24,228 research outputs found

    Unsupervised Social Event Detection via Hybrid Graph Contrastive Learning and Reinforced Incremental Clustering

    Full text link
    Detecting events from social media data streams is gradually attracting researchers. The innate challenge for detecting events is to extract discriminative information from social media data thereby assigning the data into different events. Due to the excessive diversity and high updating frequency of social data, using supervised approaches to detect events from social messages is hardly achieved. To this end, recent works explore learning discriminative information from social messages by leveraging graph contrastive learning (GCL) and embedding clustering in an unsupervised manner. However, two intrinsic issues exist in benchmark methods: conventional GCL can only roughly explore partial attributes, thereby insufficiently learning the discriminative information of social messages; for benchmark methods, the learned embeddings are clustered in the latent space by taking advantage of certain specific prior knowledge, which conflicts with the principle of unsupervised learning paradigm. In this paper, we propose a novel unsupervised social media event detection method via hybrid graph contrastive learning and reinforced incremental clustering (HCRC), which uses hybrid graph contrastive learning to comprehensively learn semantic and structural discriminative information from social messages and reinforced incremental clustering to perform efficient clustering in a solidly unsupervised manner. We conduct comprehensive experiments to evaluate HCRC on the Twitter and Maven datasets. The experimental results demonstrate that our approach yields consistent significant performance boosts. In traditional incremental setting, semi-supervised incremental setting and solidly unsupervised setting, the model performance has achieved maximum improvements of 53%, 45%, and 37%, respectively.Comment: Accepted by Knowledge-Based System

    Name Disambiguation from link data in a collaboration graph using temporal and topological features

    Get PDF
    In a social community, multiple persons may share the same name, phone number or some other identifying attributes. This, along with other phenomena, such as name abbreviation, name misspelling, and human error leads to erroneous aggregation of records of multiple persons under a single reference. Such mistakes affect the performance of document retrieval, web search, database integration, and more importantly, improper attribution of credit (or blame). The task of entity disambiguation partitions the records belonging to multiple persons with the objective that each decomposed partition is composed of records of a unique person. Existing solutions to this task use either biographical attributes, or auxiliary features that are collected from external sources, such as Wikipedia. However, for many scenarios, such auxiliary features are not available, or they are costly to obtain. Besides, the attempt of collecting biographical or external data sustains the risk of privacy violation. In this work, we propose a method for solving entity disambiguation task from link information obtained from a collaboration network. Our method is non-intrusive of privacy as it uses only the time-stamped graph topology of an anonymized network. Experimental results on two real-life academic collaboration networks show that the proposed method has satisfactory performance.Comment: The short version of this paper has been accepted to ASONAM 201

    Typical Phone Use Habits: Intense Use Does Not Predict Negative Well-Being

    Full text link
    Not all smartphone owners use their device in the same way. In this work, we uncover broad, latent patterns of mobile phone use behavior. We conducted a study where, via a dedicated logging app, we collected daily mobile phone activity data from a sample of 340 participants for a period of four weeks. Through an unsupervised learning approach and a methodologically rigorous analysis, we reveal five generic phone use profiles which describe at least 10% of the participants each: limited use, business use, power use, and personality- & externally induced problematic use. We provide evidence that intense mobile phone use alone does not predict negative well-being. Instead, our approach automatically revealed two groups with tendencies for lower well-being, which are characterized by nightly phone use sessions.Comment: 10 pages, 6 figures, conference pape

    Unsupervised improvement of named entity extraction in short informal context using disambiguation clues

    Get PDF
    Short context messages (like tweets and SMS’s) are a potentially rich source of continuously and instantly updated information. Shortness and informality of such messages are challenges for Natural Language Processing tasks. Most efforts done in this direction rely on machine learning techniques which are expensive in terms of data collection and training. In this paper we present an unsupervised Semantic Web-driven approach to improve the extraction process by using clues from the disambiguation process. For extraction we used a simple Knowledge-Base matching technique combined with a clustering-based approach for disambiguation. Experimental results on a self-collected set of tweets (as an example of short context messages) show improvement in extraction results when using unsupervised feedback from the disambiguation process

    Semantics-driven event clustering in Twitter feeds

    Get PDF
    Detecting events using social media such as Twitter has many useful applications in real-life situations. Many algorithms which all use different information sources - either textual, temporal, geographic or community features - have been developed to achieve this task. Semantic information is often added at the end of the event detection to classify events into semantic topics. But semantic information can also be used to drive the actual event detection, which is less covered by academic research. We therefore supplemented an existing baseline event clustering algorithm with semantic information about the tweets in order to improve its performance. This paper lays out the details of the semantics-driven event clustering algorithms developed, discusses a novel method to aid in the creation of a ground truth for event detection purposes, and analyses how well the algorithms improve over baseline. We find that assigning semantic information to every individual tweet results in just a worse performance in F1 measure compared to baseline. If however semantics are assigned on a coarser, hashtag level the improvement over baseline is substantial and significant in both precision and recall
    corecore