propose a novel neuro-symbolic framework for zero-shot question answering across commonsense tasks. Guided by a set of hypotheses, the framework studies how to transform various pre-existing knowledge resources into a form that is most effective for pre-training models. We vary the set of language models, training regimes, knowledge sources, and data generation strategies, and measure their impact across tasks. Extending on prior work, we devise and compare four constrained distractor-sampling strategies. We provide empirical results across five commonsense question-answering tasks with data generated from five external knowledge resources. We show that, while an individual knowledge graph is better suited for specific tasks, a global knowledge graph brings consistent gains across different tasks. In addition, both preserving the structure of the task as well as generating fair and informative questions help language models learn more effectively.Comment: AAAI 202

    Judgment aggregation, discursive dilemma and reflective equilibrium: Neural language models as self-improving doxastic agents

    Get PDF
    Neural language models (NLMs) are susceptible to producing inconsistent output. This paper proposes a new diagnosis as well as a novel remedy for NLMs\u27 incoherence. We train NLMs on synthetic text corpora that are created by simulating text production in a society. For diagnostic purposes, we explicitly model the individual belief systems of artificial agents (authors) who produce corpus texts. NLMs, trained on those texts, can be shown to aggregate the judgments of individual authors during pre-training according to sentence-wise vote ratios (roughly, reporting frequencies), which inevitably leads to so-called discursive dilemmas: aggregate judgments are inconsistent even though all individual belief states are consistent. As a remedy for such inconsistencies, we develop a self-training procedure—inspired by the concept of reflective equilibrium—that effectively reduces the extent of logical incoherence in a model\u27s belief system, corrects global mis-confidence, and eventually allows the model to settle on a new, epistemically superior belief state. Thus, social choice theory helps to understand why NLMs are prone to produce inconsistencies; epistemology suggests how to get rid of them

    COMET-ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

    Full text link
    Recent years have brought about a renewed interest in commonsense representation and reasoning in the field of natural language understanding. The development of new commonsense knowledge graphs (CSKG) has been central to these advances as their diverse facts can be used and referenced by machine learning models for tackling new and challenging tasks. At the same time, there remain questions about the quality and coverage of these resources due to the massive scale required to comprehensively encompass general commonsense knowledge. In this work, we posit that manually constructed CSKGs will never achieve the coverage necessary to be applicable in all situations encountered by NLP agents. Therefore, we propose a new evaluation framework for testing the utility of KGs based on how effectively implicit knowledge representations can be learned from them. With this new goal, we propose ATOMIC 2020, a new CSKG of general-purpose commonsense knowledge containing knowledge that is not readily available in pretrained language models. We evaluate its properties in comparison with other leading CSKGs, performing the first large-scale pairwise study of commonsense knowledge resources. Next, we show that ATOMIC 2020 is better suited for training knowledge models that can generate accurate, representative knowledge for new, unseen entities and events. Finally, through human evaluation, we show that the few-shot performance of GPT-3 (175B parameters), while impressive, remains ~12 absolute points lower than a BART-based knowledge model trained on ATOMIC 2020 despite using over 430x fewer parameters
    corecore