4,145 research outputs found

    One-pass adaptive universal vector quantization

    Get PDF
    The authors introduce a one-pass adaptive universal quantization technique for real, bounded alphabet, stationary sources. The algorithm is set on line without any prior knowledge of the statistics of the sources which it might encounter and asymptotically achieves ideal performance on all sources that it sees. The system consists of an encoder and a decoder. At increasing intervals, the encoder refines its codebook using knowledge about incoming data symbols. This codebook is then described to the decoder in the form of updates on the previous codebook. The accuracy to which the codebook is described increases as the number of symbols seen, and thus the accuracy to which the codebook is known, grows

    Decentralized Estimation over Orthogonal Multiple-access Fading Channels in Wireless Sensor Networks - Optimal and Suboptimal Estimators

    Get PDF
    Optimal and suboptimal decentralized estimators in wireless sensor networks (WSNs) over orthogonal multiple-access fading channels are studied in this paper. Considering multiple-bit quantization before digital transmission, we develop maximum likelihood estimators (MLEs) with both known and unknown channel state information (CSI). When training symbols are available, we derive a MLE that is a special case of the MLE with unknown CSI. It implicitly uses the training symbols to estimate the channel coefficients and exploits the estimated CSI in an optimal way. To reduce the computational complexity, we propose suboptimal estimators. These estimators exploit both signal and data level redundant information to improve the estimation performance. The proposed MLEs reduce to traditional fusion based or diversity based estimators when communications or observations are perfect. By introducing a general message function, the proposed estimators can be applied when various analog or digital transmission schemes are used. The simulations show that the estimators using digital communications with multiple-bit quantization outperform the estimator using analog-and-forwarding transmission in fading channels. When considering the total bandwidth and energy constraints, the MLE using multiple-bit quantization is superior to that using binary quantization at medium and high observation signal-to-noise ratio levels

    Multiuser Successive Refinement and Multiple Description Coding

    Full text link
    We consider the multiuser successive refinement (MSR) problem, where the users are connected to a central server via links with different noiseless capacities, and each user wishes to reconstruct in a successive-refinement fashion. An achievable region is given for the two-user two-layer case and it provides the complete rate-distortion region for the Gaussian source under the MSE distortion measure. The key observation is that this problem includes the multiple description (MD) problem (with two descriptions) as a subsystem, and the techniques useful in the MD problem can be extended to this case. We show that the coding scheme based on the universality of random binning is sub-optimal, because multiple Gaussian side informations only at the decoders do incur performance loss, in contrast to the case of single side information at the decoder. We further show that unlike the single user case, when there are multiple users, the loss of performance by a multistage coding approach can be unbounded for the Gaussian source. The result suggests that in such a setting, the benefit of using successive refinement is not likely to justify the accompanying performance loss. The MSR problem is also related to the source coding problem where each decoder has its individual side information, while the encoder has the complete set of the side informations. The MSR problem further includes several variations of the MD problem, for which the specialization of the general result is investigated and the implication is discussed.Comment: 10 pages, 5 figures. To appear in IEEE Transaction on Information Theory. References updated and typos correcte

    A vector quantization approach to universal noiseless coding and quantization

    Get PDF
    A two-stage code is a block code in which each block of data is coded in two stages: the first stage codes the identity of a block code among a collection of codes, and the second stage codes the data using the identified code. The collection of codes may be noiseless codes, fixed-rate quantizers, or variable-rate quantizers. We take a vector quantization approach to two-stage coding, in which the first stage code can be regarded as a vector quantizer that “quantizes” the input data of length n to one of a fixed collection of block codes. We apply the generalized Lloyd algorithm to the first-stage quantizer, using induced measures of rate and distortion, to design locally optimal two-stage codes. On a source of medical images, two-stage variable-rate vector quantizers designed in this way outperform standard (one-stage) fixed-rate vector quantizers by over 9 dB. The tail of the operational distortion-rate function of the first-stage quantizer determines the optimal rate of convergence of the redundancy of a universal sequence of two-stage codes. We show that there exist two-stage universal noiseless codes, fixed-rate quantizers, and variable-rate quantizers whose per-letter rate and distortion redundancies converge to zero as (k/2)n -1 log n, when the universe of sources has finite dimension k. This extends the achievability part of Rissanen's theorem from universal noiseless codes to universal quantizers. Further, we show that the redundancies converge as O(n-1) when the universe of sources is countable, and as O(n-1+ϵ) when the universe of sources is infinite-dimensional, under appropriate conditions

    Locally adaptive vector quantization: Data compression with feature preservation

    Get PDF
    A study of a locally adaptive vector quantization (LAVQ) algorithm for data compression is presented. This algorithm provides high-speed one-pass compression and is fully adaptable to any data source and does not require a priori knowledge of the source statistics. Therefore, LAVQ is a universal data compression algorithm. The basic algorithm and several modifications to improve performance are discussed. These modifications are nonlinear quantization, coarse quantization of the codebook, and lossless compression of the output. Performance of LAVQ on various images using irreversible (lossy) coding is comparable to that of the Linde-Buzo-Gray algorithm, but LAVQ has a much higher speed; thus this algorithm has potential for real-time video compression. Unlike most other image compression algorithms, LAVQ preserves fine detail in images. LAVQ's performance as a lossless data compression algorithm is comparable to that of Lempel-Ziv-based algorithms, but LAVQ uses far less memory during the coding process
    • …
    corecore