5 research outputs found

    Artificial intelligence enabled automatic traffic monitoring system

    Get PDF
    The rapid advancement in the field of machine learning and high-performance computing have highly augmented the scope of video-based traffic monitoring systems. In this study, an automatic traffic monitoring system is proposed that deploys several state-of-the-art deep learning algorithms based on the nature of traffic operation. Taking advantage of a large database of annotated video surveillance data, deep learning-based models are trained to track congestion, detect traffic anomalies and tabulate vehicle counts. To monitor traffic queues, this study implements a Mask region-based convolutional neural network (Mask R-CNN) that predicts congestion using pixel-level segmentation masks on classified regions of interest. Similarly, the model was used to accurately extract traffic queue-related information from infrastructure mounted video cameras. The use of infrastructure-mounted CCTV cameras for traffic anomaly detection and verification is further explored. Initially, a convolutional neural network model based on you only look once (YOLO), a popular deep learning framework for object detection and classification is deployed. The following identification model, together with a multi-object tracking system (based on intersection over union -- IOU) is used to search for and scrutinize various traffic scenes for possible anomalies. Likewise, several experiments were conducted to fine-tune the system's robustness in different environmental and traffic conditions. Some of the techniques such as bounding box suppression and adaptive thresholding were used to reduce false alarm rates and refine the robustness of the methodology developed. At each stage of our developments, a comparative analysis is conducted to evaluate the strengths and limitations of the proposed approach. Likewise, IOU tracker coupled with YOLO was used to automatically count the number of vehicles whose accuracy was later compared with a manual counting technique from CCTV video feeds. Overall, the proposed system is evaluated based on F1 and S3 performance metrics. The outcome of this study could be seamlessly integrated into traffic system such as smart traffic surveillance system, traffic volume estimation system, smart work zone management systems, etc.by Vishal MandalIncludes bibliographical reference

    A Deep Learning Approach for Spatiotemporal-Data-Driven Traffic State Estimation

    Get PDF
    The past decade witnessed rapid developments in traffic data sensing technologies in the form of roadside detector hardware, vehicle on-board units, and pedestrian wearable devices. The growing magnitude and complexity of the available traffic data has fueled the demand for data-driven models that can handle large scale inputs. In the recent past, deep-learning-powered algorithms have become the state-of-the-art for various data-driven applications. In this research, three applications of deep learning algorithms for traffic state estimation were investigated. Firstly, network-wide traffic parameters estimation was explored. An attention-based multi-encoder-decoder (Att-MED) neural network architecture was proposed and trained to predict freeway traffic speed up to 60 minutes ahead. Att-MED was designed to encode multiple traffic input sequences: short-term, daily, and weekly cyclic behavior. The proposed network produced an average prediction accuracy of 97.5%, which was superior to the compared baseline models. In addition to improving the output performance, the model\u27s attention weights enhanced the model interpretability. This research additionally explored the utility of low-penetration connected probe-vehicle data for network-wide traffic parameters estimation and prediction on freeways. A novel sequence-to-sequence recurrent graph networks (Seq2Se2 GCN-LSTM) was designed. It was then trained to estimate and predict traffic volume and speed for a 60-minute future time horizon. The proposed methodology generated volume and speed predictions with an average accuracy of 90.5% and 96.6%, respectively, outperforming the investigated baseline models. The proposed method demonstrated robustness against perturbations caused by the probe vehicle fleet\u27s low penetration rate. Secondly, the application of deep learning for road weather detection using roadside CCTVs were investigated. A Vision Transformer (ViT) was trained for simultaneous rain and road surface condition classification. Next, a Spatial Self-Attention (SSA) network was designed to consume the individual detection results, interpret the spatial context, and modify the collective detection output accordingly. The sequential module improved the accuracy of the stand-alone Vision Transformer as measured by the F1-score, raising the total accuracy for both tasks to 96.71% and 98.07%, respectively. Thirdly, a real-time video-based traffic incident detection algorithm was developed to enhance the utilization of the existing roadside CCTV network. The methodology automatically identified the main road regions in video scenes and investigated static vehicles around those areas. The developed algorithm was evaluated using a dataset of roadside videos. The incidents were detected with 85.71% sensitivity and 11.10% false alarm rate with an average delay of 27.53 seconds. In general, the research proposed in this dissertation maximizes the utility of pre-existing traffic infrastructure and emerging probe traffic data. It additionally demonstrated deep learning algorithms\u27 capability of modeling complex spatiotemporal traffic data. This research illustrates that advances in the deep learning field continue to have a high applicability potential in the traffic state estimation domain
    corecore