18 research outputs found

    Issuer-Free Oblivious Transfer with Access Control Revisited

    Get PDF
    Oblivious transfer with access control (OTAC) is an extension of oblivious transfer where each message is associated with an access control policy. A receiver can obtain a message only if her attributes satisfy the access control policy for that message. In most schemes, the receiver's attributes are certified by an issuer. Recently, two Issuer-Free OTAC protocols have been proposed. We show that the security definition for Issuer-Free OTAC fulfilled by those schemes poses a problem. Namely, the sender is not able to attest whether a receiver possesses a claimed attribute. Because of this problem, in both Issuer-Free OTAC protocols, any malicious receiver can obtain any message from the sender, regardless of the access control policy associated with the message. To address this problem, we propose a new security definition for Issuer-Free OTAC. Our definition requires the receiver to prove in zero-knowledge to the sender that her attributes fulfill some predicates. Our definition is suitable for settings with multiple issuers because it allows the design of OTAC protocols where the receiver, when accessing a record, can hide the identity of the issuer that certified her attributes

    Composable & Modular Anonymous Credentials: Definitions and Practical Constructions

    Get PDF
    It takes time for theoretical advances to get used in practical schemes. Anonymous credential schemes are no exception. For instance, existing schemes suited for real-world use lack formal, composable definitions, partly because they do not support straight-line extraction and rely on random oracles for their security arguments. To address this gap, we propose unlinkable redactable signatures (URS), a new building block for privacy-enhancing protocols, which we use to construct the first efficient UC-secure anonymous credential system that supports multiple issuers, selective disclosure of attributes, and pseudonyms. Our scheme is one of the first such systems for which both the size of a credential and its presentation proof are independent of the number of attributes issued in a credential. Moreover, our new credential scheme does not rely on random oracles. As an important intermediary step, we address the problem of building a functionality for a complex credential system that can cover many different features. Namely, we design a core building block for a single issuer that supports credential issuance and presentation with respect to pseudonyms and then show how to construct a full-fledged credential system with multiple issuers in a modular way. We expect this flexible definitional approach to be of independent interest

    Attribute-Based Access Control with Hidden Policies and Hidden Credentials

    Full text link

    Privacy-Preserving Electronic Ticket Scheme with Attribute-based Credentials

    Get PDF
    Electronic tickets (e-tickets) are electronic versions of paper tickets, which enable users to access intended services and improve services' efficiency. However, privacy may be a concern of e-ticket users. In this paper, a privacy-preserving electronic ticket scheme with attribute-based credentials is proposed to protect users' privacy and facilitate ticketing based on a user's attributes. Our proposed scheme makes the following contributions: (1) users can buy different tickets from ticket sellers without releasing their exact attributes; (2) two tickets of the same user cannot be linked; (3) a ticket cannot be transferred to another user; (4) a ticket cannot be double spent; (5) the security of the proposed scheme is formally proven and reduced to well known (q-strong Diffie-Hellman) complexity assumption; (6) the scheme has been implemented and its performance empirically evaluated. To the best of our knowledge, our privacy-preserving attribute-based e-ticket scheme is the first one providing these five features. Application areas of our scheme include event or transport tickets where users must convince ticket sellers that their attributes (e.g. age, profession, location) satisfy the ticket price policies to buy discounted tickets. More generally, our scheme can be used in any system where access to services is only dependent on a user's attributes (or entitlements) but not their identities.Comment: 18pages, 6 figures, 2 table

    Privacy Enhancing Technologies for solving the privacy-personalization paradox : taxonomy and survey

    Get PDF
    Personal data are often collected and processed in a decentralized fashion, within different contexts. For instance, with the emergence of distributed applications, several providers are usually correlating their records, and providing personalized services to their clients. Collected data include geographical and indoor positions of users, their movement patterns as well as sensor-acquired data that may reveal users’ physical conditions, habits and interests. Consequently, this may lead to undesired consequences such as unsolicited advertisement and even to discrimination and stalking. To mitigate privacy threats, several techniques emerged, referred to as Privacy Enhancing Technologies, PETs for short. On one hand, the increasing pressure on service providers to protect users’ privacy resulted in PETs being adopted. One the other hand, service providers have built their business model on personalized services, e.g. targeted ads and news. The objective of the paper is then to identify which of the PETs have the potential to satisfy both usually divergent - economical and ethical - purposes. This paper identifies a taxonomy classifying eight categories of PETs into three groups, and for better clarity, it considers three categories of personalized services. After defining and presenting the main features of PETs with illustrative examples, the paper points out which PETs best fit each personalized service category. Then, it discusses some of the inter-disciplinary privacy challenges that may slow down the adoption of these techniques, namely: technical, social, legal and economic concerns. Finally, it provides recommendations and highlights several research directions

    Signing on Elements in Bilinear Groups for Modular Protocol Design

    Get PDF
    A signature scheme is called structure-preserving if its verification keys, messages, and signatures are group elements and the verification predicate is a conjunction of pairing product equations. We answer to the open problem of constructing a constant-size structure-preserving signature scheme. The security is proven in the standard model based on a novel non-interactive assumption that can be justified and has an optimal bound in the generic bilinear group model. We also present efficient structure-preserving signature schemes with advanced properties including signing unbounded number of group elements, allowing simulation in the common reference string model, signing messages from mixed groups in the asymmetric bilinear group setting, and strong unforgeability. Among many applications, we show two examples; an adaptively secure round optimal blind signature scheme and a group signature scheme with efficient concurrent join. As a bi-product, several homomorphic trapdoor commitment schemes and one-time signature schemes are presented, too. In combination with the Groth-Sahai non-interactive proof system, these schemes contribute to give efficient instantiations to modular constructions of cryptographic protocols

    Towards privacy-aware identity management

    Get PDF
    The overall goal of the PRIME project (Privacy and Identity Management for Europe) is the development of a privacy-enhanced identity management system that allows users to control the release of their personal information. The PRIME architecture includes an Access Control component allowing the enforcement of protection requirements on personal identifiable information (PII). The overall goal of the PRIME project (Privacy and Identity Management for Europe) is the development of a privacy-enhanced identity management system that allows users to control the release of their personal information. The PRIME architecture includes an Access Control component allowing the enforcement of protection requirements on personal identifiable information (PII)

    User-Controlled Computations in Untrusted Computing Environments

    Get PDF
    Computing infrastructures are challenging and expensive to maintain. This led to the growth of cloud computing with users renting computing resources from centralized cloud providers. There is also a recent promise in providing decentralized computing resources from many participating users across the world. The compute on your own server model hence is no longer prominent. But, traditional computer architectures, which were designed to give a complete power to the owner of the computing infrastructure, continue to be used in deploying these new paradigms. This forces users to completely trust the infrastructure provider on all their data. The cryptography and security community research two different ways to tackle this problem. The first line of research involves developing powerful cryptographic constructs with formal security guarantees. The primitive of functional encryption (FE) formalizes the solutions where the clients do not interact with the sever during the computation. FE enables a user to provide computation-specific secret keys which the server can use to perform the user specified computations (and only those) on her encrypted data. The second line of research involves designing new hardware architectures which remove the infrastructure owner from the trust base. The solutions here tend to have better performance but their security guarantees are not well understood. This thesis provides contributions along both lines of research. In particular, 1) We develop a (single-key) functional encryption construction where the size of secret keys do not grow with the size of descriptions of the computations, while also providing a tighter security reduction to the underlying computational assumption. This construction supports the computation class of branching programs. Previous works for this computation class achieved either short keys or tighter security reductions but not both. 2) We formally model the primitive of trusted hardware inspired by Intel's Software Guard eXtensions (SGX). We then construct an FE scheme in a strong security model using this trusted hardware primitive. We implement this construction in our system Iron and evaluate its performance. Previously, the constructions in this model relied on heavy cryptographic tools and were not practical. 3) We design an encrypted database system StealthDB that provides complete SQL support. StealthDB is built on top of Intel SGX and designed with the usability and security limitations of SGX in mind. The StealthDB implementation on top of Postgres achieves practical performance (30% overhead over plaintext evaluation) with strong leakage profile against adversaries who get snapshot access to the memory of the system. It achieves a more gradual degradation in security against persistent adversaries than the prior designs that aimed at practical performance and complete SQL support. We finally survey the research on providing security against quantum adversaries to the building blocks of SGX
    corecore