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Abstract

It takes time for theoretical advances to get used in practical schemes. Anonymous cre-
dential schemes are no exception. For instance, existing schemes suited for real-world use
lack formal, composable definitions, partly because they do not support straight-line extrac-
tion and rely on random oracles for their security arguments.

To address this gap, we propose unlinkable redactable signatures (URS), a new building
block for privacy-enhancing protocols, which we use to construct the first efficient UC-secure
anonymous credential system that supports multiple issuers, selective disclosure of attributes,
and pseudonyms. Our scheme is one of the first such systems for which both the size of a
credential and its presentation proof are independent of the number of attributes issued in a
credential. Moreover, our new credential scheme does not rely on random oracles.

As an important intermediary step, we address the problem of building a functionality
for a complex credential system that can cover many different features. Namely, we design
a core building block for a single issuer that supports credential issuance and presentation
with respect to pseudonyms and then show how to construct a full-fledged credential system
with multiple issuers in a modular way. We expect this flexible definitional approach to be of
independent interest.

Keywords: (Fully) structure preserving signatures, vector commitments, anonymous cre-
dentials, universal composability, Groth-Sahai proofs.

1 Introduction

Digital signature schemes are a fundamental cryptographic primitive. Besides their use for signing
digital items, they are used as building blocks in more complex cryptographic schemes, such as
blind signatures [46, 6], group signatures [15, 56], direct anonymous attestation [21], electronic
cash [44], voting schemes [52], adaptive oblivious transfer [33, 25], and anonymous credentials
[12].

The efficient construction of such protocols, however, demands special properties of a signa-
ture scheme, in particular when the protocol needs to achieve strong privacy properties. The most
important such properties seem to be that the issuance of a signature and its later use in a protocol
is unlinkable as well as that the scheme is able to sign multiple messages (without employing a
hash function). The first signature scheme that met these requirements is a blind signature scheme
by Brands [19]. The drawback of blind signatures, however, is that when using the signature later
on in a higher-level protocol it must typically be revealed so that a third party can be convinced
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of its validity. Thus, these signatures can be used only once, which turns out to be quite limit-
ing for applications such as group signatures, multi-show anonymous credentials, and compact
e-cash [27].

Camenisch and Lysyanskaya [31, 32] were the first to design signature schemes (CL-signatures)
overcoming these drawbacks. Their schemes are secure under the Strong RSA or the q-SDH as-
sumption, respectively, and allow for an alternative approach when using a signature in a protocol:
Instead of revealing the signature to a third party, the user employs zero-knowledge proofs to con-
vince the third party that she possesses a valid signature from the signer. While in theory this is
possible for any signature scheme, CL-signatures were the first that enabled efficient proofs using
so-called generalized Schnorr proofs of knowledge. This is due to the algebraic properties of
CL-signatures: in particular, no hash function is applied to the message, and the signature and
message values are either exponents or group elements.

With the advent of CL-signatures, the area of privacy preserving protocols flourished consid-
erably and numerous new protocols based on them have been proposed. This has also made it
apparent, however, that CL-signatures still have a number of drawbacks:

(1) Random oracles. To make generalized Schnorr proofs of knowledge non-interactive (which
is often required in applications), one needs to resort to the Fiat-Shamir heuristic, that is, to
the random oracle model and thus looses all formal provable security guarantees when the
random oracle is instantiated by a hash function [37].

(2) Straight-line extraction. When designing a protocol to be secure in the Universal Com-
posability model [36] no rewinding can be used to prove security. As a result, witnesses
in generalized Schnorr proofs of knowledge need to be encrypted under a public key en-
coded in the common reference string (CRS). As the witnesses (messages signed with CL-
signatures) are discrete logarithms, such encryption is rather expensive [11, 28] and may
render the overall protocol unpractical.

(3) Linear size. When proving ownership of a CL-signature on many messages, all these mes-
sages are needed for the verification of the signature and therefore the proof of possession
of a signature will be linear in the number of messages.

A promising ingredient to overcome these drawbacks is the work by Groth and Sahai [50],
who for the first time constructed efficient non-interactive zero-knowledge proofs (NIZK) without
using random oracles, albeit for a limited set of languages. Indeed, the set of languages covered by
these so-called GS-proofs does not include the ones covered by generalized Schnorr protocols and
therefore many authors started to look for a compatible CL-signatures replacement, i.e., structure-
preserving signature schemes [3, 4, 2]. Together with GS-proofs, these new schemes can also be
used as signatures of knowledge [42] and thus are applicable in scenarios previously addressed
with CL-signatures.

However, structure-preserving signatures still suffer in terms of performance when sign-
ing multiple messages, i.e., drawback (3), which is a typical requirement in applications such
as anonymous credentials. Indeed, like for CL-signatures, the size of proofs with structure-
preserving signatures grows linearly with the number of messages. As the constant factor for
GS-proofs is larger than for generalized Schnorr proofs, structure-preserving signatures loose
their attractiveness as a building block for such applications.

Our contribution. In this paper, our goal is to address the three drawbacks of CL-signatures
discussed above. To this end, we propose a new type of signature scheme, unlinkable redactable
signatures (URS), in which one can redact message-signature pairs and reveal only their relevant
parts each time they are used. Moreover, signatures in URS are unlinkable and the same message-
signature pair can be redacted and revealed multiple times without being linked back to its origin.
The real-world efficiency of URS is comparable to that of CL-signatures and, as they overcome
the bottleneck of drawback (3), greatly surpasses them in performance when the number of signed
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messages grows. We view our contribution as threefold:
First, in §2, we formally define URS. We present property-based security definitions for un-

linkability and unforgeability and also a UC functionality for URS. We show that what distin-
guishes the strength of our property-based and functionality-based definitions is careful key man-
agement. Namely, the latter requires a key registration process that allows for the extraction of
signing keys. We validate our definitions by showing that an URS scheme satisfying strengthened
property-based security definitions with key extraction securely implements our UC functionality.

Second, in §3, we construct an efficient URS scheme from vector commitments [55, 59, 38],
structure-preserving signatures [3, 4], and (a minimal dose of) non-interactive proofs of knowl-
edge (NIPoK), which in practice can be instantiated by witness-indistinguishable (!) Groth-Sahai
proofs [50]. As we are interested in practical efficiency, we deliberately instantiate our scheme
with concrete building blocks, and rely on stronger assumptions (see §4.3).1 We show how to
make use of algebraic properties in our building blocks to minimize the witness size of the NIPoK.
For key management, we employ a novel cryptographic primitive, fully structure preserving sig-
natures [1]. Our main target is Groth-Sahai proofs, but we also discuss extensions for optimizing
the efficiency of generalized Schnorr proofs of knowledge in case one is willing to accept random
oracles.

Third, in §4, to demonstrate the versatility of our URS scheme as a CL-signature ‘replace-
ment’, we employ it to design the first efficient universally composable anonymous credential
system that supports multiple issuers, pseudonyms, and selective disclosure of attributes.

Anonymous credential systems usually need to support an ecosystem of different features.
Therefore, a single ideal functionality providing all the features, such as pseudonyms, selective
attribute disclosure, predicates over attributes, revocation, inspection, etc. would be very complex
and hard to both create and use in a modular way—not to mention credible security proofs.

Nevertheless, ideal functionalities are very attractive for modeling the complexity of anony-
mous credential schemes. Indeed an early seminal paper [30] attempted exactly this, but was
foiled by drawback (2)—as well as by the immaturity of the UC framework at the time. To over-
come this complexity, we present a flexible and modular approach for constructing UC-secure
anonymous credentials. Namely, we design a core building block for a single issuer that supports
credential issuance and presentation with respect to pseudonyms. We then show how to compose
multiple such blocks to construct in a modular way a full-fledged credential system with multiple
issuers.

Besides being composable, our system is also arguably one of the first schemes to support
efficient non-interactive attribute disclosure with cost independent of the number of attributes
issued without having to rely on random oracles. Even in the random oracle model this has
been an elusive goal. Therefore, because of the composability and efficient selective disclose,
our scheme is very attractive and quickly surpasses schemes based on blind signatures and CL-
signatures [20, 32] when the number of attributes grows.

Related work. We compare our signatures and credential schemes with other related work. As
there are a multitude of papers on redactable, quotable, and sanitizable signatures [51, 22, 61, 7],
we focus on the most influential definitional work and the most promising approaches in terms of
efficiency. Further comparison can be found in §5.

A variety of signature schemes with flexible signing capabilities and strong privacy properties
have been proposed [41, 18, 8, 7, 10, 14, 35]. While these works provide a fresh definitional
approach, their schemes are very inefficient, especially when redacting a message vector with
a large number of attributes. Some schemes built on vector commitments [55, 58] achieve bet-

1Our modular approach facilitate the construction of ‘paranoid’ instantiations, e.g., using the CDH-based vector
commitment scheme of [38].
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ter efficiency but only consider one-time-show credentials, and while the former is not defined
formally, the latter involves interaction.

The first efficient multi-show anonymous credential scheme is [30]. It was extended with
efficient attribute disclosure [26] and had real-world exposure [34, 21]. It can, however, only be
non-interactive in the random oracle model. Non-interactive credentials in the standard model
have been built from P-signatures [12, 13]. An instantiation of our URS scheme, however, is al-
most twice more efficient than [12] despite the fact that the latter does not support signing multiple
messages. Izabachène et al. [54] extends the work of [12] with vector commitments; their scheme
is, however, not secure under our definitions. In independent work, Hanser and Slamanig [62]
present a credential system with efficient (independent of the number of attributes) attribute dis-
closure. However, their system is only secure in the generic group model [48]. Furthermore, it
uses hash function to encode attributes and thus does not enable efficient protocol design. None
of these schemes is (universally) composable.

An important factor that is often neglected is the compatibility of schemes with zero-knowledge
proofs to enable efficient protocol design. Because of its compatibility with Groth-Sahai proofs,
efficiency and composability, immediate further applications of our URS scheme include efficient
e-cash, credential-based key exchange, e-voting, auditing, and others.

2 Definitions of Unlinkable Redactable Signatures

Redactable signatures are an instance of homomorphic [7] or controlled-malleable signatures [41].
For our credentials application the most useful redaction operation is to selectively white-list or
quote a subset of messages and their positions from a message vector of length n ([7] consider the
quoting of sub-sentences). We denote the message space of all valid message vectors asM. We
also refer to the redacted message as a quote of the original message. To distinguish the original
vector from the quote of all messages we denote the original vector as ~m = (1,m1, . . . ,mn)
and a quote as ~mI = (2,m′1, . . . ,m

′
n). We represent each valid quoting transformation by a set

I ⊆ [1, n] of message positions and denote quoting either by I(~m) or ~mI . We denote the ith

message element either by ~m[i] or mi. A quote ~mI from ~m is of the form

~mI [i] = m′i =

{
mi i ∈ I
⊥ otherwise

.

Note that the message itself already reveals whether it is a quote. Chase et al. [41] call such a
scheme tiered and we refer to the vectors ~m and ~mI as Tier 1 and Tier 2 vectors respectively. The
vector ~mI can be sparse and can have a much shorter encoding than ~m.

2.1 Property-Based Definitions for Unlinkable Redactable Signatures

One can define the security of redactable signatures by instantiating controlled-malleable sig-
nature definitions for simulatability, simulation unforgeability, and simulation context-hiding of
Chase et al. [41] with the quoting transformation class T = {I(·)|I ⊆ [1..n]} above. We prefer,
however, to give our own unforgeability and unlinkability definitions that are more specific and
do not rely on simulation and extraction. This makes them simpler and easier to prove, and thus
more efficiently realizable. Together with key extractability they are nevertheless sufficient to
realize the strong guarantees of our UC functionality.

Definition 1 (Unlinkable Redactable Signatures). An unlinkable redactable signature scheme
URS consists of the following algorithms:
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URS.SGen(1κ)→ SP . SGen takes the security parameter 1κ as input and outputs the system
parameters SP .

URS.Kg(SP)→ (pk , sk). Kg takes the system parameters SP as an input and outputs public
verification and private signing keys (pk , sk). The verification key pk defines the message
spaceM.

URS.Sign(sk , ~m)→ σ. Sign takes the signing key sk and a message ~m ∈ M as input and pro-
duces a signature σ.

URS.Derive(pk , I, ~m, σ)→ σI . Derive takes the public key pk , a selection vector I , a message
~m and a signature σ (both of Tier 1) as input. It produces a Tier 2 signature σI for ~mI .

URS.Verify(pk , σ, ~m)→ 0/1. Verify takes the verification key pk , a signature σ, and a message
~m of Tier 1 or Tier 2 as input and checks the signature.

We omit the URS qualifier when it is clear from the context.

Correctness. Informally, correctness requires that for honestly generated keys, both honestly
generated and honestly derived signatures must always verify.

Unforgeability. Unforgeability captures the requirement that an attacker, who is given Tier 1
and Tier 2 signatures on messages of his choice, should not be able to produce a signature on a
message that is not derivable from the set of signed messages in his possession. More formally:

Definition 2 (Unforgeability). Let H be a stateful handle generator. For a redactable signature
scheme URS.{SGen,Kg,Sign,Derive,Verify}, tables Q1, Q2, Q3, and an adversary A, consider
the following game:

• Step 1. SP ← SGen(1k); (pk , sk)
$←− Kg(SP); Q1, Q2, Q3 ← ∅.

• Step 2. (~m∗I , σ
∗)

$←− AOSign(·),ODerive(·,·),OReveal(·)(pk), where OSign, ODerive, and OReveal

behave as follows:

OSign(~m) ODerive(h, I) OReveal(h)

h← H; σ ← Sign(sk , ~m) if (h, ~m, σ) ∈ Q1 if (h, ~m, σ) ∈ Q1

add (h, ~m, σ) to Q1 σ′ ← Derive(pk , I, ~m, σ) add ~m to Q3

return h add ~mI to Q2; return σ′ return σ

A signature scheme URS satisfies unforgeability if for all such PPT algorithms A there exists a
negligible function ν(·) such that in the above game the probability (over the random choices of
Kg, Sign, Derive and A) that Verify(pk , σ∗, ~m∗I) = 1 and ∀~m ∈ Q3, ~m

∗
I 6= ~mI , and ~m∗I /∈ Q2 is

less than ν(κ).

Note that we do not consider a Tier 1 signature itself as a forgery. However, if the adversary
manages to produce a valid Tier 1 signature on a message ~m without calling Sign(~m) and either
Reveal(h) or Derive(h, I) on all subsets I ⊆ [1..n] for the corresponding handle h, he can use
this Tier 1 signature to break unforgeability by deriving a Tier 2 signature from it.

Unlinkability. Informally, unlinkability ensures that an adversarial signer cannot distinguish
which of two Tier 1 signatures of his choosing was used to derive a Tier 2 signature. More
formally:

Definition 3 (Unlinkability). For the signature scheme URS.{SGen,Kg, Sign,Derive,Verify} and
a stateful adversary A, consider the following game:

• Step 1. SP ← SGen(1k).
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• Step 2. (pk , I, ~m(0), ~m(1), σ(0), σ(1))
$←− A(SP), where ~m(0)

I = ~m
(1)
I ,

Verify(pk , σ(0), ~m(0)) = 1, and Verify(pk , σ(1), ~m(1)) = 1.

• Step 3. Pick b← {0, 1} and form σ
(b)
I

$←− Derive(pk , I, ~m(b), σ(b)).

• Step 4. b′ $←− A(σ
(b)
I ).

The signature scheme URS is unlinkable if for any polynomial time adversary A there exists a
negligible function ν(·) such that Pr[b = b′] < 1+ν(κ)

2 .

Note that this definition is very strong, as the adversary can even pick pk .

2.2 Ideal Functionality for Unlinkable Redactable Signatures

We now give an alternative characterization of unlinkable redactable signatures using an ideal
functionality FURS defined as follows:

Functionality FURS

The functionality maintains tables K andQ initialized to ∅ and flags kg and keyleak which are initially unset.
• On input (keygen, sid) from S, verify that sid = (S, sid′) for some sid′ and that flag kg

is unset. If not, then return ⊥. Else, send (initF, sid) to SIM and wait for a message
(initF, sid,SP ,Kg, Sign,Derive,Verify) from SIM, where Kg, Sign, and Derive are PPT algo-
rithms and Verify is a deterministic algorithm. Then, store SP , Kg, Sign, Derive, and Verify, run
(pk , sk)← Kg(SP), set flag kg , store (pk , sk), and return (verificationKey, sid , pk) to S.

• On input (checkPK, sid , pk ′) from some party P , verify that the flag kg is set. Check whether pk′ = pk

or whether (pk ′, sk ′) for some sk ′ was stored in K. In this case, return (checkedPK, sid , true). Else, if
(pk ′,⊥) was stored inK return (checkedPK, sid , false). Else, send (checkPK, sid , pk ′) to SIM, wait
for (checkedPK, sid , sk ′) from SIM, add (pk ′, sk ′) to K. If sk ′ 6= ⊥, return (checkedPK, sid , true)

to P . Otherwise, return (checkedPK, sid , false) to P .
• On input (leakSK, sid) from S verify that sid = (S, sid′) for some sid′. If not, return ⊥. Else, if flag

kg is set, set flag keyleak and return (leakSK, sid , sk).
• On input (sign, sid , ~m) from S, verify that sid = (S, sid′) for some sid′ and that the flag kg is set.

If not, return ⊥. Else, run σ ← Sign(sk , ~m) and Verify(pk , σ, ~m). If Verify is successful, return
(signature, sid , ~m, σ) to S and add ~m toQ, otherwise return ⊥.

• On input (derive, sid , pk ′, I, ~m, σ) from some party P , run Derive(pk ′, I, ~m, σ) and if it fails, re-
turn ⊥. Otherwise, if the flag kg is set and pk = pk ′ then set sk tmp = sk. If there is an entry
(pk ′, sk ′) ∈ K recorded, set sk tmp = sk ′. If sk tmp was set run σ′ ← Sign(sk tmp,Zero(~m, I)) and
return Derive(pk ′, I,Zero(~m, I), σ′). Otherwise, return the output of Derive(pk ′, I, ~m, σ).

• On input (verify, sid , pk ′, σ, ~mI) from some party P , compute result ← Verify(pk ′, σ, ~mI). If the
flag kg is set, pk ′ = pk , flag keyleak is not set, and @ ~m ∈ Q such that ~mI = I(~m), then output
(verified, sid , ~mI , 0). Otherwise, output (verified, sid , ~mI , result).

We point out some aspects of the ideal functionality. The functionality needs to output con-
crete values as signatures of messages and redacted signatures, as well as key material. To gen-
erate and verify these values, FURS requires the adversary/simulator SIM to provide it with a
number of polynomial-time algorithms. This is in line with how ideal functionalities for signa-
tures, and in particular blind signatures, have been defined before [6, 36, 46, 53, 57]. We consider
static corruptions of protocol machines, but allow the simulator to request the signing key at any
time by sending the leakSK message. This allows us to ensure that the privacy properties for
users are still enforced even if the signer leaks its secret key. The functional and security prop-
erties are enforced by the functionality no matter how these (adversarial) algorithms compute
the values. Unforgeability is enforced by the fact that FURS will output false (0) for verification
queries for which the message (or a corresponding original message) has not been signed, pro-
vided that the signer is not corrupted and the signing key not leaked. (If the signer is corrupted
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statically, (keygen, sid) will not be sent and hence kg not set and unforgeability not enforced.)
Unlinkability of redacted signature is enforced by FURS as follows. It generates a fresh redacted
signature only from those parts of the original message that are quoted, i.e., the hidden message
parts are set to zero, and thus redacted signatures fromFURS do not contain any information about
the hidden parts of messages. More precisely, this is enforced for the keys generated by FURS,
as well as for any keys that an honest party successfully checked before generating a redacted
signature. Unless mentioned otherwise, the reply of the functionality upon a failed check or ver-
ification is ⊥. Finally, we define Zero(~m, I) = (1, m̃1, . . . , m̃n), with m̃j = mj for j ∈ I and
m̃j = 0 for j /∈ I . This should not be confused with the operator I that outputs a Tier 2 message
with ⊥ elements on certain positions.

2.3 Key Registration and UC Realizability

We now want to construct a protocol RURS that realizes FURS using a URS scheme in the FCRS-
hybrid model where SP is the reference string and each call to FURS is essentially replaced by
running one of the algorithms of URS. While this can be done (the detailed description of RURS

is given in §A), there are a number of hurdles that need to be overcome. These hurdles are quite
typical and include, e.g., that we need to be able to extract the secret keys from the adversary to
be able to simulate properly. They are, however, often treated only informally in security proofs.
Here we want to make them explicit and treat them formally correct. So our goal is to prove a
statement (Theorem) of the form:

If URS is correct, unforgeable, unlinkable, and X thenRURS securely realizes FURS

in the FCRS-hybrid model.

What do we have to require from X to make this theorem true? To prove the theorem we have
to show indistinguishability between the ideal world and the real world. In the ideal world, an
environment Z interacts with the simulator SIM and functionality FURS. In the real world, the
environment Z interacts with the real adversary A and the protocolRURS.

We provide a tentative description of SIM in the ideal world: when receiving the (initF, sid)
message from FURS, it generates a trapdoor td (in addition to SP ) and returns (initF, sid ,SP ,
Kg,Sign,Derive,Verify). On receiving the (checkPK, sid , pk) message, is uses the trapdoor to
extract the secret key sk and returns sk to FURS.

To make this work, we extend URS with several algorithms: CheckPK is run by RURS on
receiving a message (checkPK, sid , pk). SGenT and ExtractKey are the trapdoored parameter
generation and key extraction algorithm for SIM. CheckKeys is used to define what it means to
extract a valid key.
URS.CheckPK(pk)→ 0/1. CheckPK is a deterministic algorithm that takes a public key pk as

an input and checks that it is correctly formed. It outputs 1 if pk is correct, and 0 otherwise.
URS.SGenT(1κ)→ (SP , td). SGenT is a system parameters generation algorithm that takes the

security parameter 1κ as input and outputs the system parameters SP and a trapdoor td
for the key extraction algorithm.

URS.ExtractKey(pk , td)→ sk . ExtractKey is an algorithm that takes a public key pk and a
trapdoor td as input. It extracts the corresponding secret key sk .

URS.CheckKeys(pk , sk)→ 0/1. CheckKeys is an algorithm that takes a public pk and a private
sk keys and checks if they constitute a valid signing key pair. It outputs 1 if they do, and 0
otherwise.

Strengthened Correctness requires that honestly generated keys, but also keys for which pred-
icate CheckKeys(pk , sk) holds can be used to create signatures that will verify. It moreover
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guarantees that CheckPK(pk) holds for honest public keys.

Definition 4 (Correctness). An unlinkable redactable signature scheme URS.{SGen,Kg, Sign,
Derive,Verify} with additional algorithm CheckPK is correct if there exists a negligible function
ν(·) such that for any message ~m ∈ M and I ⊆ [1, n] : Pr[(SP) ← SGen(1k); (sk , pk) ←
Kg(SP); σ ← Sign(sk , ~m); σI ← Derive(pk , I, ~m, σ) : CheckPK(pk) = 0 ∨ Verify(pk ,
σ, ~m) = 0 ∨ Verify(pk , σI , ~mI) = 0] < ν(κ).

The additional CheckKeys algorithm is correct if for any message ~m ∈ M and I ⊆ [1, n]
and all pk ∈ {0, 1}∗, sk ∈ {0, 1}∗ there exists a negligible function ν(·) such that Pr[σ ←
Sign(sk , ~m); σI ← Derive(pk , I, ~m, σ) : CheckKeys(pk , sk) = 1 ∧ (Verify(pk , σ, ~m) = 0 ∨
Verify(pk , σI , ~mI) = 0)] < ν(κ).

Parameter Indistinguishability. Informally, parameter indistinguishability ensures that the SP
produced by SGenT and SGen are computationally indistinguishable. It is formally defined as
follows:

Definition 5 (Parameter Indistinguishability). A redactable signature scheme URS.{SGen,Kg,
Sign,Derive,Verify} with alternative parameter generation SGenT is parameter indistinguish-
able if for any polynomial time adversary A there exists a negligible function ν(·) such that
Pr[(SP0 , td)← SGenT(1k); SP1 ← SGen(1k); b← {0, 1}; b′ ← A(SP b) : b = b′] < 1+ν(κ)

2 .

Key Extractability. Informally, the key extractability ensures that if SGenT was run and if
CheckPK outputs 1, then the extraction algorithm ExtractKey(pk , td) will output a valid secret
key sk , i.e. CheckKeys(pk , sk) = 1.

Definition 6 (Key Extractability). A redactable signature scheme URS.{SGen,Kg,Sign,Derive,
Verify}with additional algorithms (CheckPK, SGenT, CheckKeys,ExtractKey) is key extractable
if CheckKeys is correct according to Definition 4 and for any polynomial time adversary A there
exists a negligible function ν(·) such that Pr[(SP , td) ← SGenT(1k); pk ← A(SP , td); sk ←
ExtractKey(pk , td) : (CheckPK(pk) = 1 ∧ CheckKeys(pk , sk) = 0))] < ν(κ).

Composable Unlinkability holds even when parameters in the unlinkability game are gener-
ated using (SP , td) ← SGenT(1k) and A is handed td. This allows for the use of the game in
a hybrid argument when proving the security of the simulator. We note that in such an adapted
unlinkability game the trapdoor td must only enable key-extraction, and crucially does not allow
the adversary to extract a Tier 1 signature from a Tier 2 signature (this would break unlinkabil-
ity). In our instantiation this is achieved by splitting SP into several parts. The trapdoor is only
generated for the part used for key extraction.

UC realization. We prove that if an unlinkable redactable signature URS is correct, parame-
ter indistinguishable, key extractable, unforgeable, and unlinkable, then RURS securely realizes
FURS. More formally, we have the following theorem (which is proven in §A).

Theorem 1. Let URS be an unlinkable redactable signature scheme. If URS is correct, parameter
indistinguishable, key-extractable, unforgeable, and composable unlinkable according to Defini-
tions 4, 5, 6, 2, and 3, respectively, thenRURS securely realizes FURS in the FCRS-hybrid model.
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3 The Construction of Our Redactable Signature Scheme

As a first step toward our full solution, we will construct an unforgeable and unlinkable URS
scheme without key extraction. The scheme should be of independent interest, in case univer-
sal composability is not a design requirement. This isolation of key extraction, seemingly only
needed for universal composition, is a nice feature of our definitions.

Let G be a bilinear group generator that takes as an input security parameter 1κ and outputs
the descriptions of multiplicative groups grp = (p,G, G̃,Gt, e,G , G̃) where G, G̃, and Gt are
groups of prime order p, e is an efficient, non-degenerating bilinear map e : G× G̃→ Gt, and G
and G̃ are generators of the groups G and G̃, respectively.

Our construction makes use of a structure preserving signature (SPS) scheme SPS.{Kg, Sign,
Verify} and a vector commitment scheme VC.{Setup,Commit,Open,Check}. We recall that the
structure-preserving property of the signature scheme requires that verification keys, messages,
and signatures are group elements and the verification predicate is a conjunction of pairing product
equations. The intuition behind our construction is susceptible simple: Use SPS.Kg to generate a
signing key pair and VC.Setup to add commitment parameters to the public key. To sign a vector
~m, first, commit to ~m and then sign the resulting commitment C. To derive a quote for a subset I
of the messages, simply open the commitment to the messages in ~mI . We verify a signature on a
quote by verifying both the structure-preserving signature (SPS.Verify) and checking the opening
of the commitment (VC.Check).

Such a scheme has, however, several shortcomings. First, it is linkable, as the same com-
mitment is reused across multiple quotes of the same message. Even if both the underlying SPS
scheme and the commitment scheme are individually re-randomizable, this seems hard to avoid
as the unforgeability of the SPS scheme prevents randomization of the message. Second, such
a construction is only heuristically secure. Existing vector commitments do not guarantee that
multiple openings cannot be combined and mauled into an opening for a different sub-vector.
We call vector commitment schemes that prevent this opening non-malleable. (Recently, [62]
constructed an SPS scheme allowing for randomization within an equivalence class. However,
their commitments cannot be opened to arbitrary vectors of Zp and are not provably opening
non-malleable.)

Our main design goal is to address both of these weaknesses while avoiding a large perfor-
mance overhead. Our main tool for this is an efficient non-interactive proof-of-knowledge. Intu-
itively, we hide the commitments and their openings, as well as a small part of the signature to
achieve unlinkability. Hiding the commitment opening also helps solve the malleability problems
for commitments. To achieve real-world efficiency we show how to exploit the re-randomizability
of the SPS (and optionally the commitment scheme as described in §C.2).

Before describing our redactable signature scheme in more detail, we present a vector com-
mitment scheme that uses a variant of polynomial commitments from [55]. While our changes
are partly cosmetic, they simplify the assumption needed for opening non-malleability.

3.1 Vector Commitments Simplified

A vector of messages ~m ∈ Znp is committed using a polynomial f(x) that has a value f(i) = mi at
the position i. In Lagrange form such a polynomial is a linear combination f(x) =

∑n
i=1mifi(x)

of Lagrange basis polynomials fi(x) =
∏n
j=0,j 6=i

x−j
i−j . To batch-open a vector commitment for

a position set I ⊆ {1, . . . , n}, one uses a polynomial fI(x) =
∑

i∈I mifi(x). For such a poly-
nomial, it holds that fI(i) = mi for i ∈ I; and fI(0) = 0. (The additional root at 0 is necessary
to achieve opening non-malleability). The reuse of the same Lagrange basis polynomials, which
yields polynomials of not the lowest possible degree, reduces the number of variable bases in the
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equation of Check below and increases efficiency when used for the construction of bigger proto-
cols such as anonymous credential.) Also, note that f(x) − fI(x) is divisible by the polynomial
pI(x) = x ·

∏
i∈I(x − i). We use the polynomial p(x) = x ·

∏n
i=1(x − i) which is divisible by

pI(x) for any I ⊆ {1, . . . , n} to randomize commitments to make them perfectly hiding.

Construction. We reuse the notation of §2 and use Tier 1 vectors ~m for the vectors being com-
mitted and Tier 2 vectors ~mI for batch openings at positions I . We also let grp = (p,G, G̃,
Gt, e,G , G̃) be bilinear map parameters generated by a bilinear group generator G(1κ).

VC.Setup(grp). Pick α ← Zp and compute (G1, G̃1, . . . ,Gn+1, G̃n+1), where Gi = G(αi) and
G̃i = G̃(αi). Output parameters pp = (grp, G1, G̃1, . . . , Gn+1, G̃n+1). Values G1, . . . ,
Gn+1 suffice to compute Gφ(α) for any polynomial φ(x) of maximum degree n + 1 (and
similarly for G̃φ(α)).
Furthermore, for the above defined fi(x), p(x), and pI(x), we implicitly define Fi =
Gfi(α), P = Gp(α), PI = GpI(α) , and P̃I = G̃pI(α) . These group elements can be computed
from the parameters pp.

VC.Commit(pp, ~m, r). Output C =
∏n
i=1 F

mi
i P r.

VC.Open(pp, I, ~m, r). Letw(x) = f(x)−fI(x)+r·p(x)
pI(x)

and compute the witnessW = Gw(α) using
parameters pp.

VC.Check(pp, C, ~mI ,W ). Accept if e(C, G̃) = e(W, P̃I)e(
∏
i∈I F

mi
i , G̃).

Note that pI(x) always has the factor x. This is essential for achieving opening non-malleability.
If pI(x) would be 1 for I = ∅, as in the original polynomial commitment scheme of [55], then C
would be a valid batch opening witness for the empty set of messages.

Security analysis. We require the commitment scheme to be complete, batch binding, and
opening non-malleable. Completeness is standard for a commitment scheme follows easily from

the following equation: e(C, G̃) = e(G , G̃)f(α)+r·p(α) = e(G , P̃I)
f(α)−fI (α)+r·p(α)

pI (α) e(G , G̃)fI(α) =
e(W, P̃I)e(

∏
i∈I F

mi
i , G̃).

Next, we define the batch binding and opening non-malleability properties:

Definition 7 (Batch binding). For a vector commitment scheme VC.{Setup,Commit,Open,Check}
and an adversary A consider the following game:

• Step 1. grp ← G(1κ) and pp ← VC.Setup(grp)
• Step 2. C, ~mI ,W, ~m

′
I′ ,W

′ ← A(pp)

Then, the commitment scheme satisfies batch binding if for all such PPT algorithmsA there exists
a negligible function ν(·) such that the probability (over the choices of G, Setup, and A) that
1 = VC.Check(pp, C, ~mI ,W ) = VC.Check(pp, C, ~m′I′ ,W

′) and that there exist i ∈ I ∩ I ′ such
that mi 6= m′i is at most ν(κ). (Note that ~mI and ~m′I′ are Tier 2 vectors, and thus encode the sets
I and I ′ respectively.)

Definition 8 (Opening non-malleability). For a vector commitment scheme VC.{Setup,Commit,
Open,Check} and an adversary A consider the following game:

• Step 1. grp ← G(1κ) and pp ← VC.Setup(grp)
• Step 2. ~m, I ← A(pp)
• Step 3. Pick random r, computeC←VC.Commit(pp, ~m, r), andW←VC.Open(pp, I, ~m, r).
• Step 4. W ′, I ′ ← A(C,W )

Then the commitment scheme satisfies opening non-malleability if for all such PPT algorithms
A there exists a negligible function ν(·) such that the probability (over the choices of G, Setup,
Commit, and A that 1 = VC.Check(pp, C, ~mI′ ,W

′), and I 6= I ′ is at most ν(κ).
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In the following theorems we make use of the n-BSDH assumption [49] and the J-RootDH
assumption which is defined next. See §F for its generic group model proof. (We note that
this assumption is only required for opening non-malleability, which is ignored by most existing
constructions of anonymous credentials from vector commitments.)

Definition 9 (J-RootDH Assumption). Let J be a subset of [1..n], let α, r ∈ Z∗p, and X =

(Gα·
∏n
i=1(α−i))r, Y = (G

∏
i∈J (α−i))r. For all PPT algorithms A, the probability Pr[A(G, G̃ ,

{Gαi , G̃αi}n+1
i=1 , X, Y ) = J ′, Z] such that Z = (G

∏
i∈J′ (α−i))r and J ′ ⊆ [1..n] and J ′ 6= J , is at

most a negligible function ν(κ).

Theorem 2. The commitment scheme VCdefined above is batch binding under the (n+ 1)-BSDH
assumption. The proof is similar to that of [55] and is found in §B.3.

Theorem 3. The commitment scheme VC defined above is opening non-malleable under the J-
RootDH assumption. The proofs can be found in §B.3.

Randomizable vector commitments. In §B.4 we consider an algorithm VC.Rand(pp, C,W, I, ρ)
for randomizing commitments and openings. It randomizes the commitment as C ′ = C · P ρI and
the witness as W ′ = W ·Gρ. These elements then look random, conditioned on them satisfying
the Check equations for a particular message ~mI . We show that the relaxed versions of the above
properties that we call randomized batch binding and randomized opening non-malleability hold
under the (n+ 1)-BSDH and J-RootDH assumptions respectively.

3.2 Non-interactive Zero-Knowledge and Witness Indistinguishable Proof Systems

Let R be an efficiently computable binary relation. For pairs (W,Stmt) ∈ R we call Stmt the
statement and W the witness. Let L be the language consisting of statements in R. A non-
interactive zero-knowledge (NIZK) proof-of-knowledge system for a language L consists of the
following algorithms and protocols:
Π.Setup(grp)→ CRS . On input grp ← (1κ), it outputs common parameters (a common refer-

ence string) CRS for the proof system.
Π.Prove(CRS ,W,Stmt)→ π. On input a statement Stmt and a witness W , it generates a zero-

knowledge proof π that the witness satisfies the statement.
Π.Verify(CRS , π,Stmt)→ 0/1. On input Stmt and π, it outputs 1 if π is valid, and 0 otherwise.

We explain the notation for the statements Stmt . We call extractable (non-extractable) wit-
nesses that can (cannot) be extracted from the corresponding proof, respectively. To express the
“extractability” property of the witnesses we use notation introduced by Camenisch et al. [29].
For the extractable witnesses we use the “knowledge” notation ( K), and for the non-extractable
witnesses we use “existence” ( E) notation. We define K as a set of extractable witnesses and E
as a set of non-extractable witnesses that we can only prove existence about. We only consider
proofs for multi-exponentiations (for existence) and pairing products (for existence and knowl-
edge) equations:

Stmt = K
{
Yi, Ỹi ∈ K

}n
i=1

; E{xj ∈ E}mj=1 :
∧
i

(zi =
∏
j

Gxj )

∧ e(G , G̃) =
∏
i,j

(
e(Yi, B̃i) · e(Ai, Ỹi)

)
.

For simplicity of presentation, we do not explicitly specify public values of a statement as addi-
tional input to the algorithms, since they are clear from the description of the statement and the
list of witnesses.
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We employ different proof systems that are either witness indistinguishable or zero-knowledge in
terms of privacy, and either extractable or simulation-extractable in term of soundness. For the
security proofs we introduce the following algorithms:

Π.ExtSetup(grp)→ (CRS , tdext). On input grp, it outputs a common reference string CRS
and a trapdoor tdext for extraction of valid witnesses from valid proofs. This is for witness-
indistinguishable extractable proofs.

Π.SimSetup(grp)→ (CRS sim , tdext, tdsim) It outputs a CRS and the extraction and simulation
trapdoors. This is for simulation-extraction.

Π.SimProve(CRS sim ; tdsim;Stmt)→ π. On input CRS sim and a trapdoor tdsim, it outputs a
simulated proof π such that Π.Verify(CRS sim ;π;Stmt) = 1.

Π.Extract(CRS ; tdext;π;Stmt)→W. On input a proof π and a trapdoor tdext, it extracts a wit-
ness W that satisfies the statement Stmt of the proof π.

For simulation-extractable NIZK proofs (that are non-malleable) we also allow an additional
public input to the Prove and Verify algorithms Π.Prove(CRS ,W,Stmt , L), Π.Verify(CRS , π,
Stmt , L) – a message (label) L, which is non-malleably attached to the proof (i.e. the signature
of knowledge is computed on this message).

3.3 Our Redactable Signature Scheme

We construct our redactable signature scheme URS from a structure-preserving signature scheme
SPS, a vector commitment scheme VC, and an extractable and witness-indistinguishable non-
interactive proof-of-knowledge system Π described in the previous section. Some SPS and vector
commitment schemes might also support randomization; we already discussed such a property
for vector commitments in the last sub-section; for signatures we refer the reader to [3, 4]. We
denote the randomization algorithms of commitments and signatures by VC.Rand and SPS.Rand,
respectively. We denote the randomizable elements of a SPS signature Σ byψrnd(Σ) and the other
elements by ψwit(Σ). (For a non-randomizable SPS signature ψwit(Σ) = Σ.)

Construction. We first give a simplified construction that does not utilize the randomization
algorithm of the vector commitment scheme and, therefore, is slightly less efficient.

URS.SGen(1κ). Compute grp ← G(1κ), pp ← VC.Setup(grp), CRS ← Π.Setup(grp), output
SP = (grp, pp,CRS ).

URS.Kg(SP). Obtain grp from SP , generate (pksps, sksps) ← SPS.Kg(grp), output pk =
(pk sps ,SP) and sk = (sk sps , pk).

URS.Sign(sk , ~m). Pick r ← Zp, compute C = VC.Commit(pp, ~m, r) and Σ ← SPS.Sign(
sksps, C), and return σ = (Σ, C, r).

URS.Derive(pk , I, ~m, σ). First, compute W = VC.Open(pp, I, ~m, r). Then, if a SPS.Rand
algorithm is present, randomize the signature as Σ′ ← SPS.Rand(pk sps ,Σ); otherwise, set
Σ′ ← Σ. And compute the proof π ← Π.Prove(CRS ;C,W,ψwit(Σ′); KC,W,ψwit(Σ′) :
SPS.Verify(pksps,Σ

′, C) ∧ VC.Check(pp, C, ~mI ,W ) ). Return σ = (ψrnd(Σ′), π) as the
signature for ~mI .

URS.Verify(pk , σ, ~mI). Check that Π.Verify
(
CRS ;π; KC,W,ψwit(Σ′) : SPS.Verify(pksps,Σ

′,
C)
)

= VC.Check(pp, C, ~mI ,W ) = 1.

Theorem 4. URS is an unforgeable redactable signature scheme, if the SPS scheme is unforge-
able, the vector commitment scheme satisfies the batch binding and opening non-malleability
property, and the proof-of-knowledge system is extractable and witness indistinguishable. The
proofs of Theorems 4 is in §C.1.
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Theorem 5. URS is an unlinkable redactable signature scheme if the proof-of-knowledge system
is witness indistinguishable. The proofs is given in §C.1.

Alternative construction. If the vector commitment scheme has a randomization algorithm,
we can use a slightly more efficient scheme as described in §C.2.

Strengthened scheme for an universally composable construction. To be able to satisfy the
UC functionality, we require an additional key-extraction property. We thus build an augmented
redactable signature scheme URS from a redactable signature scheme URS∗(without key extrac-
tion) and a zero-knowledge non-interactive proof-of-knowledge system Π∗.

URS.SGen(1κ). Run SP∗ ← URS∗.SGen(1κ), get grp from SP∗, run CRS sk ← Π∗.Setup(grp),
and output SP = (SP∗,CRS sk).

URS.Kg(SP). Obtain SP∗ and CRS sk from SP , (pk∗, sk∗) ← URS∗.Kg(SP∗). Compute the
proof
πsk ← Π∗.Prove (CRS sk; (sk∗, r); Ksk∗ Er : (pk∗, sk∗) = URS∗.Kg(SP∗; r)) . Output
pk = (SP , pk∗, πsk) and sk = (sk∗, pk). We note that URS∗.Kg(SP∗; r) denotes a key
generation algorithm with fixed randomness r.

URS.CheckPK(SP , pk).
Check that Π∗.Verify(CRS sk;πsk; Ksk Er : (pk , sk) = URS∗.Kg(SP∗; r)) = 1.

Sign, Derive, Verify are almost unchanged and use pk∗ internally. SGenT and ExtractKey use the
extraction setup and extractor of the proof system respectively, while CheckKeys checks that the
relation R holds for pk and sk .

Note that Groth-Sahai proofs can be used to implement key-extraction by proving a binary,
or n-ary decomposition of the secret key [60]. But this comes at a huge cost of more than 61,000
group elements at 128-bit security, even if this cost is only incurred once by every user per public
key. We propose instead to use fully structure-preserving signatures (FSPS) [1] such that sk
consists of group elements and can be easily extracted. FSPS for signing single group elements
can be as cheap as 15 elements per signature and proofs of key possession consist of just 18
elements.

Theorem 6. The strengthened scheme URS is an unforgeable, unlinkable, and key extractable
redactable signature scheme, if the underlying redactable signature scheme URS∗ is unforgeable
and unlinkable, and the proof-of-knowledge system Π∗is zero-knowledge and extractable.

Unforgeability and unlinkability are simple corollaries of Theorem 4 and Theorem 5. Key-
extractability follows directly from the extractability of the proof system.

Signing group elements as additional parts of the message. While the presented redactable
signature scheme can sign and quote a large number of values in Zp very efficiently, in certain
applications, like the one presented in the next section, one might also need to sign a small number
of additional group elements. In the Derive algorithm these elements will either be part of the
derived message, and given in the clear after derivation, or be treated as part of the witness, i.e.,
hidden from the verifier. The detailed construction and the security proofs are given in §D.

4 From Unlinkable Redactable Signatures to Anonymous Creden-
tials

As we designed our UC-secure URS scheme as a building block for privacy-preserving protocols,
anonymous credentials are a natural application. Indeed, an (unlinkable) redactable signature
scheme is already a simple selective-disclosure credential system where the attributes issued to
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users are the messages signed in Tier 1 signatures and a user can later reveal a subset of her
attributes by deriving a Tier 2 signature. However, in an anonymous credential system, users also
require secret keys and pseudonyms (pseudonymous public keys), on which credentials can be
issued and with respect to which credentials can be presented. This allows users to prove that
they possess several credentials issued from different parties on the same secret key [20, 32].

In this section, we extend the functionality of URS in two ways: (1) we bind Tier 1 signatures
to user secret keys in a way that prevents the derivation of signatures without knowledge of the
secret and (2) we bind Tier 2 derived signatures to the unique context, cxt (nonce), to prevent
replay attacks in which an attacker shows the same signature derived twice.

We first recall the algorithms of a multi-issuer anonymous credential system and then provide
an instantiation using URS. To be modular and to simplify the analysis, we then provide an
ideal functionality for a single issuer. The functionality is carefully designed to self-compose
naturally into a full-fledged credential system with multiple issuers. Finally, we provide a concrete
instantiation of our generic construction and analyze its efficiency.

4.1 Algorithms of Our Anonymous Credential System

Let us first introduce the parties and the algorithms of a multi-issuer anonymous credential system
supporting user attributes (cf. [20, 32]). Its protagonists are users (U), issuers (I), and verifiers
(V). Each user has a secret key X , from which she can derive (cryptographic) pseudonyms P . To
get a credential issued, a user sends to the issuer a pseudonym P together with a (non-interactive)
proof πX ,P that she is privy to the underlying secret key. The issuer will then issue her a credential
Cred on P containing the attributes ~a the issuer vouches for. The user can then present the
credential to a verifier under a potentially different pseudonym P ′ by sending, together with P ′,
a (non-interactive) proof πX ,Cred that she possesses a credential on the attributes ~aI . Recall that
I defines which attributes shall be revealed.

A credential system Cred defines a set of algorithms: a system parameters generation algo-
rithm SGen; an issuer setup algorithm Kg; a user secret generation algorithm SecGen; algorithms
for pseudonym generation and verification NymGen and NymVerify, respectively; an algorithm
to request a credential RequestCred; an algorithm for issuing a credential IssueCred; an algorithm
to check a newly issued credential for correctness CheckCred; an algorithm to show a credential
with respect to a pseudonym (to create a credential proof) Prove; and an algorithm to verify a
credential proof Verify.

Definition 10. A credential system Cred is a set of the following basic algorithms:
Cred.SGen(1κ) → SP is a system setup algorithm that generates the common system-wide

parameters SP .
Cred.Kg(SP) → (pk , sk) is an issuer setup algorithm, with which the issuer generates a key

pair for issuing credentials and publishes the public key pk .
Cred.SecGen(SP) → X is a secret generating algorithm that takes the common parameters as

an input and outputs a fresh user secret X .
Cred.NymGen(SP ,X )→ (P , aux (P)) is a pseudonym generating algorithm that takes system

parameters, a user secret as an input and creates a pseudonym P and some auxiliary
information aux (P) for P .

Cred.NymVerify(SP ,P ,X , aux (P)) → 1/0 verifies that the pseudonym was generated cor-
rectly w.r.t. to the user’s secret key.

Cred.RequestCred(SP , pk ,X ,P , aux (P)) → (πX ,P , aux (Cred)) takes the common parame-
ters SP , the public key of the issuer pk , the secret X , and a pseudonym P together with the
corresponding auxiliary information aux (P), and produces a request for issuing a creden-
tial (a proof of knowledge of the user secret) πX ,P and some optional auxiliary information
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aux (Cred) for the requested credential.
Cred.IssueCred(SP , sk ,P ,~a, πX ,P ) → Cred/⊥ takes the common parameters SP , a request

for issuing a credential received from the user πX ,P , the issuer key pair, and the vector of
attributes ~a assigned to the user as an input, and, if the issuance token verifies, produces a
credential, otherwise it outputs ⊥.

Cred.CheckCred(SP , pk ,X ,P , aux (P),Cred , aux (Cred),~a)→ 0/1 verifies if a credential re-
ceived from the issuer is valid.

Cred.Prove(SP , pk ,X ,P , aux (P),Cred , aux (Cred),~a, I, cxt)→ πX ,Cred is an algorithm ex-
ecuted by the user, that takes the user secret X , a credential Cred , a pseudonym P , and
a context cxt as an input and outputs a (presentation) proof πX ,Cred that reveals only a
required subset I of the attributes ~a from the credential.

Cred.Verify(SP , pk ,P ,~aI , πX ,Cred , cxt) → 1/0 is an algorithm executed by the verifier, that
verifies a presentation proof provided by the user.

We instantiate these algorithms by adding support for user secrets, pseudonyms and contexts
to our redactable signature scheme. Besides the URS algorithms, we use pseudonym generation
and verification algorithms based on a structure preserving commitment scheme SPC and a gap
problem to generate credential specific secrets. A gap problem has a generator KGap that generates
(XCred , YCred ) and a verification algorithm VGap, such that it is easy to verify (XCred , YCred )
but hard to compute XCred from YCred . This hardness is used to prevent the mauling of the
simulation-extractable presentation proofs.

Table 1 gives the construction of our credential scheme. We group the core credential algo-
rithms into those used for setup, issuing and presentation. In our security definition and the proof
we will make use of additional algorithms for simulation and extraction.

4.2 Ideal Functionality for Credentials

Rather than defining a credential system with a number of different issuers, we chose to first give a
protocol for a single issuer only, to reduce complexity. Later, we show how to build a full-fledged
credential system with multiple issuers by combining multiple instances of the protocol, one for
each issuer. To this end, we support sharing pseudonyms across instances. Moreover, users
should be able to use different pseudonyms for the issuance of a credential and for each proof of
a credential. Thus, the functionality is parameterized by a pseudonym generation and verification
scheme (SecGen,NymGen,NymVerify) which in our realization will be a commitment scheme.
For compositionality we do not model unlinkability, but that presentation proofs leak nothing
except their pseudonyms and the revealed attributes (modeled using simulation). We therefore,
somewhat counter intuitively, do not immediately rely on pseudonyms being hiding. The hiding
property, however, matters for the whole credential system. Indeed, without pseudonyms being
hiding, users can be linked when they interact with the issuer or prove possession of a credential
w.r.t. a pseudonym, both in the real and the ideal world.

We start with specifying an ideal functionalityFCred that describes the security properties with
respect to a single issuer and for pseudonyms that are controlled by the environment. We then
describe a protocolRCred for a single issuer based on FCA and FCRS. Finally, we show thatRCred

indeed securely realizes FCred in the (FCA,FCRS)-hybrid model under static corruptions.2 As
the efficient integration of pseudonyms requires zero-knowledge and thus whitebox techniques,
RCred does not use RURS as a (blackbox) subroutine. We will, however, carefully align the
internals of FCred andRCred with those of FURS andRURS respectively, such that we can use the
UC emulation theorem in one of the hybrid steps of our security proof.

2As users are anonymous and the network is insecure we require the presence of at least one dishonest user for
modeling purposes.
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Setup algorithms

Cred.SGen(1κ): Compute SPURS ← URS.SGen(1κ); CRSX ← Π.Setup(1κ); ppSPC
← SPC.Setup(SPURS); and output SP = (SPURS,CRSX , ppSPC).

Cred.Kg(SP): Compute (pkURS, skURS)← URS.KeyGen(SP), and output
(sk , pk) = (skURS, pkURS).

Cred.SecGen(SP) : Take G from SP , pick random x← Zp,X = Gx. Output X .
Cred.NymGen(SP ,X ) : (P ,O)← SPC(ppSPC,X ). Output (P , aux (P) = O).
Cred.NymVerify(SP ,X ,P , aux (P)) : Parse aux (P) as O . Output the result of

SPC.Check(ppSPC,P ,O).
Issuing algorithms

Cred.RequestCred(SP , pk ,X ,P , aux (P)) :
(XCred , YCred )← KGap; πX ,P ← Π.Prove(CRSX ; (X , XCred , aux (P));StmtP ), where
StmtP =

(
KX , XCred , aux (P) : NymVerify(SP ,X ,P , aux (P)) = 1 ∧ VGap(XCred ,

YCred ) = 1
)
.

Add XCred , YCred ,P , aux (P) to aux (Cred) and YCred to πX ,P .
Cred.IssueCred(SP , sk ,P ,~a, πX ,P ):

1. Verify the request for issuance πX ,P :
If Π.Verify(CRSX ;πX ,P ;StmtP ) = 0, return ⊥.

2. Else, generate a credential by creating a Tier 1 signature on the vector of messages,
providing the pseudonym and a gap problem challenge, and calling
σ ← URS.Sign(sk , (P , YCred ,~a)) and output Cred = σ.

Cred.CheckCred(SP , pk ,X ,P , aux (P),Cred , aux (Cred),~a) : Output the result of
URS.Verify(pk ,Cred , (P , YCred ,~a)).

Presentation algorithms

Cred.Prove(SP , pk ,X ,P ′, aux (P)′,Cred , aux (Cred),~a, I, cxt)→ πX ,Cred :
1. Obtain XCred , YCred , P , aux (P) from aux (Cred).
2. Run σI ← URS.Derive(pk , I, (P , YCred ,~a), σ)).
3. Compute a proof of knowledge of the secret, pseudonym, and the correctness of the

signature on a context: πX ,Cred = Π.Prove(CRSX ; (X ,P ,
aux (P), aux (P)′, YCred , XCred );Stmt , cxt);Stmt =(

KX ,P , aux (P), aux (P)′, YCred , XCred : NymVerify(SP ,X ,P ′, aux (P)′) =
1 ∧ NymVerify(SP ,X ,P , aux (P)) = 1 ∧ URS.Verify(pk , σI , (P , YCred ,~a)I)) =
1 ∧ VGap(XCred , YCred ) = 1

)
.

Add σI to πX ,Cred as a part of the public input.
Cred.Verify(SP , pk ,P ′, πX ,Cred ,~aI , cxt) : Output the result of Π.Verify(CRSX ;

πX ,Cred;Stmt(SP ,P ′, σI ,~aI), cxt).

Simulation and extraction algorithms

Cred.SGenT(1κ) : (SPURS, td)← URS.SGenT(1κ);
(CRSX , tdext, tdsim)← Π.SimSetup(1κ); ppSPC ← SPC.Setup(SPURS).
Output

(
SP = (SPURS,CRSX , ppSPC), tdext = (td, tdext), tdsim

)
.

Cred.Extract(SP , tdext, pk ,P
′, πX ,Cred ,~aI , cxt):

Take (X, aux (P)) from Π.Extract(SP ; tdext;πX ,Cred ; Stmt)).
Cred.SimProve(SP , sk , tdsim, P

′,~aI , cxt)→ πX ,Cred :
1. X ← SecGen(SP ); (P , aux (P))← NymGen(SP ,X ).
2. Let ~a0 be a Tier 1 message restored from ~aI by replacing ⊥-s with 0-s as if it was

derived from the original message ~a by applying Zero(~a, I).
3. σ ← URS.Sign(sk , (P , YCred ,~a0))
4. σI ← URS.Derive(pk , I, (P , YCred ,~a0), σ)).
5. Compute a proof of knowledge of the secret, pseudonym, and the correctness of the

signature on a context:
πX ,Cred ← Π.SimProve(CRSX ; tdsim;P ′;Stmt , cxt).

Table 1: Algorithms of our credential system
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Single issuer ideal functionality. The starting point for our credential functionality is the ideal
functionality of unlinkable redactable signatures, extended in a number of ways.

Similar to FURS (and in line with other UC-functionalities such as Fsig that need to output
cryptographic values), FCred is handed a number of cryptographic algorithms by the simulator,
so that FCred can produce artifacts for proofs of credential ownership and attribute disclosure,
and to verify such proofs. Indeed, the functionality cannot ask the simulator for such artifact’s as
sometimes done, but needs to run these algorithm itself to guarantee privacy (cf. FURS and the
UC-functionalities for blind signatures [6, 46]).

For this to work, the functionality needs to assure verifiers that all pseudonyms are related to
some legitimate user. Consequently, our simulator uses a special parameter generation algorithm
that also outputs extraction and simulation trapdoors: Cred.SGenT(1κ) → (SP , tdext, tdsim).
The extraction trapdoor is an input to the user secret extraction algorithm Cred.Extract(SP , tdext,
pk ,P , πX ,Cred ,~aI , cxt) → X, aux (P). This algorithm is used to ensure that a proof of pos-
session is accepted only if correct X and aux (P) (such that NymVerify accepts) are extracted.
Similarly, the functionality needs to give assurance to users that nothing except their pseudonyms
and their attributes is leaked in a proof of possession. We model this using a simulation algo-
rithm Cred.SimProve(SP , sk , tdsim,P

′,~aI , cxt) → πX ,Cred that the simulator provides to the
functionality. This corresponds to the simulator providing the Sign algorithm in FURS.

We now describe the ideal functionality and highlight the security properties it ensures. FCred

maintains some bookkeeping information (tables): MISS - for storing information about issued
credentials, and MPRES - for storing information about credentials that produced presentation
proofs.

First, upon receiving the (keygen, sid) message, FCred performs a setup by asking the sim-
ulator for the system parameters, keys, trapdoors, algorithms and a list of corrupted parties. It
generates all cryptographic artifacts using the algorithms provided. Message (leakSK, sid) is
handled in exactly the same way as for redactable signatures. Message (checkPK, . . .) used in
FURS is no longer needed, as we assume that in the real world all issuer keys are automatically
checked upon registration with FCA.

Second, upon receiving the (issueCred, sid , qid ,U ,X ,P , aux (P)) message from a user,
FCred initiates credential issuing. It will, however, only proceed if the issuer specified in sid =
(I, sid ′) is willing to issue some attributes ~a to the user, and if X ,P , and aux (P) form a valid
pseudonym.

Third, upon receiving a proof request in the form of a (proveCred, . . .) message, instead of
creating a proof using the user secret and other credential information used during the issuance
request, the functionality uses the Cred.SimProve algorithm that only takes the pseudonym, with
respect to which the presentation is done, and disclosed attributes as an input, but no private or
linkable information, i.e. non-disclosed attributes are already “redacted” . This guarantees that
after seeing a presentation token, the issuer cannot tell to which credential the token is related
(absent weaknesses in the pseudonym algorithms as discussed above).

Finally, upon receiving the (verifyCredProof, . . .) message, FCred—besides verifying the
proof itself—uses the Cred.Extract algorithm and bookkeeping information to make checks that
guarantee that: (1) the adversary should not be able to produce a presentation proof that verifies
and that reveals attributes that were never issued to the user secret of the pseudonym; (2) for
honest users that keep their user secret private the adversary should not be able to repeat a proof
with a fresh context that was not seen before. Here, we consider an honest user’s secret private as
long as no dishonest user received a credential for the same secret.

We describe the ideal functionality FCred for credentials in Figure 1. Note that because
we consider static corruption, we assume that FCred and SIM are aware of corrupted parties.
Namely, whether I is corrupted or not and which users U are honest and which are corrupted.
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Functionality FCred(SecGen,NymGen,NymVerify)

The functionality maintains tablesMISS andMPRES initialized to ∅ and flags kg and keyleak which are
initially unset.
• On input (keygen, sid) from I, verify that sid = (I, sid′) for some sid′ and that flag kg is unset. If

not, then return ⊥. Else, do the following:
1. Send (initF, sid) to SIM and wait for a message (initF, sid ,SP , sk , pk , tdsim, tdext,

SimProve,Verify,Extract) from SIM, where SP are the system parameters, tdsim and tdext
are the simulation and extraction trapdoors respectively, and the rest are polynomial-time
algorithms. Store all of these values and set flag kg .

2. Return (verificationKey, sid , pk) to I.
• On input (leakSK, sid) from I verify that sid = (I, sid ′) for some sid ′. If not, return ⊥. Else, if flag

kg is set, set flag keyleak and return (leakSK, sid , sk).
• On input (issueCred, sid , qid ,X ,P , aux (P)) from U , check sid = (I, sid′) for some sid ′, and that

flag kg is set. If not, return ⊥. Else send a public delayed output (issueCred, sid , qid ,P) to I.
• On input (issueCred, sid , qid ,~a) from I, check for (issueCred, sid , qid ,X ,P , aux (P)) from U ,

and verify that sid = (I, sid′) for some sid ′ and that the flag kg is set. If not, return ⊥. Else, do the
following:

1. Run b← NymVerify(SP ,P ,X , aux (P)). If b = 0, return ⊥.
2. Add (ISS ,⊥,X ,~a) toMISS .
3. Send a public delayed output (credIssued, sid , qid ,~a) to U .
4. When (credIssued, sid , qid ,~a) is delivered to U , update the issuance record by adding the user

to (ISS ,U ,X ,~a) ofMISS .
• On input (proveCred, sid ,X ,P ′, aux (P)′, I,~a, cxt) from U , do the following:

1. Check if kg is set. If not, return ⊥.
2. Check if NymVerify(SP ,P ′,X , aux (P)′) = 1. If not, return ⊥.
3. Check if (ISS ,U ,X ,~a) exists. If not, return ⊥.
4. πX ,Cred ← Cred.SimProve(SP , sk , tdsim,P

′,~aI , cxt).
5. Check if Cred.Verify(SP , pk ,P ′, πX ,Cred ,~aI , cxt) = 0, then output ⊥.
6. Add (PRES ,U , cxt ,X ,P ′, aux (P)′,~aI , πX ,Cred) toMPRES .
7. Return (credProved, sid ,~aI , πX ,Cred) to U .

• On input (verifyCredProof, sid , pk ′,P ′, π′X ,Cred ,~a
′
I , cxt

′) from some party P , do the following:
1. Verify the proof result = Cred.Verify(SP , pk ′, P ′, π′X ,Cred ,~a

′
I , cxt

′).

2. If pk 6= pk ′, or keyleak is set, or I is dishonest, or result = 0, send (verified, sid ,~a′I , result)

to P .
3. Else, if there is a record (PRES , ∗, cxt ′, ∗,P ′, ∗,~a′I , π′X ,Cred) return (verified, sid ,~a′I , 1) to
P .

4. Otherwise, extract X ′, aux (P)′ ← Cred.Extract(SP , tdext, pk ,P
′, π′X ,Cred ,~a

′
I , cxt

′).
5. If NymVerify(SP ,P ′,X ′, aux (P)′) = 0, return (verified, sid ,~a′I , 0) to P .
6. Else, if there is a record (ISS ,U ,X ′,~a) inMISS for a corrupted user U such that ~aI = ~a′I , return

(verified, sid ,~a′I , 1) to P .
7. Else return (verified, sid ,~a′I , 0) to P .

Figure 1: The ideal functionality for single issuer anonymous credentials
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We consider a protocolRURS that realizesFURS using the algorithms in §4.1 in the (FCRS,FCA)-
hybrid model where SP is the reference string and each call to FCred is essentially replaced by
running one of the algorithms of Cred. The detailed description ofRCred is given below in §E.1.

Theorem 7. Let URS be the unlinkable redactable signature scheme according to Definition
1, SPC is a structure-preserving commitment scheme, Gap be a gap problem, Π be a non-
interactive proof of knowledge system. Then RCred securely realizes FCred in the (FCRS,FCA)-
hybrid model if URS is correct, unlinkable, unforgeable, and key extractable, SPC is binding, the
non-interactive proof-of-knowledge system is zero-knowledge and simulation extractable, and the
Gap problem is hard. The proof is provided in §E.2.

Building a full-fledged credential system with multiple issuers. We now explain how to use
our credential functionality to support multiple issuers using multiple sessions of FCred, one for
each issuer, and a pseudonym functionality that supports creation of user secrets and generation
and verification of pseudonyms. The pseudonyms are required to be both hiding and binding to
hide a user secret and prevent users from sharing credentials without also sharing their secret.
Users now can generate a user secret and different pseudonyms on it and then use multiple calls
to FCred instances for different issuers to get credentials (from different issuers but bound to the
same secret). To compose a presentation proof that reveals attributes from different credentials,
the user creates a pseudonym P ′ and uses the corresponding FCred instances to generate the
required proofs with respect to this pseudonym. Since the pseudonym is the same in different
proofs and each proof guarantees the same underlying secret in the credential and the pseudonym,
pulling these proofs together results in a single proof for multiple credentials. Each proof block
guarantees unlinkability and unforgeability, and since the pseudonym is both binding and hiding
this composed proof is also unforgeable and unlinkable with respect to the other composed proofs.
The verification is done by querying the corresponding FCred instances for verification of each
particular proof part.

4.3 Instantiation and Efficiency Analysis

To analyze the efficiency of our scheme we consider a concrete instantiation scenario. We in-
stantiate our non-interactive construction with Groth-Sahai proofs [50], the structure-preserving
commitment scheme of [5], and our unlinkable redactable signature scheme presented in §3.3. As
a gap problem we pick the Computational Diffie-Hellman problem. The URS scheme is instan-
tiate with the fully structure-preserving signature scheme by Abe et al. [1], Groth-Sahai proofs,
and the vector commitment scheme from §3.1. The proof of Theorem 8 follows from Theorems
6-7.

Theorem 8. The credential system described above securely realizes FCred defined in §4.2 if
the SXDH, J-RootDH, n-BSDH, q-SDH, XDLIN, co-CDH, and DBP assumptions hold. Consult
building blocks for definitions of assumptions.

We refer to §5 for the comparison with prior work. We stress that the complexity of the Prove
and Verify algorithms is independent of the number of all attributes contained in a credential.

The size of the credential proof is roughly 130 group elements (100 when using the SPS of [3]
instead of FSPS). This means that the communication efficiency for showing a credential with
respect to a pseudonym is around 8 KB (6 KB for SPS) at 128-bit security level, which is close to
Idemix credentials [32] as the size of pairing groups is much smaller than the size of RSA groups
and because the size of Idemix credential proofs is linear in the number of attributes. Besides,
Idemix credentials do not provide such strong formal security guarantees, i.e. they require random
oracles for non-interactive proofs and are not universally composable. Our non-UC scheme is
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more efficient than the credential system of Izabachène et al. [54] that has credential proofs of
around 8 KB, while our UC scheme has comparable proof sizes. Our scheme is much less efficient
than the scheme of [62] but their scheme relies on hash functions in their construction and thus
does not enable efficient protocol design.

Open questions. We leave the construction of a scheme that achieves the same functionality
as ours with the efficiency of [62]—perhaps using fully structure preserving signatures of equiv-
alence classes—as an interesting open problem. Other interesting questions are exploiting the
lack of opening non-malleability for attacks on existing constructions and efficiently basing the
opening non-malleability property of vector commitments on a more standard cryptographic as-
sumption than the J-RootDH assumption of Definition 9.

5 Detailed Comparison with Related Work
In this section we compare our URS and Cred schemes with related work and highlight the ad-
vantages of our scheme. A variety of signature schemes with flexible signing capabilities and
strong privacy properties have been proposed [41, 18, 10, 14]. Such schemes generalize existing
privacy-preserving schemes such as group signatures, and anonymous credentials. Our work on
URS is most closely related to the work of Chase et al. [41]. They define simulatable malleable
signatures and show how to instantiate (a base scheme without attributes for) delegatable creden-
tials. Ahn et al. [7] and Attrapadung et al. [8] consider redactable signatures but for a different
redact operation that allows to quote substrings. While these works provide a fresh definitional
approach (indeed our definitions of unlinkability and unforgeability are inspired by [41]), they do
not aim at being directly applicable in the real world and are rather inefficient, especially when
redacting a message vector with a large number of attributes. Canard and Lescuyer [35] proposed
an anonymous credential system built from sanitizable signatures—a special case of malleable
signatures. Apart from being less efficient than ours, their scheme is only proven secure in the
random oracle model.

Our starting point for achieving practical efficiency is vector commitments [40, 59, 38], a
cryptographic building block introduced by Catalano, Fiore and Messina [40]. Kate et al. [55]
mention one-time-show credentials as one of the applications of their polynomial commitments
scheme. Without providing any construction and security proofs, the authors suggest to build
credentials by committing to the attributes, which the issuer then certifies by signing the result-
ing commitment. Recently, Kohlweiss and Rial [58] built a private access control protocol with
efficient selective attribute disclosure from vector commitments. Their solution, however, is still
one-time-show and requires re-issuing and thus interaction. Instead, we construct a multi-show
credential system and put their intuition on a formal basis.

The first efficient multi-show anonymous credential scheme is [30]. Its success led to imple-
mentations [34] and related protocols are even contained in standards [21]. Many cryptographic
papers on anonymous credentials often focus on a base protocol, with pseudonyms, but without
attributes. A notable exception is [26], which studies an extension to the identity mixer system
for efficient attribute disclosure. Their result is in the random oracle model, however. The first
non-interactive anonymous credential scheme that does not rely on random oracles is [12]. P -
signatures, the primitive underlying their construction is a signature scheme falling short of being
structure-preserving and is engineered towards the anonymous credentials application. Both P -
signatures, and also the work on delegatable credentials [47] consider a base protocol without
attributes. Belenkiy et al. [13] define multi-block P -signatures with a proof size linear in the
number of messages.

In Table 2 we compare the communication efficiency of our schemes with P-signatures [12,
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13]. Our scheme is more efficient and provides UC-security only at the cost of the public key
being larger by a constant factor.

UC PK size Tier 1 Signature Tier 2 signature/Proof
URS∗ (SPS,[3]) – O(n) ||G|| 8 ||G||, (n+ 1) ||Zp|| 19 ||G||, k ||Zp||
URS (SPS,[3]) + O(n+ ||sk ||) ||G|| 8 ||G||, (n+ 1) ||Zp|| 19 ||G||, k ||Zp||
URS (FSPS,[1]) + O(n) ||G|| 16 ||G||, (n+ 1) ||Zp|| 38 ||G||, k ||Zp||

P-sig [12] – 4||G|| 3||G||, n = 0 34 ||G||, k = 0
Block P-sig [13] – O(n) ||G|| 3||G||, n ||Zp|| (16n+ 34) ||G|| + k ||Zp||

Table 2: Efficiency comparison of URS with P-signatures. (n, k are the size of the original and
quoted message, ||sk ||, ||G|| and ||Zp|| are the bit-lengths of the signing key, group elements and
exponents, respectively. URS∗ is our basic scheme without key extraction. The proof of key
possession for FSPS-based URS consists of 18 elements.

Extending the work of [12] in combination with vector commitments, Izabachène et al. [54]
construct block-wise P -signatures and use them to built efficient anonymous credentials (see
§4.3 for an efficiency comparison with our credential scheme). Although their techniques are
superficially similar to ours, we list some crucial differences:

Their credential scheme targets a restricted class of predicates, individual attribute release
and dot-products, however, it is less efficient than the instantiation of our scheme from §4.3, and
requires more communication rounds. Instead, we advocate the use of general-purpose NIZK
to prove arbitrary predicates as natural extensions to our core scheme. Moreover, they do not
provide replay-attack countermeasures for presentation proofs. A reuse of another user’s proof
is not considered a forgery. Indeed, their definitions do not guarantee that credentials are non-
malleable, implying that multiple credential proofs of true predicates may be combinable into
a proof of an yet unproven, but true, predicate. This is crucial for a non-interactive credential
scheme and is taken care of in this work.

Independently, Hanser and Slamanig [62] presented a credential system with efficient (inde-
pendent of the number of attributes) attribute disclosure. Their scheme had security weaknesses
that were subsequently fixed. However, it still does not capture opening non-malleability, and is
only proven in the generic group model.

Contrary to a lot of existing work, we aim for modularity both in our constructions and proofs
by formalizing the security properties of all building blocks, including vector commitments, from
which we build our URS and our anonymous credential scheme. Thus, all the building blocks
and UC-functionalities we define can be used for the modular design of other protocols (e-cash,
group signatures, e-voting, etc.).
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A Proof of Theorem 1

First, we show how the ideal functionality is implemented with the real algorithms of URS from
Definition 1.

We define protocolRURS as follows:

Realization RURS:

• On input (keygen, sid) from S, verify that sid = (S, sid′) for some sid′ and that flag
kg is unset. If not, then ignore the request. Else, ask FCRS for SP , run (pk , sk) ←
Kg(SP), set flag kg, store (pk , sk) and return (verificationKey, sid , pk) to S.
• On input (checkPK, sid , pk ′) from some party P , compute b = CheckPK(pk ′) and

return (checkedPK, sid , b) to P .
• On input (leakSK, sid) from S verify that sid = (S, sid′) for some sid′. If not, ignore

the request. Else, if flag kg is set, set flag corrupt and return (leakSK, sid , sk).
• On input (sign, sid , ~m) from S, verify that sid = (S, sid′) for some sid′ and that flag

kg is set. If not, ignore the request. Else, return the output of Sign(sk , ~m) to S.
• On input (derive, sid , pk ′, I, ~m, σ) from some party P return the output of
Derive(pk ′, I, ~m, σ).
• On input (verify, sid , pk ′, σ, ~mI) from some party P , return the result of

Verify(pk ′, σ, I, ~mI).

Theorem 1. Let URS be the unlinkable redactable signature scheme according to Definition
1. Then RURS securely realizes FURS in the FCRS-hybrid model if URS is correct, parameter
indistinguishable, key extractable, unforgeable, and composable unlinkable.

Proof. We prove the theorem by proving the indistinguishability of the ideal world and the real
world. In the ideal world, the environment Z interacts with the simulator SIM and the ideal
functionality FURS. In the real world, the environment Z interacts with the real adversary A and
the protocolRURS. For any real world adversary we construct an ideal world adversary such that
if the environment can distinguish weather it interacts in the real or in the ideal world, one can
construct a reduction algorithm that uses Z to break correctness, key extractability, parameter
indistinguishability, unforgeability, and unlinkability of the redactable signature scheme.

First, we provide a description of the simulator in the ideal world. When receiving (initF, sid)
message from FURS, SIM generates (SP , td) by running SGenT(1κ) algorithm, stores td and
returns (initF, sid ,SP ,Kg, Sign,Derive,Verify). On receiving (checkPK, sid , pk) message,
SIM uses the algorithm ExtractKey(pk , td) to extract the secret key sk and returns sk to FURS.
If extraction fails, it returns ⊥.

The proof is done through a sequence of games. In Game 0, Z interacts with FURS and SIM
as in the ideal world, and, in Game 6, Z interacts with A and RURS as in the real world. In each
game we make a step towards the real world and show that if the environment can distinguish
between the current and the previous game, then one can build an adversary that breaks a security
property of URS. We define the success probability of Z to distinguish between Game i and
Game j as |pi − pj |. We show that |p6 − p0| ≤ pcorr + pcrs−ind + q · punlink + punf + pkey−extr ,
where pcorr , pcrs−ind , punlink , punf , and pkey−extr are the probabilities of breaking the correct-
ness, parameter indistinguishability, unlinkability, unforgeability, and key extraction properties of
the redactable signature scheme, respectively.
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Game 0: implements the ideal world, where the environment Z interacts with the simulator
SIM and the functionality FURS as described above.

Game 0′: is the same as Game 0 except the simulator SIM and the functionality FURS are
subsumed in a single entity that we denote C, i.e., C runs SIM and FURS internally and
interacts with the environment on behalf of SIM and FURS.

The change from Game 0 to Game 0′ is purely conceptual and hence |p0′ − p0| = 0.
Game 1: Here C behaves as in Game 0′ except when receiving (derive, sid , pk ′, I, ~m, σ), C

just returns the output of Derive(pk ′, I, ~m, σ), in particular C will never compute a fresh
signature σ′ $← Sign(sk tmp,Zero(~m, I)) and return Derive(pk ′, I,Zero(~m, I), σ′).

Using an hybrid argument, we prove that if Z can distinguish between Game 0′ and Game 1 then
one can break the unlinkability of URS. We define Hybrid k as follows:
Hybrid k: Upon input the ith (derive, sid , pk ′, I, ~m, σ) query, the derived signature is com-

puted as follows:
• for all i < k, C returns the output of Derive(pk ′, I, ~m, σ) (as in Game 1);
• for i ≥ k, C first runs Derive(pk ′, I, ~m, σ) and if it fails, outputs ⊥. Otherwise, if

pk = pk ′ then let sk tmp = sk. If there is an entry (pk ′, sk ′) ∈ K recorded, let
sk tmp = sk ′. Then C runs σ′ $← Sign(sk tmp,Zero(~m, I)) and returns Derive(pk ′, I,
Zero(~m, I), σ′). Otherwise, C returns the output of Derive(pk ′, I, ~m, σ) (as in Game
0′).

One can see that Hybrid 0 is the same as Game 0′ and Hybrid q is the same as Game 1. Now,
we show that if the environment can distinguish between Hybrid k and Hybrid k-1, then we can
construct the adversary Aunlink that wins the unlinkability game for URS. The reduction is as
follows. Upon the kth input (derive, sid , pk ′, I, ~m, σ), Aunlink runs the verification protocol,
sets messages ~m0 = ~m and ~m1 = Zero(~m, I), computes two signatures σ0 = Sign(sk , ~m0)
and σ1 = Sign(sk , ~m1), outputs the tuple (pk , I, ~m0, ~m1, σ0, σ1) to the unlinkability challenger,
and waits for the challenge signature. When it receives the challenge derived signature σ(b)I it
forwards it to the environment. It is easy to see that if b = 1 then it is Hybrid k-1, and if b = 0
then it is Hybrid k. Thus, if the environment can distinguish between the two hybrids, Aunlink

can distinguish between σ
(0)
I and σ

(1)
I . Thus, summing up over all hybrids, one can see that

|p1 − p0′ | ≤ q · punlink .
Game 2: Here C behaves as in Game 1 except when the environment sends the message (checkPK,

sid , pk ′), C computes b = CheckPK(pk ′) and returns (checkedPK, sid , b). In particular,
C does not attempt to extract the secret key from pk ′.

If the environment can distinguish between Games 1 and 2, then we can build an adversary
Akey−extr that breaks the key extractability of URS. Let E be the event when ExtractKey()
algorithm fails to output a valid sk even though CheckPK(pk) outputs 1. As long as this event
does not occur,Z’s view in Game 2 and Game 1 is identical. Now, the reduction works as follows.
When receiving an (keygen, sid) message, Akey−extr uses SP received from the challenger. On
input (checkPK, sid, pk ′) Akey−extr runs ExtractKey(pk) and, if it fails, outputs pk to the chal-
lenger. One can see that when event E happens then Akey−extr breaks the key extractability
property. Therefore, |p2 − p1| ≤ pkey−extr .
Game 3: Here C behaves as in Game 2 except when the environment sends the message (keygen,

sid), C computes SP using SGen() algorithm instead of SGenT.
If the environment can distinguish between Games 2 and 3, then we can build an algorithm
Acrs−ind that breaks the parameter indistinguishability of URS. Let b = 0 if it is Game 2 (since in
Game 2 SP is generated using SGenT) and b = 1 if it is Game 3 (since in Game 3 SP is generated
using SGen). Then Acrs−ind just forwards the output of Z to the parameter indistinguishability
challenger. Hence |p3 − p2| ≤ pcrs−ind .
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Game 4: Here C behaves as in Game 3 except when the environment sends (sign, sid , ~m), C
does not run the verification algorithm before outputting the signature.

Let E1 be the event when Verify(pk , σ, ~m) algorithm outputs 0 even though σ is output of the
signing algorithm run with the corresponding secret key and the message vector. As long as this
event does not occur, Z’s view in Game 3 and Game 4 is identical. One can see that when eventE
happens then the correctness property does not hold. Hence we can write that |p4 − p3| ≤ pcorr .
Game 5: Here C behaves as in Game 4 except when receiving verification request input (verify,

sid , pk ′, σ, ~mI), C returns the result of Verify(pk ′, σ, ~mI).
Now, we show that if the environment can distinguish between Game 5 and Game 4 then we can
construct the adversary Aunf that breaks the unforgeability of the redactable signature scheme.
The reduction algorithm Aunf works as follows:
• On input (keygen, sid) from S, verify that sid = (S, sid′) for some sid′ and that flag kg

is unset. If not, then ignore the request. Get pk from the unforgeability challenger, set flag
kg, store (pk and return (verificationKey, sid , pk) to S.

• On input (sign, sid , ~m) from S, verify that sid = (S, sid′) for some sid′ and that flag kg
is set. If not, ignore the request. Else, ask the signing oracle Sign(·) for the signature σ on
~m and output (signature, sid , ~m, σ) to S.

• On input (verify, sid , pk ′, σ, I, ~mI) from some party P , compute result ← Verify(pk , σ,
I, ~mI) and do the following: If result = 1 and @ ~m′ such that ~m = Zero(m′) and m′

was not queried before, then output (m,σ) as a forgery to the unforgeability challenger and
(verified, sid , ~m, result) to Z . Otherwise, continue the simulation.

Let us analyze the success probability of Aunf . Let E′ denote an event when Z sends a verifi-
cation request (verify, sid , ~mI , pk) on a message that was never signed before (or that cannot
be derived from any message ~m′ that was signed before: ~m 6= I(~m) and the signer S is uncor-
rupted. As long as the event E′ does not occur, Z’s view between Game 4 and Game 5 is the
same. Therefore, the probability that event E′ occurs is greater equal than the probability that Z
distinguish between Game 4 and Game 5. Notice, that event E′ can occur only before the signer
S is corrupted (or the secret key gets leaked). This means that whenever event E′ occurs, Aunf

outputs a successful forgery. So the probability of the event E′ is actually the probability of the
adversary Aunf to win the unforgeability game. Thus, we have that |p5 − p4| ≤ punf .
Game 6: is the realization of the real world where C is replaced with real A and πURS.
One can see that Game 5 is the same as Game 6, since already in Game 5 C runs A and RURS

internally and interacts with the environment on behalf ofA andRURS. So the change from Game
5 to Game 6 is purely conceptual and hence |p6 − p5| = 0.

By summing up over all games, the probability that the environment can distinguish between
interacting with the ideal functionality FURS and SIM and with the real protocol RURS and A
is |p6 − p0| ≤ pcorr + pcrs−ind + q · punlink + punf + pkey−extr .

B Vector Commitments and Re-randomization

B.1 Definitions of Commitment Schemes

Definition 11 (Commitment Scheme). A commitment scheme Com is a triple of PT algorithms
Com.{Setup,Commit,Verify}, where
Com.Setup(1κ)

$→ pp is a common parameter generator that takes a security parameter 1κ and
outputs a set of public parameters pp that determine the message spaceMCom.

Com.Commit(pp,m)
$→ (C,O) is a commitment function that takes common parameters pp

and a message m and outputs a commitment C and opening information O .
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Com.Check(pp, C,m,O) is a verification function that takes parameters, the commitment, the
message and the opening as input, and outputs 1 or 0 representing acceptance or rejection,
respectively.

We note that in some cases the opening can be an input to the Commit algorithm.
We say that a commitment scheme Com is secure if it satisfies the following definitions of

perfect hiding and computational binding.

Definition 12 (Perfect Hiding). A commitment scheme Com is perfectly hiding if for any adver-
sary A and security parameter κ the following holds:

Pr[pp
$← Com.Setup(1κ); (m0,m1, state)← A(pp); b

$← {0, 1};

(C,O)
$← Com.Commit(pp,m(b));A(state, C)→ b′ : b = b′] =

1

2
.

Definition 13 (Computational Binding). A commitment scheme Com is computationally binding
if for any PPT adversary A and security parameter κ there exists a negligible function negl(·)
such that

Pr[pp
$← Com.Setup(1κ);A(pp)→ (C,m0,m1,O0,O1) : (m0 6= m1) ∧

Com.Check(pp, C,m0,O0) = Com.Check(pp, C,m1,O1) = 1] ≤ negl(κ).

We also provide the definition of a Structure-Preserving Commitment Scheme from Abe et
al. [5].

Definition 14 (Strictly Structure-Preserving Commitment Scheme [5]). A commitment scheme
Com is strictly structure-preserving SPC with respect to a bilinear group generator G if
• SPC.Setup outputs pp that consist of the group description grp = (p,G, G̃,Gt, e,G , G̃)

and group elements in G and G̃;
• the message spaceMSPC consists of group elements in G and G̃;
• SPC.Commit outputs the commitment and the opening that consist of group elements in G

and G̃;and
• SPC.Check checks only membership in G and G̃ and pairing product equations over grp.

The authors of [5] call such scheme “strictly” structure-preserving, since parameters, mes-
sages, commitments, and openings are allowed to consist only of the group elements from G
and G̃ (and the group description for parameters). Some works, however, for example [3], re-
lax this definition and also allow the target group elements (from Gt) in the output spaces of the
algorithms.

B.2 Vector Commitments

Vector commitments (VC) [39, 59] allow to commit to a vector of values in such a way that it is
possible to open the commitment only w.r.t. specific positions.

Definition 15 (Vector Commitment Scheme). A Vector Commitment scheme is a non-interactive
primitive that consists of the following algorithms:
VC.Setup(1κ, `)

$→ pp. Given the security parameter 1κ and the size ` of the committed vector
(with ` = poly(κ)), the key generation outputs some public parameters pp, which implicitly
define the message spaceM.
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VC.Commit(pp, ~m, r)
$→ C. On input a sequence (vector) of ` messages ~m = (m1, . . . ,m`),

randomeness r and the public parameters pp, the committing algorithm outputs a commit-
ment string C.

VC.Open(pp, i, ~m, r)
$→ W . This algorithm is run by the committer to produce a witness W

that m is the ith committed message. the auxiliary information aux can include the update
information produced by these updates.

VC.Check(pp, C, x, i,W ) → 0/1. The verification algorithm accepts (i.e., it outputs 1) only if
W is a valid witness that C was created to a vector m1, . . .m` such that x = mi.

B.3 Proofs of the Theorems from §3.1

Theorem 2. The commitment scheme VC.{Setup,Commit,Open,Check} defined in §3.1 is
batch binding under the n-BSDH assumption.

The proof of the theorem is analogous to that of [55] and could be omitted. Nevertheless, we
give a proof of the theorem as a simple corollary of Theorem 9 presented in the next section.

Theorem 3. The commitment scheme VC.{Setup,Commit,Open,Check} defined in §3.1 is
opening non-malleable under the J-RootDH assumption.

Proof. The implicit quantification over all J ⊆ [1, n] gives us some flexibility as to which instance
to attack. Alternatively, one can interpret this assumption as an interactive assumption in which
the adversary is allowed a one-time query for J .

We follow the steps of the game to build a reduction:
1. We create pp as usual using the G, G̃ , {Gαi , G̃αi}n+1

i=1 that form part of every assumption
instance and provide it to A.

2. When A outputs (~m, I) we will attack a J-RootDH instance with J = [1, n] \ I .

3. We compute C =
∏
i∈I F

mi
i ·X . Similarly we represent W = Gw(α) as G

f(α)−fI (α)
pI (α) · Y .

The reduction hands C and W to A.
4. When A returns I ′, W ′ we know from the verification equations that

e(C, G̃) = e(W ′, P̃I′)e(F~mI′ , G̃)

Let w′ = logGW
′. We have

f(α) + rp(α) = w′pI′(α) + fI′(α)

rp(α)/pI′(α) =

(
fI′(α)− f(α)

pI′(α)
+ w′

)
.

Thus the reduction can break the J-RootDH assumption below by outputing [1, n] \ I ′,(
G

fI′ (α)−f(α)
pI′ (α) ·W ′

)
.

B.4 Re-randomizable Vector Commitments

We consider the vector commitment scheme VC.{Setup,Commit,Open,Check} from §3.1 to-
gether with a randomization algorithm:
VC.Rand(pp, C,W, I, ρ)

$→ (C ′,W ′). Compute the re-randomized commitment C ′ = C · P ρI
and the witness W ′ = W ·Gρ, and return a couple (C ′,W ′).
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We revisit our batch-binding and opening non-malleability definitions in the presence of such
randomization algorithm.

Definition 16 (Randomizable batch binding). For a vector commitment scheme VC.{Setup,Commit,
Open,Check,Rand} and an adversary A consider the following game:
• Step 1. grp ← G(1k) and pp ← Setup(grp)
• Step 2. C, I, ~m,W,∆, C ′, I ′, ~m′,W ′,∆′ ← A(pp)

Then the commitment scheme satisfies randomizable batch binding if for all such PPT algo-
rithms A there exists a negligible function ν(·) such that the probability (over the choices of
grp, Setup, and A) that Rand(C,W, I,− logG ∆) = Rand(C ′,W ′, I ′,− logG ∆′), 1 = Check(pp,
C, I, ~m,W ) = Check(pp, C ′, I ′, ~m,W ′), and that there exist i = ij = i′j′ such that mi 6= m′i is
at most ν(k).

Note that this definition corresponds to the standard batch binding if ∆ and ∆′ are fixed to 1.

Definition 17 (Randomizable opening non-malleability). For a vector commitment commitment
scheme VC.{Setup,Commit,Open,Check,Rand} and an adversary A consider the following
game:
• Step 1. grp ← G(1k) and pp ← Setup(grp)
• Step 2. ~m, I ← A(pp)
• Step 3. Pick random r, compute C ← Commit(pp, ~m), r), and W ← Open(pp,~ı, ~m, r).
• Step 4. C ′,W ′, ~i′,∆′ ← A(C,W )

Then the commitment scheme satisfies opening non-malleability if for all such PPT algorithms A
there exists a negligible function ν(·) such that the probability (over the choices of grp, Setup,
Commit, and A) that Rand(C,W, I ′,− logG ∆′) = (C ′,W ′), 1 = Check(pp, C ′, I ′, ~m~ı′ ,W

′),
and I 6= ~i′ is at most ν(k).

Theorem 9. The vector commitment scheme VC is randomizable batch binding under the BSDH
assumption.

Proof. From the randomization and verification equations we know that

e(C, G̃)e(∆, P̃~ı) = e(W, P̃~ı)e(F~ı, G̃)e(∆, P̃~ı) =

= e(W ′, P̃~ı′)e(F
′
~ı′ , G̃)e(∆′, P̃~ı′) =

= e(C ′, G̃)e(∆′, P̃~ı′).

If A is successful, there exists i = ij = i′j′ such that mij 6= m′i′
j′

The polynomials f~i, f
′
~i′
, p~i, p~i′ can be factored as follows using polynomials φ, φ′, π, π′:

f~i(x) = φ(x)(x− i) +mi f ′~i′(x) = φ′(x)(x− i) +m′i

p~i(x) = π(x)(x− i) p~i′(x) = π′(x)(x− i)

We denote w = logG W , w′ = logG W
′, and ρ = logG̃ ∆, and rewrite the above equations

expressed using exponents

p~i(α)w + f~i(α) + p~i(α)ρ = p~i′(α)w′+

f ′~i′(α) + p~i′(α)ρ′

π(α)(α− i)(w + ρ) + φ′(α)(α− i) +mi = π′(α)(α− i)(w′ + ρ′)+

φ′(α)(α− i) +m′i(
π(α)(w + ρ)− π′(α)(w′ + ρ′) + φ′(α)− φ′(α)

)
(α− i) = m′i −mi

π(α)(w + ρ)− π′(α)(w′ + ρ′) + φ′(α)− φ′(α)

m′i −mi
=

1

α− i
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Now moving back to computing over group elements and using pairings to do multiplication,
we get that (

e(W, G̃π(α))e(Gπ(α),∆)e(W ′, G̃π′(α))−1e(Gπ′(α),∆′)−1·

e(Gφ′(α), G̃)e(Gφ′(α), G̃)−1
) 1
mi−m′i = e(G , G̃)

1
α−i .

Which contradicts the BSDH assumption.

Theorem 10. The batch openings of VC.{Setup,Commit,Open,Check,Rand} are non-malleable
under the J-RootDH assumption.

Proof. The implicit all quantification over all J ⊆ [1, n] gives us some flexibility as to which
instance to attack. Alternatively we could make the assumption interactive.

We follow the steps of the game to build a reduction:
1. We create pp as usual using the G,Gα, . . . , Gα

n+1
part of every assumption instance and

provide it to A.
2. WhenA outputs ~m, I we will attack an J-RootDH assumption instance with J = [1, n]\I .
3. We compute C =

∏I
j=1 F

mj
ij
X . Similarly we represent W = Gw(α)Y . The reduction

hands C and W to A.
4. When A returns I ′, W ′ we know from the verification equations that

e(C ′, G̃) = e(W ′, P̃I′)e(F~mI′ , G̃)

Let w′ = logGW
′, ρ′ = logG ∆. We have

f(α) + rp(α) + ρ′pI′(α) = w′pI′(α) + fI′(α)

rp(α)/pI′(α) =

(
fI′(α)− f(α)

pI′(α)
+ w′ − ρ′

)
.

Thus, the reduction can break the J-RootDH assumption by outputting [1, n] \ I ′,(
G

fI′ (α)−f(α)
pI′ (α) ·W/∆′

)
.

C Security and Instantiation of Our Redactable Signature Scheme

C.1 Unforgeability and Unlinkability Proofs

Theorem 4. URS.{SGen,Kg, Sign,Derive,Verify} is an unforgeable redactable signature scheme,
if the SPS scheme is unforgeable, the vector commitment scheme satisfies the batch binding and
opening non-malleability property, and the proof-of-knowledge system is witness indistinguish-
able.

Proof. The proof is done through the sequence of games.
We proceed with the proof through a sequence of games. Game 0 is the original unforgeability

game, while Game 5 is such that the adversary has zero probability of winning it. We denote the
success probability of A in Game i as pi.

Game 0: is the original malleable signatures unforgeability game; p0 = pqbsig−unf .
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Game 1: is the same as the previous game except that Derive computes a fresh commitment and
signature, i.e., r ← Zp, C ← VC.Commit(pp, ~m, r), W ← VC.Open(pp, I, ~m, r), Σ ←
SPS.Sign(sksps, C), and compute π ← Π.Prove(CRS ; (C,W,ψwit(Σ)); KC,W,ψwit(Σ) :
SPS.Verify

(
pksps,Σ, C) ∧ VC.Check(pp, C, I, ~mI ,W )

)
to return (ψrnd(Σ), π).

This change is perfectly indistinguishable because of the witness indistinguishability of the
proof system and the perfect randomization of the ψrnd(Σ), hence |p1 − p0| ≤ pnip−wi .

Game 2: proceeds like Game 1, but the proof-of-knowledge system parameters are switched to
extraction parameters and using the extraction trapdoor, the SPS signature σ∗ and the
commitment C∗ of the forgery are extracted; |p2 − p1| ≤ pnip−ext .

Game 3: simulates the view of adversary in the same way as Game 2; except that if (σ∗, C∗) are
not a signature/message pair produced by any of the signing oracles, the forgery is rejected.
The success probability of the adversary decreases at most by the success probability of
breaking unforgeability for the SPS scheme, i.e. |p3 − p2| ≤ psps−unf .

Game 4: is the same as Game 3, except for rejecting any forgery which contains C, I∗, ~m∗ such
that the Sign or Derive query corresponding to C was made for a message ~m, but ~m∗ 6=
I∗(~m).
The success probability of the adversary decreases at most by the success probability of
breaking the binding property of the commitment scheme (since the adversary would have
to open a commitment to a different value). Thus, |p3 − p2| ≤ pcom−bind .

Game 5: proceeds like Game 4, but any forgery for which the extracted commitment C corre-
sponds to a Derive query with a set I , but I∗ 6= I;
The success probability of the adversary decreases at most by the success probability of
breaking the non-malleability property of the vector commitment scheme. (Since the output
of Derive contains only (hiding) ZK proofs of the witness, but not the witness itself, one-
time non-malleability is sufficient for here.) Thus, |p5 − p4| ≤ pcom−nmal .
Note that as both I∗ and I∗(~m) = ~m′ are bound to queried values, the success probability
of A in Game 5 is 0.

Overall, the adversary’s probability of winning Game 0 is pqbsig−unf ≤ pnip−wi + pnip−ext +
psps−unf + pcom−bind + pcom−nmal .

Theorem 5. URS.{SGen,Kg,Sign,Derive,Verify} is an unlinkable redactable signature scheme
if the proof-of-knowledge system is witness indistinguishable.

Proof. We define two experiment E0 and E1 which correspond to the experiment in the unlink-
ability game defintion (cf. Definition 3) with, respectively, b = 0 and b = 1 chosen in the step
3.
E0 and E1 are indistinguishable due to the perfect witness indistinguishability of the proof

system and the perfect randomization of the ψrnd(Σ′). Hence, pqbsig−unlk = pnip−wi .

C.2 Alternative Construction

This construction utilizes the VC.Rand algorithm of the vector commitment scheme.
URS.{SGen,Kg, Sign} algorithms are unchanged.
URS.Derive(pk , ~m, I, σ). If the SPS scheme has a SPS.Rand algorithm, randomize the signature

as
Σ′ ← SPS.Rand(pk sps ,Σ); otherwise, set Σ′ ← Σ. Compute W = VC.Open(pp, I, ~m, r)
and (C ′,W ′)← VC.Rand(pp, C,W, I, ρ) for a randomly chosen ρ← Zp. Finally, let
π ← Π.Prove

(
CRS ; (ψwit(Σ′), ρ); Kψwit(Σ′), ρ : SPS.Verify(pksps,Σ

′, C ′/P ρI )
)
.

Return σ = (ψrnd(Σ′), C ′,W ′, π) as the signature for I, ~mI .
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URS.Verify(pk , σ, I, ~mI). Check that
Π.Verify

(
CRS ;π; Kψwit(Σ′), ρ : SPS.Verify(pksps,Σ

′, C ′/P ρI )
)

= VC.Check(pp, C ′,
~mI ,W

′) = 1.

Theorem 11. URS = (SGen,Kg, Sign,Derive,Verify) of the alternative construction is an un-
forgeable and unlinkable redactable signature scheme, if the SPS scheme is unforgeable, the vec-
tor commitment scheme satisfies the batch binding and opening non-malleability property, and
the proof-of-knowledge system is witness indistinguishable.

The proof of the theorem follows similarly to the proofs of Theorem 4 and Theorem 5 using
the randomizable properties of the commitment described in §B.4. We defer the proof to the full
version of the paper.

C.3 Instantiation

To instantiate our scheme presented in §3.3 we use the randomizable vector commitment scheme
from §3.1, the SPS scheme(s) of Abe et al. [3], and the Groth-Sahai proof system already de-
scribed in §3.2.

Theorem 12. The redactable signature scheme presented in §3.3 is unforgeable, unlinkable, and
key extractable if the SXDH, J-RootDH, and SFP [3] assumptions hold. It has tier 2 signatures
of size 19 group elements.

The security of the theorem is a specific case of Theorem 6. The signature size is computed
as 13 + 2n (described below) for n = 1 when doing a GS proof for the signature and the signed
message C plus a commitment ofW and the proof for the Check equation, each of which requires
two group elements.

Structure Preserving Signatures [3] Recall that we use a bilinear group grp = (p,G, G̃,
Gt, e,G , G̃) generated by G(1k). For a message space Gn, the signature algorithms are defined
as follows:
SPS.Kg(grp). Pick at random gr, hu ← Z∗p to compute Gr = Ggr , Hu = Ghu , G̃grr , H̃hu

u . For
i ∈ [1..n] pick at random xi, yi ← Z∗p and compute G̃i = G̃xir , H̃i = H̃yi

u . Choose xz, yz ←
Z∗p and compute G̃z = G̃xzr , H̃z = H̃yz

u . Also choose a, b ← Z∗p and compute A =

e(Gr, G̃
a) andB ← e(Hu, G̃

b). Return the verification key pk = (grp, Gr, Hu, G̃r, H̃u, G̃z,
H̃z, {G̃i, H̃i}ni=1, A,B)) and the signing key sk = (pk , a, b, xz, yz, {xi, yi}ni=1).

SPS.Sign(sksps, (M1, . . . ,Mn)). Pick random z, r, t, u, w ← Z∗p, and set:

Z = Gz, R = Ga−rt−xzz
n∏
i=1

M−xii , S = Grr, T̃ = G̃ t,

U = Gb−uw−yzz
n∏
i=1

M−xii , V = Hu
u , W̃ = G̃w.

Output Σ = (Z,R, S, T̃ , U, W̃ ) as a signature.
SPS.Verify(pk sps,Σ, (M1, . . . ,Mn)). Parse σ as (Z,R, S, T̃ , U, V, W̃ ) and check that

e(Z, G̃z)e(R, G̃r)e(S, T̃ )

n∏
i=1

e(Mi, G̃i) = A ∧

e(Z, H̃z)e(U, H̃u)e(V, W̃ )

n∏
i=1

e(Mi, H̃i) = B.
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SPS.Rand(pksps,Σ). Parse σ as (Z,R, S, T̃ , U, V, W̃ ) and return (Z,R′, S′, T̃ ′, U ′, V ′, W̃ ′), where

R′ = RS−ρ, S′ = S
1
τ , T̃ ′ = (T̃Gρr)

τ , U ′ = UV −µ, V ′ = V
1
ϕ , W̃ ′ = (W̃Hµ

u )ϕ,

for randomly chosen ρ, τ, µ, ϕ← Zp.
The scheme is existentially unforgeable under the Strong Flexible-Pairing assumption [3]. Its

signatures Σ are of size 7, and Rand algorithm yields ψrnd(Σ) = (R, T̃ , U, W̃ ) and ψwit(Σ) =
(Z, S, V ). Therefore, when doing a GS proof of knowledge of a signature and a message, one can
give 4 of the signature elements in the clear as part of the proof after a re-randomization, commit
to 3 + n group elements, and produce proof elements for two one-sided equations; this yields a
proof of size 3 + 2 ∗ (3 + n) + 2 ∗ 2 = 13 + 2n.

We also note that one could use a different SPS scheme with smaller signature size. However,
it yields more efficient redactable signatures only under stronger assumptions which are not non-
interactive q-type. Hence, we prefer to use the above SPS scheme for our main instantiation.
Structure Preserving Signatures [4]

SPS.Kg(grp). Select α, β, γ, γ1, . . . , γn ← Z∗p and compute

H ← G̃α, V ← G̃β, U ← G̃γ , and Ui ← G̃γi for i ∈ [1, . . . , n].

Output pksps = (H,V, U, {Ui}ni=1) and sksps = (α, β, γ, {γi}ni=1).

SPS.Sign(sksps, (M1, . . . ,Mn)). Choose ρ, τ ← Z∗p and return Σ = (R, R̃, S, T ), where

R = Gρ, R̃ = G̃
1
ρ , S = Gα−βρ−γτ

∏
i

M−γii , and T = G̃τ .

SPS.Verify(pksps,Σ, (M1, . . . ,Mn)). Parse Σ = (R, R̃, S, T ) and accept if the following
equations hold:

e(R, V )e(S, G̃)e(T,U)

n∏
i=1

e(Mi, Ui) = e(G,H)

e(R, R̃) = e(G , G̃).

The scheme is strongly existentially unforgeable against adaptive chosen message attack un-
der a “q-type” non-interactive assumption. A Groth-Sahai NIWI proof of knowledge of a signa-
ture and a message for this scheme will consist of 18+2n group elements as one needs to commit
to 4 + n group elements, each commitment consists of two group elements, and produce proof
elements for one pairing-product equation and one one-sided pairing product equation, which
require 8 and 2 group elements, respectively.

Note that the previous presented scheme [3] has larger signature size than the [4] scheme,
when combined with GS proofs for proving knowledge of a signature and a message, the former
yields slightly more efficient proofs. However, if one is willing to tolerate stronger assumptions, a
more efficient variant of the latter scheme presented in the same paper can be used. Its verification
equations are:

e(V,R) = e(G , S) ∧ e(T,R)
∏
i

(Mi, Ui) = e(G , G̃),

where (R,S, T ) is the signature. Moreover, the scheme supports full re-randomization of the R
element of the signature. Hence, the cost of a NIWI proof of knowledge for that scheme is 9 + 2n
ifR is given in the clear as part of the proof after a re-randomization as one has to commit to 2+n
group elements and produce the proof elements for two one-sided pairing product equations.
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D Extending URS to Sign Additional Group Elements

In this section we extend our redactable signature scheme to sign additional group elements
besides the commitment. Namely, we extend Sign to take as additional input a vector ~M of
group elements. For that we use a SPS signature that supports signing multiple messages. In
the Derive algorithm these elements will either be part of the derived message, and given in
the clear after derivation, or be treated as part of the witness, i.e., hidden from the verifier.
To do so, we extend our input vector of exponents by appending a vector of group elements
to it ( ~M, ~m) = (M1, . . . ,MN ,mN+1, . . . ,mN+|~m|). A set I applied to this extended vector
( ~M, ~m)I , will now indicate not only which exponents, but also which group elements are re-
vealed.

Construction. We denote the extended algorithms as URS = (SGen,Kg,Sign,Verify,Derive).
We define the extended signature, derivation, and verification algorithms as follows.
URS.SGen(sk , ~M, ~m). Compute grp ← G(1k), ppVC ← VC.Setup(grp), CRS ← Π.Setup(grp),

(ppSPC, tdcom)← SPC.Setup(grp).
Output SP = (grp, ppVC, ppSPC,CRS ).

URS.Kg(SP). Obtain grp from SP , generate (pksps, sksps) ← SPS.Kg(grp), output pk =
(pk sps ,SP) and sk = (sk sps , pk).

URS.Sign(sk , ( ~M, ~m)). Pick r ← Zp, computeC = VC.Commit(ppVC, ~m, r) and Σ← SPS.Sign(

sksps, (C, ~M)), and return σ = (Σ, C, r).
URS.Derive(pk , ( ~M, ~m), I, σ). First, computeW = VC.Open(ppVC, I, ~m, r). Then, if an SPS.Rand

algorithm is present, randomize the signature as Σ′ ← SPS.Rand(pksps,Σ); otherwise, set
Σ′ ← Σ.
Compute the proof π ← Π.Prove

(
CRS ; (C,W,ψwit(Σ′));S), where

S = KC,W,ψwit(Σ′) :

SPS.Verify(pksps,Σ
′, (C, ~M)) = VC.Check(ppVC, C, I, ~mI ,W ) = 1.

Output (σI = ψrnd(Σ′), π).
URS.Verify(pk , σ, ( ~M, ~m)). Check that Π.Verify

(
CRS ;π;S) = 1.

Theorem 13. The extended signature scheme URS.{SGen,Kg,Sign,Verify,Derive} is an un-
forgeable, unlinkable, and key extractable redactable signature scheme, if the underlying SPS
scheme is unforgeable and randomizable, the vector commitment scheme is batch-binding and
opening non-malleable, and the proof system is zero-knowledge and extractable.

Proof. The proof is very similar to the proofs of Theorems 4-5 and is omitted here.

E Details on Anonymous Credentials

E.1 Full Single Issuer Protocol.

Before proceeding to the details of the realization, let us also describe the functionality FCA,
which is a slightly modified version of the one provided by Canetti in [36]. More precisely, our
FCA functionality additionally checks the correctness of the key. In the realization, this can be
done by executing an interactive proof of knowledge of the secret key between the issuer and the
certification authority. As shown by Camenisch et al. [29], such interactive proofs are efficient and
still online extractable (a crucial property for the UC model). When implementing such scheme,
the ideal functionalities FCA and FCred will be replaced by their secure implementations.
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Functionality FCA(CheckKeys)

• Upon receiving the first message (registerIssuerKey, sid , pk ) from
party P , send (registeredIssuerKey, sid , pk ) to SIM; upon receiving
(registeredIssuerKey, sid , sk) from SIM, verify that sid = (P, sid ′) for some
sid ′, that CheckKeys(sk , pk) = 1, and this is the first request from P , then record the pair
(sid , pk).

• Upon receiving the first message (requestIssuerPK, sid ) from party P ′, send
(requestIssuerPK, sid ,P ′) to SIM and wait for an ok from SIM. Then, if there
is a recorded pair (sid , pk), output (requestIssuerPK, sid , pk ) to P ′. Otherwise output
(requestIssuerPK, sid ,⊥) to P ′.

We now provide a realization RCred of the anonymous credentials functionality, described
above. The functionality makes use of FCRS that provide public parameters, and of the certifi-
cation authority functionality FCA described above. RCred also maintains flags kg and keyleak
that are initially unset. The network tapes NET I and NETU indicate messages being sent to the
issuer and user protocol respectively. As is the default in UC, messages are always sent via the
adversary.

RealizationRCred(SecGen,NymGen,NymVerify)

• On input (keygen, sid) from I, verify that sid = (I, sid ′) for some sid ′ and that flag kg is
unset. If not, then return ⊥. Else, ask FCRS for SP , compute (pk , sk) ← Cred.Kg(SP). Send
a message (registerIssuerKey, pk to FCA. Wait for the confirmation from FCA, set flag kg ,
store sk , pk , and forward (verificationKey, sid , pk) to I.

• On input (leakSK, sid) from I verify that sid = (I, sid ′) for some sid′. If not, return⊥. Else,
send (leakSK, sid , sk) to I.

• On input (issueCred, sid , qid ,X ,P , aux (P)) from U , do the following:
1. Run b← NymVerify(SP ,P ,X , aux (P)). If b = 0 return ⊥.
2. Ask FCA for the issuer’s public key by sending a message (requestIssuerPK, sid).
3. Compute the issuance request (πX ,P , aux (Cred)) ←

Cred.RequestCred(SP , pk ,P ,X , aux (P)) and store aux (Cred).
4. Send (issueCred, sid , qid ,P , πX ,P ) to NETI . Upon receiving

(issueCred, sid , qid ,P , πX ,P ), issuer I outputs (issueCred, sid , qid ,P)
5. Upon receiving (credIssued, sid , qid ,P ,~a,Cred) from NETI , verify the credential

by calling CheckCred(SP , pk ,X ,P , aux (P),Cred , aux (Cred),~a). If it returns 1, then
U stores the credential and outputs (credIssued, sid , qid ,~a).

• On input (issueCred, sid , qid ,~a) from I, verify that sid = (I, sid′) for some sid′ and that
the flag kg is set. If not, return ⊥. Else, do the following:

1. Receive the request for issuance πX ,P from NETU .
2. Run the issuance algorithm: If Cred.IssueCred(SP , sk ,P ,~a, πX ,P )→ ⊥, then return ⊥,

else send (credIssued, sid , qid ,P ,~a,Cred) to NETU .
• On input (proveCred, sid ,X ′,P ′, aux (P)

′
, I,~a′, cxt) from U , run πX ,Cred ←

Cred.Prove(SP , pk ,X ,P , aux (P),Cred , aux (Cred),~a, I, cxt). Return
(credProved, sid ,~aI , πX ,Cred) to U .

• On input (verifyCredProof, sid , pk ′, πX ,Cred ,~a
′
I , cxt) from a party P . Run the proof ver-

ification algorithm result = Cred.Verify(SP , pk ,P ′, πX ,Cred ,~aI , cxt) forward its output as
(verified, sid ,~a′I , result) to P .

Interactive proofs of ownership of credentials. We would like to point out that another con-
struction can be built from the alternative construction of URS presented in §C.2 and interactive
zero-knowledge proofs as in existing schemes [32, 9]. Briefly, the interactive construction works

37



as follows. The user secret is an exponent. A credential is a Tier 1 signature on a vector of at-
tributes, where the user secret is the fixed first attribute. During the presentation the user derives
a Tier 2 signature on the required set of messages (except the secret, of course) and also provides
a ZK proof about her secret key.

This construction is more efficient than the non-interactive one because of the efficiency of
sigma-protocols, but it requires more rounds of communication and does not provide straight-line
extractability, i.e., the extraction protocols require rewinding.

E.2 Proof of Theorem 7

Theorem 6. Let URS be the unlinkable redactable signature scheme according to Definition
1, SPC is a structure-preserving commitment scheme, Gap be a gap problem, Π be a non-
interactive proof of knowledge system. Then RCred securely realizes FCred in the (FCRS,FCA)-
hybrid model if URS is correct, unlinkable, unforgeable, and key extractable, SPC is binding, the
non-interactive proof-of-knowledge system is zero-knowledge and simulation extractable, and the
Gap problem is hard.

Proof. First, we provide a description of the simulator in the ideal world. SIM generates
(SP , td, tdsim, tdext) by running the Cred.SGenT(1κ) algorithm, stores these values and sim-
ulates FCRS and FCA.

If the issuer is honest, when receiving (initF, sid) message from FCred, SIM generates is-
suer keys honestly and returns (initF, sid ,SP , sk , pk , tdsim, tdext,Cred.SimProve,Cred.Verify,
Cred.Extract) where it uses URS algorithms inside. It also simulates issuer key registration with
FCA.

If the user is also honest, only the network is controlled by the adversary, so the simulator
generates a simulated transcript for the issuance as follows. On seeing the delayed output signal
for (issueCred, sid , qid ,P), simulate an honest user credential request. SIM records which
XCred , YCred it used in the simulation. If the user’s message is delivered (in the real world), let the
message through to I. Simulate the honest issuer response. On seeing the delayed output signal
for (credIssued, sid , qid ,~a) finish the simulation of the issuing protocol, and if the protocol
runs to completion, let the messages through to U .

If the user is corrupted, the issuance simulation is done as follows. When seeing on the
network the adversary’s issuance request to the issuer, SIM extracts the secret X , aux (P)
from the proof πX ,P . If the extraction fails pick any invalid X and aux (P). Send message
(issueCred, sid , qid ,X ,P , aux (P)) to FCred on behalf of a dishonest user and short-circuit the
delay. Upon receiving (credIssued, sid , qid ,~a) as a dishonest user from FCred, SIM com-
putes a credential using the URS.Sign algorithm and sends the signature to the real dishonest
user. Note that FCred does not send the (credIssued, . . . ) message if extraction failed because
of the NymVerify check.

Upon a verification request, Cred.Extract obtains the witness (X ,P , aux (P), aux (P)′, XCred ,
YCred ) from the proof πX ,Cred for bookkeeping using the extraction trapdoors and aborts, if the
extraction fails.

If the issuer is corrupted, on message (registeredIssuerKey, sid , pk) with sid = (I, sid ′),
SIM runs ExtractKey(pk , td) to extract the secret key sk . If extraction fails, it returns⊥. Other-
wise, SIM sends (initF, sid) to FCred on behalf of I and replies with (initF, sid ,SP , sk , pk ,
tdsim, tdext,Cred.SimProve,Cred.Verify,Cred.Extract) to FCred.

If the user is honest, upon receiving the message (issueCred, sid , qid ,P) fromFCred, simu-
late an honest user credential request with the real adversary controlling the issuer. SIM records
which XCred , YCred it used in the simulation. Wait for the reply from the real dishonest issuer.
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If the credential is successfully received, then send (issueCred, sid , qid ,~a) to FCred and again
short-circuit delays.

The case when the user is also corrupted is handled internally by the adversary and the
simulator does not need to do anything.

We will make steps towards using the ideal functionality of URS. We start with viewing SIM
as using the simulator SIMURS internally as a blackbox. Then SIM generates (SP , td, tdsim, tdext)
by sending (initF, sid) to SIMURS to learn (initF, sid ,SPURS,URS.Kg,URS.Sign,URS.Derive,
URS.Verify) and generating the remaining values as prescribed by algorithm Cred.SGenT(1κ).
Similarly, it extracts keys by sending (checkPK, sid, pk) to SIMURS to receive the secret key
sk in return.

One can also see Cred.SimProve as running FURS and a copy of SIMURS with its current
state internally. Namely, Cred.SimProve generates fresh X , P , computes a valid signature σ,
and obtains σI by first sending (checkPK, sid , pkURS) and then (derive, sid , pkURS, I,~a, σ) to
FURS.

The proof is done through a sequence of games. In Game 0, Z interacts with FCred and SIM
as in the ideal world. In Game 15, Z interacts with RCred (and A, though we will use dummy
adversaries) as in the real world. In each game we make a step toward the real world and show
that if the environment can distinguish between the current and the previous game, then one can
build an adversary that breaks one of the security properties of URS, Π, or solves the gap problem
Gap.

We define the success probability of Z to distinguish between Game i and Game j as |pi −
pj |. We show that |p15 − p0| ≤ purs−corr + 2pspc−bind + 2purs−unf + purs−unl + purs−kext +
pnizk−zk+pnizk−se+pgap , where purs−corr , purs−unf , purs−unl , and purs−kext are the probabilities
of breaking the correctness, unforgeability, unlinkability, and the key extractability of the URS
scheme respectively, pnizk−zk and pnizk−se is the probability of breaking zero-knowledge and
simulation extractability of the NIZK scheme respectively, pspc−bind is the probability of breaking
the binding property of the commitment scheme, and pgap is the probability of solving a gap
problem.
Game 0: implements the ideal world, where the environment Z interacts with FCred and SIM

as described above.
Game 1: is the same as Game 0 except the simulator SIM and the functionality FCred are

subsumed in a single entity that we denote C, i.e., C runs SIM and FCred internally and
interacts with the environment on behalf of SIM and FCred. It also maintains the lists
MISS andMPRES initialized to ∅ and flags kg and keyleak that are initially unset.

The change from Game 0 to Game 1 is purely conceptual and hence |p1 − p0| = 0.
Game 2: Here C behaves as in Game 1 except that we now conceptually split C into the parts that

simulate FCRS and FCA, and the rest. We split the rest into SIMCred that uses SIMURS

and FCred that uses algorithms, like SimProve that can be seen as using FURS. We remove
the redundant copy of SIMURS and connect parts directly.

State changes to the state of the SIMCred copy of SIMURS did not affect the SimProve copy and
vice versa: the SIMCred copy was only used for extraction, which is stateless, and the SimProve
copy only required that (checkPK, sid, pkURS) was sent at least once before deriving signatures.
The change from Game 1 to Game 2 are thus purely conceptual and hence |p2 − p1| = 0.
Game 3: Modify FCred to pass messages (keygen, sid) and (leakSK, sid) through to FURS,

which in turn interacts with SIMURS. SIMURS observes the key pkURS returned as part
of the (verificationKey, sid , pkURS) message and embeds this key into the issuer public
key pk .

This is merely a preparation for later steps to install the right key with the correct keyleak flag in
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FURS The modification here does not change anything, therefore |p3 − p2| = 0
Game 4: When simulating credential issuing, SIMCred also sends (sign, sid , (P, YCred,~a)) to

FURS instead of generating σ himself.
The only difference is that FURS verifies signatures after generation. By correctness of the URS
scheme, |p4 − p3| ≤ purs−corr. Again, this is in preparation for later steps to inform FURS about
honestly signed attributes.
Game 5: Here C behaves as in Game 4 except when answering a verification request message

(verifyCredProof, sid , pk ′,P ′, π′X ,Cred ,~a
′
I , cxt

′), we now also send a message (verify,
sid , pkURS, σURS, (P

∗, Y ∗Cred,~a)I) toFURS with the σURS, P ∗, Y ∗Cred extracted by Π.Extract
in Cred.Extract.

This can only lead to additional signature rejections because of the additional checks inFURS. Let
E be the event in Game 5 of (P, YCred,~a)I being rejected by FURS because no (P, YCred,~a

′) such
that (P, YCred,~a

′)I = (P, YCred,~a)I was sent to FURS for signing. We show a reduction that uses
an environment that triggersE, to break the unforgeability of URS. We simply simulate the honest
issuer using signing queries, and return σURS, (P, YCred,~a)I) as a forgery. Unless E happens, all
checks are already made by FCred in (verifyCredProof, . . . ), hence |p5 − p4| = purs−unf .
Game 6: Here C behaves as in Game 5 except that if the issuer is honest, it corrects verification

to false if X ∗ extracted from the proof in the verification request (verifyCredProof, sid ,
pk ′,P ′, π′X ,Cred ,~a

′
I , cxt

′) is not contained in a record (ISS ,U ,X ∗, ∗) for a dishonest user.
All corrections are implied by the check in step 6. of FCred. Hence, |p6 − p5| = 0.

Note that in this case, either the extracted signature σURS is on a fresh message, it opens an
existing pseudonym of a dishonest user to a different X∗, or it signs some P∗ and the Y ∗Cred of an
honest user, for which we also extract a corresponding X∗Cred .
Game 7: This is the same as Game 6, except that we replace the checks of step 6 for message

(verifyCredProof, . . . ) inFCred with a check that we do not extract differentX∗,aux (P)∗

for the same P during verification than provided at issuing.
Let E be the event that we extract different X∗,aux (P)∗ for the same P∗ during verification and
issuing. We show a reduction that uses an environment that triggers E, to break the binding prop-
erty of NymVerify. We simply simulate the game using the commitment parameters, and return
(X, aux (P)), (X∗, aux (P)∗) to break binding. Unless E happens, these checks are implied by
the checks introduced in Game 6 and 5 and thus no longer needed. Hence, |p7 − p6| ≤ pspc−bind.
Game 8: This is the same as Game 7, except that we remove the check introduced in Game 6.
Note that checks corresponding to fresh messages is already enforced by the checks in FURS and
checks corresponding different openings of pseudonyms are enforced by the new checks in Game
6.

We reduce an environment that triggers the case of an honest P ∗ and Y ∗Cred to an adversary
against the gap problem for X∗Cred and Y ∗Cred , thus |p8 − p7| ≤ pgap.
Game 9: is the same as Game 8, except that the calls to FURS are replaced with calls to RURS.

This removes the checks introduced in Game 4
Since RURS securely realizes FURS with simulator SIMURS in case URS is correct, unlinkable,
unforgeable and key extractable, we have that |p9 − p8| ≤ purs−unf + purs−unl + purs−kext .
Game 10: Here C behaves as in Game 9 except that we no longer perform the check for duplicate

pseudonym openings.
We know that |p10 − p9| ≤ pspc−bind.
Game 11: Here C behaves as in Game 10 except that we no longer send a message (verify, . . . )

toRURS with the signature extracted by Π.Extract in Cred.Extract.
As the extracted witness is correct we know that |p11− p10| = 0. Note that we now no longer

make use of extracted values except for checking that the witnesses are correct.
Game 12: is the same as Game 11, except that no values are extracted from the users’ requests.
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Note that in (verifyCredProof, sid , . . . ) we only have to extract if there is no record
(PRES ,U , cxt ′,X ∗,P ′, aux (P)′,~a′I , π

′
X ,Cred ), that is for proofs that are not simulated. The

advantage of the adversary in Game 12 is bounded by the simulation extractability of the non-
interactive proof system, therefore |p11 − p10| ≤ pnizk−se .
Game 13: is the same as Game 12, except that calls to the realization RURS are replaced with

calls to URS+ algorithms.
Due to the fact that RURS is realized in such a way that on any incoming message the real algo-
rithm are invoked, this change is purely conceptual, |p13 − p12| = 0. Note that we always run
concrete algorithms with their inputs readily available.
Game 14: is the same as Game 13, except that we generate proofs using Prove instead of SimProve.

The advantage of the adversary in Game 14 is bounded by the zero-knowledge property of the
non-interactive proof system, therefore |p14 − p13| ≤ pnizk−zk .
Game 15: is the realization of the real world where C is replaced by A, FCRS, FCA, andRCred.
One can see that Game 15 is the same as Game 14, since already in Game 14 C runs A, FCRS,
FCA, and RCred internally and interacts with the environment on behalf of A and RCred. So the
change from Game 15 to Game 14 is purely conceptual and hence |p15 − p14| = 0.

Summing up the probabilities, we have that |p15−p0| ≤ purs−corr +2pspc−bind +2purs−unf +
purs−unl + purs−kext + pnizk−zk + pnizk−se + pgap .

F Generic Group Proof of J-RootDH Assumption

Definition 18 (J-RootDH Assumption). Let J be a subset of [1..n], let α, r ∈ Z∗p, and X =

(Gα·
∏n
i=1(α−i))r, Y = (G

∏
i∈J (α−i))r. For all PPT algorithms A, the probability Pr[A(G, G̃ ,

{Gαi , G̃αi}n+1
i=1 , X, Y ) = J ′, Z] such that Z = (G

∏
i∈J′ (α−i))r and J ′ ⊆ [1..n] and J ′ 6= J , is at

most a negligible function ν(κ).

We show that the assumption holds in the generic group model. In the generic group model,
elements of the bilinear groups G, G̃, and Gt are encoded as unique random strings. Thus, the
adversary cannot directly test any property other than equality. Oracles are assumed to perform
operations between group elements, such as performing the group operations in G, G̃, and Gt. The
opaque encoding of the elements of G is defined as the function ξ1 : Zp → {0, 1}∗, which maps
all a ∈ Zp to the string representation ξ1(a) of Ga ∈ G. Similarly, we have ξ2 : Zp → {0, 1}∗
for G̃ and ξT : Zp → {0, 1}∗ for Gt. The adversary A communicates with the oracles using the
ξ-representations of the group elements only.

Theorem 14. Let A be an algorithm that solves the J-RootDH assumption in the generic group
model. Let nG be the number of queries A makes to the oracles computing the group action and
pairing. If ξ1, ξ2, and ξT are chosen at random, then the probability ε thatA(p, ξ1(1), ξ2(1), ξ1(α

i),
ξ2(α

i), i = 1, . . . n+ 1, ξ1(α ·
∏n
i=1(α− i)r), ξ1(

∏
i∈J(α− i)r)) outputs ξ1(

∏
i∈J ′(α− i)r) for

some J ′ 6= J , is bounded by

ε ≤ (nG + 2n+ 6)2n

p
.

Proof. Consider an algorithm B that interacts with A in the following game. Let F1,i, F2,i, FT,i
be multivariate polynomials in Zp[α, r]. B maintains three lists of pairs L1 = {(F1,i, ξ1,i) : i =
0, . . . , τ1 − 1}, L2 = {(F2,i, ξ2,i) : i = 0, . . . , τ2 − 1}, LT = {(FT,i, ξT,i) : i = 0, . . . , τT − 1},
such that, at step τ in the game τ1 + τ2 + τT ≤ τ + 2n+ 6.

Initially, τ = 0, τ1 = n + 4, τ2 = n + 2, τT = 0 and the polynomials are: F1,0 =
1;F1,i = αi, i = 1, . . . n+ 1;F1,n+2 = α ·

∏n
i=1(α − i)r;F1,n+3 =

∏
i∈J(α − i)r. F2,0 =
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1;F2,i = αi, i = 1, . . . n+ 1. B begins the game with A by providing it with the random strings
ξ1,0, . . . ξ1,n+3, ξ2,0, . . . ξ2,n+1. We describe the oracles A may query:

Group action: A inputs two group elements ξ1,i and ξ1,j , where 0 ≤ i, j < τ1, and a request
to multiply/divide. B sets F1,τ1 ← F1,i ± F1,j . If F1,τ1 = F1,u for some u ∈ {0, . . . , τ1 − 1},
then B sets ξ1,τ1 = ξ1,u; otherwise, it sets ξ1,τ1 to a random string in {0, 1}∗\{ξ1,0, . . . , ξ1,τ1−1}.
Finally, B returns ξ1,τ1 to A, adds (F1,τ1 , ξ1,τ1) to L1, and increments τ1. Group actions for G
and Gt are handled the same way.

Pairing: A inputs two group elements ξ1,i and ξ2,j , where 0 ≤ i < τ1, 0 ≤ j < τ2. B sets
FT,τT ← F1,i · F2,j . If FT,τT = FT,u for some u ∈ {0, . . . , τT − 1}, then B sets ξT,τT = ξT,u;
otherwise, it sets ξT,τT to a random string in {0, 1}∗\{ξT,0, . . . , ξT,τT−1}. Finally, B returns ξT,τT
to A, adds (FT,τT , ξT,τT ) to LT , and increments τT .

We assume SXDH holds in (G, G̃,Gt) and therefore no isomorphism oracles exist. Eventu-
ally, A stops and outputs an element ξ1,e, where 0 ≤ e ≤ τ1.

We argue that it is impossible for A’s output to always be correct. The output polynomial
must be a linear combination of the polynomials corresponding to the elements available to A in
the respective group. Consider the output polynomial F1,e:

F1,e = e0 +
n+1∑
i=1

e1,iα
i + e1,n+2α ·

n∏
i=1

(α− i)r + e1,n+3

∏
i∈J

(α− i)r,

We denote as J ′ the set that is complimentary to J ′. The conditions for the adversary’s forgery
being successful is

F1,e · α ·
∏
i∈J ′

(α− i) = F1,0 · F1,n+2, J 6= J ′. (1)

Substituting F1,e, F1,0, and F1,n+2 in equation (1) by their polynomials we have

(
e0 +

n+1∑
i=1

e1,iα
i + e1,n+2α ·

n∏
i=1

(α− i)r + e1,n+3

∏
i∈J

(α− i)r
)
·

α ·
∏
i∈J ′

(α− i) = α ·
n∏
i=1

(α− i)r (2)

which can be further expanded and simplified to

e0 · α
∏
i∈J ′

(α− i) +
n+1∑
i=1

e1,i · αi+1
∏
i∈J ′

(α− i) + e1,n+2 · α2 ·
n∏
i=1

(α− i)r
∏
i∈J ′

(α− i)+

+ e1,n+3 · α
∏
i∈J

(α− i)r
∏
i∈J ′

(α− i)− α ·
n∏
i=1

(α− i)r = 0 .

Since polynomials e0 · α
∏
i∈J ′(α − i) and e1,i · αi+1

∏
i∈J ′(α − i) do not contain variable

r, and polynomial e1,n+2 ·α2 ·
∏n
i=1(α− i)r

∏
i∈J ′(α− i) has a degree that is different from the

one of α ·
∏n
i=1(α− i)r, equation (2) can always hold only in case of e0 = e1,i = e1,n+2 = 0.

But since F1,e 6= 0 and e0 = e1,i = e1,n+2 = 0 we have that e1,n+3 6= 0 and

e1,n+3 · α
∏
i∈J

(α− i)r
∏
i∈J ′

(α− i)− α ·
n∏
i=1

(α− i)r = 0, J 6= J ′. (3)
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We now discuss when equation (3) always holds. We only need to consider the case when the
degrees of the polynomials are equal (i.e. when |J | = |J ′|, since in this case |J |+ |J̄ ′| = n).

e1,n+3 =

∏n
i=1(α− i)∏

i∈J(α− i)
∏
i∈J ′(α− i)

, J 6= J ′, |J | = |J ′|. (4)

e1,n+3 =

∏
i∈J(α− i)∏
i∈J ′(α− i)

=

∏
i∈J ′\J(α− i)∏
i∈J\J ′(α− i)

. (5)

e1,n+3 ·
∏

i∈J\J ′
(α− i) =

∏
i∈J ′\J

(α− i). (6)

Since J 6= J ′ the polynomials on the left and the right sides have different roots, equation (6)
cannot always hold.

Simulation analysis: B chooses random values to instantiate the variables α and r. The
chance of choosing a random assignment that hits the root of any given polynomial is bounded
from above by the Schwartz-Zippel theorem by the degree of the polynomial divided by p. The
success probability of A is bounded by the probability that any of the following holds:

1. F1,i − F1,j = 0 for some i, j such that F1,i 6= F1,j ,
2. F2,i − F2,j = 0 for some i, j such that F2,i 6= F2,j ,
3. FT,i − FT,j = 0 for some i, j such that FT,i 6= FT,j ,
4. F1,e · α ·

∏
i∈J ′(α− i) = F1,0 · F1,n+2.

The maximum total degree of the polynomials are:
1. n+ 2,
2. n+ 2,
3. 2(n+ 2),
4. n+ 2.
Summing up over all pairs (i, j) in each case, we see that the probability that a collision causes

B’s simulation to fail ε ≤
(
τ1
2

)
n+2
p +

(
τ2
2

)
n+2
p +

(
τT
2

)
2n+4
p + n+2

p . Recalling that τ1 + τ2 + τT ≤
nG + 2n+ 6, results into the following overall probability: ε ≤ (nG + 2n+ 6)2(n/p).
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