4 research outputs found

    Universalities in cellular automata; a (short) survey

    No full text
    This reading guide aims to provide the reader with an easy access to the study of universality in the field of cellular automata. To fulfill this goal, the approach taken here is organized in three parts: a detailled chronology of seminal papers, a discussion of the definition and main properties of universal cellular automata, and a broad bibliography

    Cellular Automata and Randomization: A Structural Overview

    Get PDF
    The chapter overviews the methods, algorithms, and architectures for random number generators based on cellular automata, as presented in the scientific literature. The variations in linear and two-dimensional cellular automata model and their features are discussed in relation to their applications as randomizers. Additional memory layers, functional nonuniformity in space or time, and global feedback are examples of such variations. Successful applications of cellular automata random number/signal generators (both software and hardware) reported in the scientific literature are also reviewed. The chapter includes an introductory presentation of the mathematical (ideal) model of cellular automata and its implementation as a computing model, emphasizing some important theoretical debates regarding the complexity and universality of cellular automata

    Programmation et indécidabilités dans les systèmes complexes

    No full text
    N/AUn système complexe est un système constitué d'un ensemble d'entités quiinteragissent localement, engendrant des comportements globaux, émergeant dusystème, qu'on ne sait pas expliquer à partir du comportement local, connu, desentités qui le constituent. Nos travaux ont pour objet de mieux cerner lesliens entre certaines propriétés des systèmes complexes et le calcul. Parcalcul, il faut entendre l'objet d'étude de l'informatique, c'est-à-dire ledéplacement et la combinaison d'informations. À l'aide d'outils issus del'informatique, l'algorithmique et la programmation dans les systèmes complexessont abordées selon trois points de vue. Une première forme de programmation,dite externe, consiste à développer l'algorithmique qui permet de simuler lessystèmes étudiés. Une seconde forme de programmation, dite interne, consiste àdévelopper l'algorithmique propre à ces systèmes, qui permet de construire desreprésentants de ces systèmes qui exhibent des comportements programmés. Enfin,une troisième forme de programmation, de réduction, consiste à plonger despropriétés calculatoires complexes dans les représentants de ces systèmes pourétablir des résultats d'indécidabilité -- indice d'une grande complexitécalculatoire qui participe à l'explication de la complexité émergente. Afin demener à bien cette étude, les systèmes complexes sont modélisés par desautomates cellulaires. Le modèle des automates cellulaires offre une dualitépertinente pour établir des liens entre complexité des propriétés globales etcalcul. En effet, un automate cellulaire peut être décrit à la fois comme unréseau d'automates, offrant un point de vue familier de l'informatique, etcomme un système dynamique discret, une fonction définie sur un espacetopologique, offrant un point de vue familier de l'étude des systèmesdynamiques discrets.Une première partie de nos travaux concerne l'étude de l'objet automatecellulaire proprement dit. L'observation expérimentale des automatescellulaires distingue, dans la littérature, deux formes de dynamiques complexesdominantes. Certains automates cellulaires présentent une dynamique danslaquelle émergent des structures simples, sortes de particules qui évoluentdans un domaine régulier, se rencontrent lors de brèves collisions, avant degénérer d'autres particules. Cette forme de complexité, dans laquelletransparaît une notion de quanta d'information localisée en interaction, estl'objet de nos études. Un premier champ de nos investigations est d'établir uneclassification algébrique, le groupage, qui tend à rendre compte de ce type decomportement. Cette classification met à jour un type d'automate cellulaireparticulier : les automates cellulaires intrinsèquement universels. Un automatecellulaire intrinsèquement universel est capable de simuler le comportement detout automate cellulaire. C'est l'objet de notre second champ d'investigation.Nous caractérisons cette propriété et démontrons son indécidabilité. Enfin, untroisième champ d'investigation concerne l'algorithmique des automatescellulaires à particules et collisions. Étant donné un ensemble de particuleset de collisions d'un tel automate cellulaire, nous étudions l'ensemble desinteractions possibles et proposons des outils pour une meilleure programmationinterne à l'aide de ces collisions.Une seconde partie de nos travaux concerne la programmation par réduction. Afinde démontrer l'indécidabilité de propriétés dynamiques des automatescellulaires, nous étudions d'une part les problèmes de pavage du plan par desjeux de tuiles finis et d'autre part les problèmes de mortalité et depériodicité dans les systèmes dynamiques discrets à fonction partielle. Cetteétude nous amène à considérer des objets qui possèdent la même dualité entredescription combinatoire et topologique que les automates cellulaires. Unenotion d'apériodicité joue un rôle central dans l'indécidabilité des propriétésde ces objets

    Universality and Cellular Automata

    No full text
    Abstract. The classification of discrete dynamical systems that are computationally complete has recently drawn attention in light of Wolfram’s “Principle of Computational Equivalence”. We discuss a classification for cellular automata that is based on computably enumerable degrees. In this setting the full structure of the semilattice of the c.e. degrees is inherited by the cellular automata. 1 Intermediate Degrees and Computational Equivalence One of the celebrated results of recursion theory in the 20th century is the positive solution to Post’s problem: there are computably enumerable sets whose Turing degree lies strictly between ∅, the degree of any recursive set, and ∅ ′, the degree of the Halting set or any other complete computably enumerable set. The result was obtained independently and almost simultaneously by R. M. Friedberg and A. A. Muchnik, see [8, 14]. The method used in their construction of an intermediate degree is remarkable since it departs significantly from earlier attempts by Post and others to obtain such degrees by imposing structura
    corecore