5,416 research outputs found

    Chaos in driven Alfvén systems: unstable periodic orbits and chaotic saddles

    No full text
    International audienceThe chaotic dynamics of Alfvén waves in space plasmas governed by the derivative nonlinear Schrödinger equation, in the low-dimensional limit described by stationary spatial solutions, is studied. A bifurcation diagram is constructed, by varying the driver amplitude, to identify a number of nonlinear dynamical processes including saddle-node bifurcation, boundary crisis, and interior crisis. The roles played by unstable periodic orbits and chaotic saddles in these transitions are analyzed, and the conversion from a chaotic saddle to a chaotic attractor in these dynamical processes is demonstrated. In particular, the phenomenon of gap-filling in the chaotic transition from weak chaos to strong chaos via an interior crisis is investigated. A coupling unstable periodic orbit created by an explosion, within the gaps of the chaotic saddles embedded in a chaotic attractor following an interior crisis, is found numerically. The gap-filling unstable periodic orbits are responsible for coupling the banded chaotic saddle (BCS) to the surrounding chaotic saddle (SCS), leading to crisis-induced intermittency. The physical relevance of chaos for Alfvén intermittent turbulence observed in the solar wind is discussed

    The Effect of Resistivity on the Nonlinear Stage of the Magnetorotational Instability in Accretion Disks

    Full text link
    We present three-dimensional magnetohydrodynamic simulations of the nonlinear evolution of the magnetorotational instability (MRI) with a non-zero Ohmic resistivity. The properties of the saturated state depend on the initial magnetic field configuration. In simulations with an initial uniform vertical field, the MRI is able to support angular momentum transport even for large resistivities through the quasi-periodic generation of axisymmetric radial channel solutions rather than through the maintenance of anisotropic turbulence. Simulations with zero net flux show that the angular momentum transport and the amplitude of magnetic energy after saturation are significantly reduced by finite resistivity, even at levels where the linear modes are only slightly affected. This occurs at magnetic Reynolds numbers expected in low, cool states of dwarf novae, these results suggest that finite resistivity may account for the low and high angular momentum transport rates inferred for these systems.Comment: 8 figures, accepted for publication in Ap

    Evolution of self-gravitating magnetized disks. II- Interaction between MHD turbulence and gravitational instabilities

    Full text link
    We present 3D magnetohydrodynamic (MHD) numerical simulations of the evolution of self--gravitating and weakly magnetized disks with an adiabatic equation of state. Such disks are subject to the development of both the magnetorotational and gravitational instabilities, which transport angular momentum outward. As in previous studies, our hydrodynamical simulations show the growth of strong m=2 spiral structure. This spiral disturbance drives matter toward the central object and disappears when the Toomre parameter Q has increased well above unity. When a weak magnetic field is present as well, the magnetorotational instability grows and leads to turbulence. In that case, the strength of the gravitational stress tensor is lowered by a factor of about~2 compared to the hydrodynamical run and oscillates periodically, reaching very small values at its minimum. We attribute this behavior to the presence of a second spiral mode with higher pattern speed than the one which dominates in the hydrodynamical simulations. It is apparently excited by the high frequency motions associated with MHD turbulence. The nonlinear coupling between these two spiral modes gives rise to a stress tensor that oscillates with a frequency which is a combination of the frequencies of each of the modes. This interaction between MHD turbulence and gravitational instabilities therefore results in a smaller mass accretion rate onto the central object.Comment: 31 pages, 19 figures, accepted for publication in ApJ, animation avalaible at http://www2.iap.fr/users/fromang/simu3d/simu3d.htm

    Transitions in large eddy simulation of box turbulence

    Full text link
    One promising decomposition of turbulent dynamics is that into building blocks such as equilibrium and periodic solutions and orbits connecting these. While the numerical approximation of such building blocks is feasible for flows in small domains and at low Reynolds numbers, computations in developed turbulence are currently out of reach because of the large number of degrees of freedom necessary to represent Navier-Stokes flow on all relevant spatial scales. We mitigate this problem by applying large eddy simulation (LES), which aims to model, rather than resolve, motion on scales below the filter length, which is fixed by a model parameter. By considering a periodic spatial domain, we avoid complications that arise in LES modelling in the presence of boundary layers. We consider the motion of an LES fluid subject to a constant body force of the Taylor-Green type as the separation between the forcing length scale and the filter length is increased. In particular, we discuss the transition from laminar to weakly turbulent motion, regulated by simple invariant solution, on a grid of 32332^3 points

    The quasi-periodic doubling cascade in the transition to weak turbulence

    Full text link
    The quasi-periodic doubling cascade is shown to occur in the transition from regular to weakly turbulent behaviour in simulations of incompressible Navier-Stokes flow on a three-periodic domain. Special symmetries are imposed on the flow field in order to reduce the computational effort. Thus we can apply tools from dynamical systems theory such as continuation of periodic orbits and computation of Lyapunov exponents. We propose a model ODE for the quasi-period doubling cascade which, in a limit of a perturbation parameter to zero, avoids resonance related problems. The cascade we observe in the simulations is then compared to the perturbed case, in which resonances complicate the bifurcation scenario. In particular, we compare the frequency spectrum and the Lyapunov exponents. The perturbed model ODE is shown to be in good agreement with the simulations of weak turbulence. The scaling of the observed cascade is shown to resemble the unperturbed case, which is directly related to the well known doubling cascade of periodic orbits

    Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow

    Get PDF
    Magnetorotational dynamo action in Keplerian shear flow is a three-dimensional, non-linear magnetohydrodynamic process whose study is relevant to the understanding of accretion processes and magnetic field generation in astrophysics. Transition to this form of dynamo action is subcritical and shares many characteristics of transition to turbulence in non-rotating hydrodynamic shear flows. This suggests that these different fluid systems become active through similar generic bifurcation mechanisms, which in both cases have eluded detailed understanding so far. In this paper, we build on recent work on the two problems to investigate numerically the bifurcation mechanisms at work in the incompressible Keplerian magnetorotational dynamo problem in the shearing box framework. Using numerical techniques imported from dynamical systems research, we show that the onset of chaotic dynamo action at magnetic Prandtl numbers larger than unity is primarily associated with global homoclinic and heteroclinic bifurcations of nonlinear magnetorotational dynamo cycles. These global bifurcations are found to be supplemented by local bifurcations of cycles marking the beginning of period-doubling cascades. The results suggest that nonlinear magnetorotational dynamo cycles provide the pathway to turbulent injection of both kinetic and magnetic energy in incompressible magnetohydrodynamic Keplerian shear flow in the absence of an externally imposed magnetic field. Studying the nonlinear physics and bifurcations of these cycles in different regimes and configurations may subsequently help to better understand the physical conditions of excitation of magnetohydrodynamic turbulence and instability-driven dynamos in a variety of astrophysical systems and laboratory experiments. The detailed characterization of global bifurcations provided for this three-dimensional subcritical fluid dynamics problem may also prove useful for the problem of transition to turbulence in hydrodynamic shear flows

    Resistivity-driven State Changes in Vertically Stratified Accretion Disks

    Full text link
    We investigate the effect of shear viscosity and Ohmic resistivity on the magnetorotational instability (MRI) in vertically stratified accretion disks through a series of local simulations with the Athena code. First, we use a series of unstratified simulations to calibrate physical dissipation as a function of resolution and background field strength; the effect of the magnetic Prandtl number, Pm = viscosity/resistivity, on the turbulence is captured by ~32 grid zones per disk scale height, H. In agreement with previous results, our stratified disk calculations are characterized by a subthermal, predominately toroidal magnetic field that produces MRI-driven turbulence for |z| < 2 H. Above |z| = 2 H, magnetic pressure dominates and the field is buoyantly unstable. Large scale radial and toroidal fields are also generated near the mid-plane and subsequently rise through the disk. The polarity of this mean field switches on a roughly 10 orbit period in a process that is well-modeled by an alpha-omega dynamo. Turbulent stress increases with Pm but with a shallower dependence compared to unstratified simulations. For sufficiently large resistivity, on the order of cs H/1000, where cs is the sound speed, MRI turbulence within 2 H of the mid-plane undergoes periods of resistive decay followed by regrowth. This regrowth is caused by amplification of toroidal field via the dynamo. This process results in large amplitude variability in the stress on 10 to 100 orbital timescales, which may have relevance for partially ionized disks that are observed to have high and low accretion states.Comment: very minor changes, accepted to Ap

    Recurrent flow analysis in spatiotemporally chaotic 2-dimensional Kolmogorov flow

    Full text link
    Motivated by recent success in the dynamical systems approach to transitional flow, we study the efficiency and effectiveness of extracting simple invariant sets (recurrent flows) directly from chaotic/turbulent flows and the potential of these sets for providing predictions of certain statistics of the flow. Two-dimensional Kolmogorov flow (the 2D Navier-Stokes equations with a sinusoidal body force) is studied both over a square [0, 2{\pi}]2 torus and a rectangular torus extended in the forcing direction. In the former case, an order of magnitude more recurrent flows are found than previously (Chandler & Kerswell 2013) and shown to give improved predictions for the dissipation and energy pdfs of the chaos via periodic orbit theory. Over the extended torus at low forcing amplitudes, some extracted states mimick the statistics of the spatially-localised chaos present surprisingly well recalling the striking finding of Kawahara & Kida (2001) in low-Reynolds-number plane Couette flow. At higher forcing amplitudes, however, success is limited highlighting the increased dimensionality of the chaos and the need for larger data sets. Algorithmic developments to improve the extraction procedure are discussed

    Global MHD simulations of stratified and turbulent protoplanetary discs. I. Model properties

    Get PDF
    We present the results of global 3-D MHD simulations of stratified and turbulent protoplanetary disc models. The aim of this work is to develop thin disc models capable of sustaining turbulence for long run times, which can be used for on-going studies of planet formation in turbulent discs. The results are obtained using two codes written in spherical coordinates: GLOBAL and NIRVANA. Both are time--explicit and use finite differences along with the Constrained Transport algorithm to evolve the equations of MHD. In the presence of a weak toroidal magnetic field, a thin protoplanetary disc in hydrostatic equilibrium is destabilised by the magnetorotational instability (MRI). When the resolution is large enough (25 vertical grid cells per scale height), the entire disc settles into a turbulent quasi steady-state after about 300 orbits. Angular momentum is transported outward such that the standard alpha parameter is roughly 4-6*10^{-3}. We find that the initial toroidal flux is expelled from the disc midplane and that the disc behaves essentially as a quasi-zero net flux disc for the remainder of the simulation. As in previous studies, the disc develops a dual structure composed of an MRI--driven turbulent core around its midplane, and a magnetised corona stable to the MRI near its surface. By varying disc parameters and boundary conditions, we show that these basic properties of the models are robust. The high resolution disc models we present in this paper achieve a quasi--steady state and sustain turbulence for hundreds of orbits. As such, they are ideally suited to the study of outstanding problems in planet formation such as disc--planet interactions and dust dynamics.Comment: 19 pages, 29 figures, accepted in Astronomy & Astrophysic
    • 

    corecore