813 research outputs found

    Universal recoverability in quantum information

    Get PDF
    The quantum relative entropy is well known to obey a monotonicity property (i.e., it does not increase under the action of a quantum channel). Here we present several refinements of this entropy inequality, some of which have a physical interpretation in terms of recovery from the action of the channel. The recovery channel given here is explicit and universal, depending only on the channel and one of the arguments to the relative entropy

    Multivariate Trace Inequalities

    Get PDF
    Presented at the QMath13 Conference: Mathematical Results in Quantum Theory, October 8-11, 2016 at the Clough Undergraduate Learning Commons, Georgia Tech.Quantum Information - Saturday, October 8th, 2016, Skiles 268 - Chair: Christopher KingMario Berta is with the California Institute of Technology

    The Fidelity of Recovery is Multiplicative

    Get PDF
    Fawzi and Renner [Commun. Math. Phys. 340(2):575, 2015] recently established a lower bound on the conditional quantum mutual information (CQMI) of tripartite quantum states ABCABC in terms of the fidelity of recovery (FoR), i.e. the maximal fidelity of the state ABCABC with a state reconstructed from its marginal BCBC by acting only on the CC system. The FoR measures quantum correlations by the local recoverability of global states and has many properties similar to the CQMI. Here we generalize the FoR and show that the resulting measure is multiplicative by utilizing semi-definite programming duality. This allows us to simplify an operational proof by Brandao et al. [Phys. Rev. Lett. 115(5):050501, 2015] of the above-mentioned lower bound that is based on quantum state redistribution. In particular, in contrast to the previous approaches, our proof does not rely on de Finetti reductions.Comment: v2: 9 pages, published versio

    Information-theoretic limitations on approximate quantum cloning and broadcasting

    Get PDF
    We prove new quantitative limitations on any approximate simultaneous cloning or broadcasting of mixed states. The results are based on information-theoretic (entropic) considerations and generalize the well known no-cloning and no-broadcasting theorems. We also observe and exploit the fact that the universal cloning machine on the symmetric subspace of nn qudits and symmetrized partial trace channels are dual to each other. This duality manifests itself both in the algebraic sense of adjointness of quantum channels and in the operational sense that a universal cloning machine can be used as an approximate recovery channel for a symmetrized partial trace channel and vice versa. The duality extends to give control on the performance of generalized UQCMs on subspaces more general than the symmetric subspace. This gives a way to quantify the usefulness of a-priori information in the context of cloning. For example, we can control the performance of an antisymmetric analogue of the UQCM in recovering from the loss of n−kn-k fermionic particles.Comment: 13 pages; new results on approximate cloning between general subspaces, e.g., cloning of fermion

    Recoverability for Holevo's just-as-good fidelity

    Get PDF
    Holevo's just-as-good fidelity is a similarity measure for quantum states that has found several applications. One of its critical properties is that it obeys a data processing inequality: the measure does not decrease under the action of a quantum channel on the underlying states. In this paper, I prove a refinement of this data processing inequality that includes an additional term related to recoverability. That is, if the increase in the measure is small after the action of a partial trace, then one of the states can be nearly recovered by the Petz recovery channel, while the other state is perfectly recovered by the same channel. The refinement is given in terms of the trace distance of one of the states to its recovered version and also depends on the minimum eigenvalue of the other state. As such, the refinement is universal, in the sense that the recovery channel depends only on one of the states, and it is explicit, given by the Petz recovery channel. The appendix contains a generalization of the aforementioned result to arbitrary quantum channels.Comment: 6 pages, submission to ISIT 201

    On multivariate trace inequalities of Sutter, Berta and Tomamichel

    Get PDF
    We consider a family of multivariate trace inequalities recently derived by Sutter, Berta and Tomamichel. These inequalities generalize the Golden-Thompson inequality and Lieb's three-matrix inequality to an arbitrary number of matrices in a way that features complex matrix powers. We show that their inequalities can be rewritten as an nn-matrix generalization of Lieb's original three-matrix inequality. The complex matrix powers are replaced by resolvents and appropriate maximally entangled states. We expect that the technically advantageous properties of resolvents, in particular for perturbation theory, can be of use in applications of the nn-matrix inequalities, e.g., for analyzing the rotated Petz recovery map in quantum information theory.Comment: 14 pages; comments welcom

    Recoverability in quantum information theory

    Full text link
    The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information theory, which have to do with providing physically meaningful improvements to many known entropy inequalities.Comment: v5: 26 pages, generalized lower bounds to apply when supp(rho) is contained in supp(sigma
    • …
    corecore