855 research outputs found

    Stable Memoryless Queuing under Contention

    Get PDF

    Dynamic Packet Scheduling in Wireless Networks

    Full text link
    We consider protocols that serve communication requests arising over time in a wireless network that is subject to interference. Unlike previous approaches, we take the geometry of the network and power control into account, both allowing to increase the network's performance significantly. We introduce a stochastic and an adversarial model to bound the packet injection. Although taken as the primary motivation, this approach is not only suitable for models based on the signal-to-interference-plus-noise ratio (SINR). It also covers virtually all other common interference models, for example the multiple-access channel, the radio-network model, the protocol model, and distance-2 matching. Packet-routing networks allowing each edge or each node to transmit or receive one packet at a time can be modeled as well. Starting from algorithms for the respective scheduling problem with static transmission requests, we build distributed stable protocols. This is more involved than in previous, similar approaches because the algorithms we consider do not necessarily scale linearly when scaling the input instance. We can guarantee a throughput that is as large as the one of the original static algorithm. In particular, for SINR models the competitive ratios of the protocol in comparison to optimal ones in the respective model are between constant and O(log^2 m) for a network of size m.Comment: 23 page

    Stable routing scheduling algorithms in multi-hop wireless networks

    Get PDF
    Stability is an important issue in order to characterize the performance of a network, and it has become a major topic of study in the last decade. Roughly speaking, a communication network system is said to be stableif the number of packets waiting to be delivered (backlog) is finitely bounded at any one time. In this paper we introduce a number of routing scheduling algorithms which, making use of certain knowledge about the network’s structure, guarantee stability for certain injection rates. First, we introduce two new families of combinatorial structures, which we call universally strong selectorsand generalized universally strong selectors, that are used to provide a set of transmission schedules. Making use of these structures, we propose two local-knowledgepacket-oblivious routing scheduling algorithms. The first proposed routing scheduling algorithm onlyneeds to know some upper bounds on the number of links and on the network’s degree, and is asymptotically optimal regarding the injection rate for which stability is guaranteed. The second proposed routing scheduling algorithm isclose to be asymptotically optimal, but it only needs to know an upper bound on the number of links. For such algorithms, we also provide some results regarding both the maximum latencies and queue lengths. Furthermore, we also evaluate how the lack of global knowledge about the system topology affects the performance of the routing scheduling algorithms.Funding for open access charge: CRUE-Universitat Jaume
    • …
    corecore