246 research outputs found

    Some practical universal noiseless coding techniques, part 2

    Get PDF
    This report is an extension of earlier work (Part 1) which provided practical adaptive techniques for the efficient noiseless coding of a broad class of data sources characterized by only partially known and varying statistics (JPL Publication 79-22). The results here, while still claiming such general applicability, focus primarily on the noiseless coding of image data. A fairly complete and self-contained treatment is provided. Particular emphasis is given to the requirements of the forthcoming Voyager II encounters of Uranus and Neptune. Performance evaluations are supported both graphically and pictorially. Expanded definitions of the algorithms in Part 1 yield a computationally improved set of options for applications requiring efficient performance at entropies above 4 bits/sample. These expanded definitions include as an important subset, a somewhat less efficient but extremely simple "FAST' compressor which will be used at the Voyager Uranus encounter. Additionally, options are provided which enhance performance when atypical data spikes may be present

    A vector quantization approach to universal noiseless coding and quantization

    Get PDF
    A two-stage code is a block code in which each block of data is coded in two stages: the first stage codes the identity of a block code among a collection of codes, and the second stage codes the data using the identified code. The collection of codes may be noiseless codes, fixed-rate quantizers, or variable-rate quantizers. We take a vector quantization approach to two-stage coding, in which the first stage code can be regarded as a vector quantizer that “quantizes” the input data of length n to one of a fixed collection of block codes. We apply the generalized Lloyd algorithm to the first-stage quantizer, using induced measures of rate and distortion, to design locally optimal two-stage codes. On a source of medical images, two-stage variable-rate vector quantizers designed in this way outperform standard (one-stage) fixed-rate vector quantizers by over 9 dB. The tail of the operational distortion-rate function of the first-stage quantizer determines the optimal rate of convergence of the redundancy of a universal sequence of two-stage codes. We show that there exist two-stage universal noiseless codes, fixed-rate quantizers, and variable-rate quantizers whose per-letter rate and distortion redundancies converge to zero as (k/2)n -1 log n, when the universe of sources has finite dimension k. This extends the achievability part of Rissanen's theorem from universal noiseless codes to universal quantizers. Further, we show that the redundancies converge as O(n-1) when the universe of sources is countable, and as O(n-1+ϵ) when the universe of sources is infinite-dimensional, under appropriate conditions

    Some practical universal noiseless coding techniques

    Get PDF
    Some practical adaptive techniques for the efficient noiseless coding of a broad class of such data sources are developed and analyzed. Algorithms are designed for coding discrete memoryless sources which have a known symbol probability ordering but unknown probability values. A general applicability of these algorithms to solving practical problems is obtained because most real data sources can be simply transformed into this form by appropriate preprocessing. These algorithms have exhibited performance only slightly above all entropy values when applied to real data with stationary characteristics over the measurement span. Performance considerably under a measured average data entropy may be observed when data characteristics are changing over the measurement span

    Algorithms for a very high speed universal noiseless coding module

    Get PDF
    The algorithmic definitions and performance characterizations are presented for a high performance adaptive coding module. Operation of at least one of these (single chip) implementations is expected to exceed 500 Mbits/s under laboratory conditions. Operation of a companion decoding module should operate at up to half the coder's rate. The module incorporates a powerful noiseless coder for Standard Form Data Sources (i.e., sources whose symbols can be represented by uncorrelated non-negative integers where the smaller integers are more likely than the larger ones). Performance close to data entropies can be expected over a Dynamic Range of from 1.5 to 12 to 14 bits/sample (depending on the implementation)

    A Progressive Universal Noiseless Coder

    Get PDF
    The authors combine pruned tree-structured vector quantization (pruned TSVQ) with Itoh's (1987) universal noiseless coder. By combining pruned TSVQ with universal noiseless coding, they benefit from the “successive approximation” capabilities of TSVQ, thereby allowing progressive transmission of images, while retaining the ability to noiselessly encode images of unknown statistics in a provably asymptotically optimal fashion. Noiseless compression results are comparable to Ziv-Lempel and arithmetic coding for both images and finely quantized Gaussian sources

    Some universal noiseless multiterminal source coding theorems

    Get PDF
    Fixed and variable-rate block and sliding-block weighted universal noiseless coding theorems are obtained which extend the Slepian-Wolf theorem for a single multiterminal source to a family of finite-alphabet, stationary, ergodic multiterminal sources

    Noiseless coding for the Gamma Ray spectrometer

    Get PDF
    The payload of several future unmanned space missions will include a sophisticated gamma ray spectrometer. Severely constrained data rates during certain portions of these missions could limit the possible science return from this instrument. This report investigates the application of universal noiseless coding techniques to represent gamma ray spectrometer data more efficiently without any loss in data integrity. Performance results demonstrate compression factors from 2.5:1 to 20:1 in comparison to a standard representation. Feasibility was also demonstrated by implementing a microprocessor breadboard coder/decoder using an Intel 8086 processor

    Noiseless coding for the magnetometer

    Get PDF
    Future unmanned space missions will continue to seek a full understanding of magnetic fields throughout the solar system. Severely constrained data rates during certain portions of these missions could limit the possible science return. This publication investigates the application of universal noiseless coding techniques to more efficiently represent magnetometer data without any loss in data integrity. Performance results indicated that compression factors of 2:1 to 6:1 can be expected. Feasibility for general deep space application was demonstrated by implementing a microprocessor breadboard coder/decoder using the Intel 8086 processor. The Comet Rendezvous Asteroid Flyby mission will incorporate these techniques in a buffer feedback, rate-controlled configuration. The characteristics of this system are discussed

    Variable dimension weighted universal vector quantization and noiseless coding

    Get PDF
    A new algorithm for variable dimension weighted universal coding is introduced. Combining the multi-codebook system of weighted universal vector quantization (WUVQ), the partitioning technique of variable dimension vector quantization, and the optimal design strategy common to both, variable dimension WUVQ allows mixture sources to be effectively carved into their component subsources, each of which can then be encoded with the codebook best matched to that source. Application of variable dimension WUVQ to a sequence of medical images provides up to 4.8 dB improvement in signal to quantization noise ratio over WUVQ and up to 11 dB improvement over a standard full-search vector quantizer followed by an entropy code. The optimal partitioning technique can likewise be applied with a collection of noiseless codes, as found in weighted universal noiseless coding (WUNC). The resulting algorithm for variable dimension WUNC is also described

    Rates of convergence in adaptive universal vector quantization

    Get PDF
    We consider the problem of adaptive universal quantization. By adaptive quantization we mean quantization for which the delay associated with encoding the jth sample in a sequence of length n is bounded for all n>j. We demonstrate the existence of an adaptive universal quantization algorithm for which any weighted sum of the rate and the expected mean square error converges almost surely and in expectation as O(√(log log n/log n)) to the corresponding weighted sum of the rate and the distortion-rate function at that rate
    corecore