
INFORMATION AND CONTROL 46, 9 3 - 1 0 7  (1980) 

Some Universal Noiseless Multiterminal Source Coding Theorems 

JOHN C. KIEFFER* 

Department of Mathematics, University of Missouri-Rolla, Rolla, Missouri 65401 

Fixed and variable-rate block and sliding-block weighted universal noiseless 
coding theorems are obtained which extend the Slepian-Wolf theorem for a 
single multiterminal source to a family of finite-alphabet, stationary, ergodie 
multiterminal sources. 

I .  INTRODUCTION 

Suppose we are given a mult i terminal  source consisting of the finite-state 
processes (X(1),..., X(~)), which we assume to have a stationary and ergodic 
joint  distr ibution P. Slepian and Wolf  (1973) and Cover (1975) determined the 
rate region ~ ( P )  of all vectors (R 1 ..... R~) such that each subsource X (o can be 
block encoded at rate R i into a process ~(~), and then (Xm,.. . ,  X (~)) can be 
recovered with almost zero probabil i ty  of block error by applying some block 
decoder to ()~m,...,)~(n)). Suppose the distribution P is not known precisely, 
but  is known to lie in some family of distributions A. Ideally, for a given rate 
vector (R 1 ,..., R~), one would like to find universal block encoders achieving 
the rates (R1 .... , R~) and a universal block decoder achieving small probabil i ty  
of error for every P ~ A. Clearly, a necessary condition on the rate vector so that  
this is possible is that it lie in ~ ( P )  for every P ~ A. This  condition is not sufficient 
unless the family A is compact in an appropriate sense. However, in this paper ,  
we will show the condition is sufficient in the weaker sense that weighted uni-  
versal coders can be found which universally code (X (1} ..... X (~z)) for "almost all" 
distr ibutions in A (with respect to some a priori weight distr ibution on A). A 
variable-rate version of this result is also obtained, where (R1,... , R~) is allowed 
to depend on P ~ A. In  that case, the rate of the ith universal block encoder (as 
measured by the expected code word length per unit t ime for a fixed variable- 
length noiseless coder applied to X"~) is desired to be Ri = Ri(P) for almost 
every P E A. For  the variable-rate weighted universal coders to exist, it is neces- 
sary to impose the additional requirement  that each R~ depend on P only through 
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the marginal distribution of X (i) under P. We then consider the case where 
sliding-b!ock coders are used instead of block coders. Precise statements of these 
results are given in the next section. 

I I .  STATEMENT OF MAIN RESULTS 

Notation. If  X 1 ,..., X n are measurable functions defined on a measurable 
space X2 and taking their values in the measurable spaces S~ ,..., S ~ ,  respectively, 
(X1,... , X~) denotes the map from E2 ~ S 1 × "" × S~ such that (X1,... , X~)(oJ) - -  

. . . . .  
I f  (~, ~-, P)  is a probability space, ~21 is a measurable space and X is a random 

variable defined on ~2 with values in /21, p x  denotes the distribution of X; 
that is, the probability measure on ~21 such that 

pX(E) = P ( X  ~ E), E a measurable subset of ~Q1, 

Let Z be the set of integers. I f  a symbol S denotes a finite set, the corresponding 
script letter :~  will denote the set of all subsets of S, and (S ~, ~9 °~) will denote 
the measurable space consisting of S ~, the set of all bilateral sequences x 
(xi: i ~ Z )  from S and ~ ,  the usual product C-field of subsets of S% If  x E S °~ 
and i E Z,  x i denotes the ith coordinate of x and i f j  ~ i, xi 5 or [x]~ denotes the 
( j  - -  i @ 1)-tuple (x i ..... x3). x n or Ix] ~ denotes (x 1 .... , xn). Similarly if S 1 ,..., S~ 
are finite sets and (x 1 .... , x~)E S I ~ X  ' " x  S~ °~, then (x 1 ..... x~)~ denotes 
(Ix1] ~ ,..., [xn]~) and (x 1 .... ,x~) N denotes ([xl] N ..... [x~]N). By a finite state process X 
(with state space S), we mean that for some measurable space $2 and finite set S, 
X is a measurable map from ~2 --> S °~. For each i ~ Z,  X i denotes the map from 
~2 ---> S such that Xi(~ ) = X(co)i,  w ~ $2. X i  ~ or [X]~ denotes the random vector 
( X  i ,..., Xj) .  X n or IX] n denotes ( X  1 ,..., Xn).  I f  X m , . . . ,  X (n) are finite-state 
processes, (X(I',..., X(n))~ denotes ([X(1)]~ ,..., [X(n)]~) and (X {1',..., X(n)) y denotes 

I f  X, Y are random variables, H ( X )  and H ( X  [ Y )  denote entropy and condi- 
tional entropy, respectively. I f  X is a finite-state N-stationary process for some 
N = 1, 2 ..... H(X)  denotes the entropy of the process: 

=  (m.-1H(G . . . . .  

I f  (X, Y) are jointly N-stationary, Fr(X I Y) denotes the conditional entropy 

 r(Xl Y )  = l i m  . - 1H(X,  ,..., X .  I Vl ..... Y.).  

We write Ere(X), Erp(X l Y) when it is necessary to emphasize the underlying 
probability measure P. 
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I f  A is a finite set, irA: A m ~ A ~ denotes the shift t ransformat ion.  I f  A 1 .... , A n 

are finite sets, TA1 ..... A : A1 ~° X "'" × An D - + A 1  °° X "'" × An ~ denotes the  
t ransformat ion  

T A 1 . . . . .  An(Xl , . . . ,  Xn) ~ ( T A l x  1 , . . . ,  T AnX~a ). 

I f  A 1 ,.,., A n  are finite sets let E (A 1 .... , An) denote the set of all probabi l i ty  
measures  on ~1 ~ X "" × ~7[,n ~ stat ionary and  ergodic with respect to TA1 ..... ~ .  

We make 6°(A1 .... , An) a measurable  space by  adjoining the smallest a-field of 

subsets  of 6~(A1 ..... An) such that  for each E E ~1 ~ X "'" X C/,, ~, the map 
P --~ P ( E )  f rom # ( A  1 .... , An) --> [0, 1] is measurable.  

I f  (A, Jd )  and  (£2, o ~ )  are two measurable  spaces, we call a family {Po: 0 ~ A}  

of probabi l i ty  measures  on  ~ measurable  if for each E ~ ~- ,  the map 0 --+ Po(E) 

from A - +  [0, 1] is ~ - m e a s u r a b l e .  

Codes. I f  A 1 , . . . , A  n and  B ~ , . . . , B  n are finite sets, 9 : A 1  * × "'" × An  ~ - +  

B1 ~ X "'" x Bn ~ is called a block code of order N i f t h e r e  exists 9 ' :  A1N X "'" X 

An  N ~ BI  N X "'" X Bn N such that  

q0(X 1 ~ '"~ . x/iV+N . \iN+N1 
XnJiN+l ~-- 9 ' [ ( X l  . . . .  , Xn) iN+l  1, i ~ Z .  

i f  9:  A ~ ~ B ~ is a block code of order N, the rate r(9 ) of 9 is defined to be 
N - !  logl{9(x)f:  x ~ A~}[, where if S is a finite set, ] S [ denotes the cardinal i ty of 

S. (All logari thms in  this paper  are to base 2.) 

A map ¢: A1 ~ × "" × A~ ~ ~ BI* × .-- × Bn °~ is called a stat ionary code if 
¢(TA1 ..... A~(x~ ,..., x~)) ~= Ts~ ..... B~¢(x~ .... , xn). I t  is called a sl iding-block code 

if it is s tat ionary and  for some M, ¢(x 1 .... , xn) ~ ¢( Yl .... , Yn) if (x 1 .... , Xn)~_M = 

(Yl ,--', Y-)--M • Th e  rate r(¢) of a s l iding-block code ¢: A ~ ~ B ~ is 

l im N -1 log [{¢(x)f: x e A®}I. 
N o  co 

Let  {0, 1}* be the set of all finite sequences of zeroes and  ones. I f  A is a finite 

set a map ~-: A ~ {0, 1}* is called a noiseless var iable- length code if z is one-to-  
one and  ~-(A) satisfies the prefix condit ion.  

Mult i terminal  sources. Let  n be a positive integer. By a n-parameter  mul t i -  

te rminal  source we mean  a pair [(Xm,. . . ,  XIn)), P] ,  where the X (° are finite 

state processes defined on a c o m m o n  measurable  space (f2, ~-)  and  P is a 
probabi l i ty  measure  on ~-.  I f  the processes {X! o} are jo in t ly  stat ionary (ergodic) 
with respect to P [(X I1~ ..... XeS),  P ]  is called a stat ionary (ergodic) source. 

Let  E n be the set of all n- tuples  of real numbers .  I f  [(Xm,. . . ,  X(n)), P ]  is a 
mul t i t e rmina l  source and  the {X (°} are joint ly  N-s ta t ionary  with respect to P 
for some N ,  define ~ [ ( X m  ..... X(nl), P]  to be the set of all R = (R~ .... , Rn) e E n 
such that  

H((X(~):je S) I(X(~):j~ S)) <~ ~ Rj, 
j eS  
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for every nonempty subset S of {1, 2,..., n}. (In the preceding, if each X ~o has 
state space A~, we interpret a variable (XO): j ~ T) as a process with state space 
r l j~r  Aj rather than its customary interpretation as a function with values in 
the space 1-IJ~r A~ ~. We also interpret H((X~J): j ~ T)r(x(J): j ¢ T)) to be 
H((X~J~:je T)) if there exists no j ~  T.) We note that if [(Xm,...,  X(~)), p ]  
is stationary and ergodic then ~[(Xm, . . . ,  Xtn)), P] is the rate region for noiseless 
coding of that source (Cover, 1975). 

' Fixed and variable rate specifications. Let X(I),..., X ~ be processes on 
(f2, o~) with state spaces A 1 .... , A~,  respectively. Let  {Po: 0 ~ A} be a family of 
probability measures on o~-. We suppose [(X m ..... X~'*)), Po] is a stationary, 
ergodic source, 0 ~ A. We say that {R(0): 0 E A} C E n is a variable-rate specifica- 
tion for the family of sources {[(Xm,..., X(~)), Po]: 0 ~ A} if for each i there is a 
bounded measurable map Fi: o~(Ai) --+ [0, oo] such that 

(a) Ri(O) = Fi(PoX"'), i = 1,..., n; 0 e A, 

(b) R(O) e ~ [ ( X  m ..... X(~I), Po], 0 e A. 

We say R ~ E ~ is a fixed-rate specification for the family {[Of m ..... X~)) ,  
Po]: 0 c A} if 

R ~ ~[(X(1),. . . ,  X(n)), Po], 0 e A. 

Weighted universal coding. We state here the main results, to be proved in 
subsequent sections. The  results are weighted universal coling theorems for 
noiseless coding of a family of ergodic multiterminal sources, in  particular, 
they imply the coding theorem of Cover (1975) for a single multiterminal station- 
ary, ergodic source, which was an extension of a result of Slepian and Wolf 
(1973). As a simple corollary to these theorems, which we leave to the reader, 
one can delineate the rate regions in E n for noiseless coding of a stationary per- 
haps non-ergodic source with respect to each of the following four types of 
coding: fixed-rate block coding, variable-rate block-coding, fixed-rate sliding- 
block coding, variable-rate sliding-block coding. The  rate region for fixed-rate 
block coding will coincide with the rate region for fixed-rate sliding-block coding. 
Also the rate region for variable rate block coding will coincide with the rate 
region for variable-rate sliding-block coding. The  fixed-rate region is a subset 
of the variable-rate region, and may be a proper subset, unless the stationary 
source is ergodic, in which case the regions coincide. 

The  following notation is used in the statement of the theorems to follow. 
(A, ~ ,  2,) is a probability space and (f2, o~) is a measurable space. {Po: 0 ~ A} is a 
measurable family of probability measures on ~ .  Xm,. . . ,  X (m are finite-state 
processes defined on g2 with state spaces AD... , A n , respectively. For each 0 ~ A, 
we assume the multiterminal source [(X m ..... X(~)), Po] is stationary and 
ergodic. 

THEOREM 1. Let {R(O): 0 ~ A} C E ~ be a variable-rate specification for the 
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f ami l y  of  stationary, ergodic multiterminal sources {[(Xa),..., X(~z)), Po]: 0 e A}. 

Then, given • > O, there exists a positive integer N ,  block codes ~o~: A i  ~ ~ A i  ~ 

( i = 1  .... , n) of  order N ,  a block code 3: A1 ~ × "" × A , ~ - +  A1 ~ × "" × A n  ~ 

of  order N ,  noiseless variable-length codes "ri: A i  u ~ {0, 1}* (i = 1 .... , n), and a set 
W C A with 1 ( W )  > 1 - -  • such that for  each O ~ W,  

(a) Po[(Xa), . . . ,  X("))  N @ 3(%(Xm),..., Vn(X('~))) N] < e. 

(b) N-~E,oE[Ti(%(X(i))N)] <~ Ri(O) 4- •, i = 1,..., n. 

(Note. In the preceding, d denotes length, and E~o denotes expectation with 
respect to Po .) 

THEOREM 2. Let  R ~ E ~ be a f ixed-rate specification for  the fami l y  o f  stationary, 
ergodic sources {[(Xm,..., X(~)), Po]}. Then given • > O, there exists a positive 
integer N ,  block codes %: A i  D - + A i  ~ (i = 1 ..... n) of  order N,  a block code 

3: A~ ~ × "" × A , ~ - +  A~ ® × "" × A ,  ~ of  order N ,  and a set W C A with 

A(W) > 1 --  e such that 

(a) r(~i) < Ri 4- •, i = 1 ..... n. 

(b) Po[(Xm, . . . ,  X("))  N @ 3(~ol(X(1)) , . . .  , ~on(X(~)))N ] < •, 0 e W. 

THEOREM 3. Let  {R(0): 0 e A} be a variable-rate specification for  the fami l y  
of  stationary, ergodic sources {[(Xm,..., X(~I), Po]}. Then, given e > O, there exist 
sliding-block codes ~bi: A i  ~ --+ A i  ~ (i = 1 .... , n), a sliding-block code 3 : A 1  ~ × 
• " × A~ ~ -+ A1 °~ × "" × A~ ~, noiseless variable-length codes -ri: A i  M ~ {0, 1}* 
(i = 1,..., n) for  some M ,  and a set W C A with I ( W )  > 1 - -  • such that for  each 
O ~ W  

(a) Po[(Xm, . . . ,  X{~))o ¢ 3(¢1(Xm),... , Cn(X(')))0] < e. 

(b) M-1EeogE'ri(¢i(X'i')M)] <~ Ri(O) 4- e, i = 1,..., n. 

THEOREM 4. Let  R be a f x e d - r a t e  specification for  the stationary, ergodic 

sources {[(Xm,..., X(n)),  Po]}. Given • > O, there exist sliding-block codes ¢i: Ai ~ --+ 
A i  ~ (i = 1,..., n), a sliding-block code 3: A I  ~ × "" × A~ ~ -+ A~ ~ × ... × An% 
and a set W C A w th t ( W )  > 1 - -  • such that 

(a) r(¢~) < R,  4- •, i = 1,..., n. 

(b) Po[(Xm, . . . ,  X(~))o =/: 3(~bl(Xm),..., ¢,(X(")))0] < •, 0 e W. 

I I I .  BUILDING A GOOD BLOCK CODE 

If X is a discrete random variable on a probability space (so2, Y ,  P), let P ( X )  

denote the function from ~2 to [0, 1] such that 

P(X)(co) = P [ X  -~ X(W)], o~ ~ f2. 
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I f  Y is another discrete random variable, let P ( X  ] Y )  denote the function 

P ( X [  Y )  = P ( X ,  Y ) / P ( Y ) ,  P ( Y )  > 0 
= 0 , elsewhere. 

The  following coding lemma allows us to give an easy proof of Theorems 1 
and 2. The  proof uses a type of random coding argument  due to Cover (1975). 

LEMMA 1. Let  A1 , . . .  , A s be f ini te  sets. Le t  X i (i = 1 ..... n) be the projection 
of  A 1 x "'" × A~ onto A i . For each i, let a map f #  A i - +  [0, ~ )  be g@en. Le t  P 
be a probability measure on A 1 X "'" x A ~ .  Given c > O, there exist maps 

9# A i - +  A i  (i = 1,..., n), a map 3: A 1 x "'" x A ~ - +  A1 X "'" x A ~ ,  and 
noiseless variable-length codes -ri: A i  -+ {0, 1}* (i = 1 ..... n) such that 

(a) P[ (Xl  .... , x~)  # a(~(&) , . . . ,  ~ , (x~)) ]  ~< 2"-° 

SC{1 . . . . .  n} j~S  

(b) f[T,(gi(X,))] • log [f,(A,) I + f , ( X i )  + c q -  1, i = 1,...,n; 

(c) log I 9i(Ai)[ ~ log Ifi(Ai)[ + maxf~(A~) + c + 1, i = 1 ..... n. 

(Note. In  (a), by P ( ( X / j  e S ) ] ( X / j  ¢ S)) we mean the function P ( ( X j : j  ~ S))  
if s = {1,..., n}.) 

Proof. I f  S is a finite set, we will call a map a: S --~ {1, 2,...} a length function 
if Zv~s2  -"(~) ~ 1. From Gallager (1968, Chapter 3), if z: S - + { 0 ,  1}* is a 
noiseless variable-length code then the formula a (y )  = {[z(y)] defines a length 
function on S; conversely, given a length function a on S, there is a noiseless 
variable-length code ~-: S--~ {0, 1}* such that a (y )  =~[z (y ) ] ,  y E S. Thus,  to 
prove Lemma  1, all we need to find are maps 9d Ai ~ Ai (i = 1 ..... n), a map 
3: A 1 × "-  × A,~--+ A 1 × -"  × A s ,  and length functions ai: Ai - -~  {1, 2,...} 
(i = 1,..., n) such that (a), (c) hold and 

(b') ~i(9~(X~)) ~ log ]f,(Ai)l + f i ( X i )  + c + 1, i = 1 .... , n. 

Let Ci = fi(Ai), i = 1,..., n. Let  T = {(i, x, y): i = 1,..., n; x ~Ai ; y a Ci}. Let  
Di,x,v = {1,..., [2v+q}, (i, x, y) a T. ( I f r  is a real number,  [r] denotes the smallest 
integer >jr.) Let D = l-[(i,~.u)~r Di.~,v. For each i, let Bi = Uv~c~ {1 ..... [2v+q} x 
{y}. For each i = 1,..., n, and z = (z£x,v: ( j ,  x , y ) ~  T ) ~ D ,  let ~giz: 2Ji-+ B i 

be the map 

Let  ai: Bi  --~ {1, 2,...} be the length function such that 

a(k, y) = log ] C i [ + [ Y + c], (k, y )  ~ B i . 
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Let E be the subset of A 1 ~X "-" x A~ such that 

SC{1 . . . . .  n} j e S  

For each z ~ D ,  let ~ :  B 1 × '-- × B~--~A 1 × --" × A~ be a map such that if 
(k, ,  Yl) ~ BI .... , (k~, y~) ~ B~ then ~ ( ( k l ,  y l ) , . . . ,  ( kn ,  y~))  - -  ( x l , . . . ,  xn) if 
(x 1 ..... x~) is the only element of E such that 

(d) fi(x,) = Y i ,  i = 1,..., n, 

(e) zi.~i.~i = ki  , i = 1 .... , n. 

On some probability space (~2, i f ,  •) we may define random variables X~ ,..., X'~, 
{Zi,~,v: (i, x,  y )  ~ T }  such that 

(f) each X~ is / / / -valued and the distribution of (X~ ,..., X~) is P; 

(g) for each (i, x, y) ~ T, Zi,x, v is uniformly distributed over {1,..., [2v+c]}; 

(h) {Zi,~.v: (i, x, y )  ~ T }  are independent; 

(i) (X~ ..... X'~) and the D-valued random variable Z -~ (Zi.z,v: (i, x, y )  ~ T )  

are independent. 

Let Q denote the quantity on the right-hand side of the inequality in (a). I f  
we can show that 

z z z t (j) h[(X~ ,.. . ,  X'~) ~: 8z(9, (X,),..., % (X~))] ~< Q, 

then because of (i), we will have for some z ~ D that 

(k) P[(X~ ,..., X~) :/: ~(~o~'(X~),..., qo~(X~))] ~< 9 .  

We now try to derive (j). The left-hand side of (j) is no bigger than 

(1) P[(X1 ,..., X~) ~ E] + E ~[/~(X;) = y, (i = 1,..., n), 
(y 1 ..... yn)~Ci×.. . ×C n 

and there exists in E a (x 1 .... , xn) ~ (X~ ,..., X'n) such that 

f ,(x~) = y ,  and Z,.~,.~, = Z~,x~,~, for all i]. 

(Y~ , ' " , Y n ) ~  Ca × "'" × C ~ ,  the summand in (1) is no bigger than 

E Z E = ,j s], 
X t S f c ~ E  S 

! t outermost sum is over all x' = (x 1 ,..., x~) ~ A 1 × -.- × A~ such that 
and fi(x~) = y~ for all i, the middle sum is over all nonempty subsets 
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S of {1,..., n}, and in the innermost sum Es represents the set of all x ~ I-Isis A~- 
such that xj =/= xj ,  j ~ S, and 

P [ ( X j : j E S )  = x IX,. = x ; , j ¢  s] >~ I ]  2-~'- 
j e s  

(The middle sum arises by observing that if x, x' ~ A 1 × "" × An and x =/= x' 
then for some nonempty S C {1,..., n}, we have xj =/= x~ if and only i f j  ~ S.) Now 

~,jeS I 

since all the variables involved are independent and x~. ~ xj ,  j e S. Calculating 
the innermost sum in (m) we get [ E s I(I-lj~s [2v;+q) -1. Since each x ~ Es has a 
probability lower bounded by I~a~s 2-u~, we must have [ Es ] ~< I-Ij~s 2vJ. We 
can now observe that (j) will follow. Thus we may fix z a D such that (k) holds. 
Setting ~0~ = ~i ~ and 3 = 8a, we get (a), (c), (b'). Since for each i, ] cp~(A~)l ~< 
[ Ai  I, we can assume B i = A i ,  i = 1 ..... n. 

Proof of Theorems 1 and 2. As shown in the proof of Theorem 4 of Kieffer 
(1980a), we can assume without loss of generality that A = s'2 = A1 ~ × ..- × 
An% that each X li) is the projection from A1 ~ × "-" × An~°--+ Ai ~, and that 
the measures {Po: 0 e £2} are the ergodic components of the measure a. More 
precisely, we assume each Poe  #(A1, . . . ,  An) and that 

1 /c--1 i (a) Po(E) = limk_>~ h-  ~2i=0 I e ( T ~  ..... A 0), for A-almost all 0 ~ Sg, where 
I s denotes the indicator function of the set E ~ ~1 ~ X "'" × ~n ~°, 

(b) P{O: Po = P} = 1, P E #(A 1 . . . . .  An), 

(c) a(E) = Ia  Po(E) aa(o), E e 6g~ ~ × ... × ~t ~. 

Let {R(0): 0~g2} be a variable-rate specification. For each i----1 ..... n, let 
R i : g2 --+ [0, oo) be the function such that R~(O) is the ith component of R(O), 
0 e D .  Now R~(O) depends on 0 through Po x(' ', and by (a), PoX(~' depends on 0 
through X(~)(O). Hence, given 3 > 0, there is a finite set Ci C [0, oo) and for each 
N a function FiN: ~/i N --+ C i such that the functions {FiN([X(i)]N)} converge 
almost surely with respect to a as N--+ o% and 

R~ -}- 8 ~< lim ffiN([X(il] N) ~ R~ @ 28 a.s. [a]. (3.1) 
N-+ 0o 

By a result of Parthasarathy (1963), if S is a nonempty subset of {1 ..... n}, for 
A-almost all 0 

lim --  N -1 log a(([X(J)]N:j E S ) ] ( [ X ° ) ] N : j ¢  S))(O) 
N~co 

j e s  
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Therefore, 

l i m ~  [A(([XI~)]N:j~ S)[([X(~)]N:j~ S)) < 1~ 2--NeJN([x(J)IN)] = 0. (3.2) 
N~cc / J j e s  

Applying Lemma 1, for N sufficiently large there exist block codes ~i: Ai ~ --+ Ai ~ 
( i =  1,..., N ) o f  order N, ab lockcode  S: A1 °~ × " - ×  A ~ - - ~ A 1  ~° × " ' ×  An ~ 
of order N, and noiseless variable-length codes ri: Ai :v --+ {0, 1}* such that 

(d) N-I~[~-i(%(X"I)N)] ~ ~ + FiN([X(i)lN), 

(e) hi(×m,... ,  X(~)) N =/= 3(q)l(Xm),... , rp~(X(n))) s] -+  0. 

From (3.1) and (d), we obtain 

(f) iim supN_>~ 2V-l~['ri(~i0,/(X(i))N)] ~ 3~ + R i a.8.  [~t]. 

Taking a conditional expectation, since Ri = Ri(O) a.s. [Po], (f), (e) give 

(g) P0[lim SUpN~ N-~d['r~(gi(X"))u)] <~ 33 + R~(0)] = 1, a.s. [1]. 

(h) Po[(Xm,..., X(m) N =/= ~(~Ol(Xm),... , 9n(X(n))) N] -+ 0 stochastically with 
respect to A. 

Theorem 1 follows from (g), (h) by a simple application of Egoroff's theorem 
(Ash, 1972, p. 94), provided we take ~ to be small enough relative to e. I f  
(R 1 .... , Rn) is a fixed-rate specification, note that (3.2) holds with F/v([x(sI] u) 
replaced by Ro + 3. One now applies part (c) of L e m m a  1. 

IV. BUILDING A GOOD SLIDING-BLocK CODE 

In  this section we prove Lemma 2 which will allow us to build a good sliding- 
block code from a good block code, and thereby enable us to prove Theorems 3 
and 4. Before proceeding with the  Lemma, we need to introduce some more 
notation. 

Let A 1 ..... A n be finite sets. For N = 1, 2 ..... let #N(A1 ..... An) denote the 
set of all probability measures on ~a ~ × "" × ~n  * stationary with respect to 
T N Let ~o~(A, An) = U;¢=I ~N(A,  An). We define f :  A1 ® × 

A 1 , . . . , A  n • , . . . ~  ~ . . . ~  

-" × A~ °° - -  [0, oo) to be finite-dimensional (f.d.) if for some positive integer M, 

, . . . ,  X M f ( x  I .... , x,~) = f ( Y x  Yn) if [ , ] - i  = [y,]_M , i = 1 ..... n. 

If  ( ~ ;  k - 1, 2 , . . )  ~ (m) c ~1(A1 ,..., An) we say m,0 ~ m w e a k l y  i f  E~J--~ E~f 
for every f.d. f :  A1 ~ × "" × AC ~ --~ [0, oo). The weak topology on #I(A1, . . . ,  
An) is the unique metric topology with this convergence (see Parthasarathy, 
1967). 

Fix finite sets A, B and let X:  A °~ × B°° ~-~ A °° and Y: d ~ × B°~--+ B ~ be 
the maps such that X(x,  y)  = x, Y(x,  y)  = y. 
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W e  call F :  ~ ( A ,  B) --+ [0, oo) a nice funct ion if 

(a) F is affine on the convex set ~o~(A, B);  that  is, i f / , ,  v ~-~oo(A, B) and 
0 < a < 1, then  F(a/x + (1 - -  c@) = eeF(/,) + (1 - -  a)F(v). 

(b) F is uppe r semicon t inuous  on ~ , ( A ,  B) relative to the weak topo-  

logy• 

(c) I f / ,  ~ ~ ( A ,  B) and I2 is a process  wi th  state space B which  is a 
s ta t ionary or b lock coding of H satisfying Hu(Y]  I2) = 0, then  F(/z) = F(tz(xl f*)). 

• T -1  ~ Po~(A, B ) .  (d) F0* ) = F ( / ,  A,B), b t 

As an example  of a nice funct ion,  we cite the m a p / ,  --~ H , ( X  [ Y).  
A channel  is a t r iple  [A, r,  B] where  A,  B are finite sets and  r = {%: x E A ~} 

is a m e a s u r a b l e  fami ly  of  p r o b a b i l i t y  measures  on B ~. 
W e  call a sequence x e A ~ per iodic  if  for  some n TA**X = x. If  x is per iodic ,  

define the per iod  of x to be the  smal les t  n such tha t  TAnX = x. 
I f  S 1 , S 2 are subsets  of some c o m m o n  set, define S 1 - -  $2 = {oJ e S 1 : ~o ~ S2}. 

LEMMA 2. Let (f2, .,~) be a measurable space. Let (A, J{ ,  A) be a probability 
space. Let {Po: 0 ~ A} be a measurable family of probability measures on ~' .  Let  
C, D be finite sets. Let U, V be processes defined on Q with state spaces C, D, 
respectively. We suppose {U, V} are jointly stationary and ergodic under each 
Po , 0 ~ A. Let g~ be a finite collection of nice functions from ~ ( C ,  D) --+ [0, oo]. 
Let cp: D ~ -+ D ~ and 8". C ~° × D ~ --+ D ~ be block codes of order N.  Given ~ > O, 
there exist sliding-block codes ~o: D ~° -~ D ~ and ~: C ~° × D ~ --+ D% and a subset 
W of A with A(A - -  W) < e such that i f  0 E W 

(a) F(P(o u'c°(v))) <~ F(P~ v'~lv))) + ~, F ~Cg, 

(b) Po[Vo ¢ ~(U, ~(V))0] ~< Po[VN ~ a(U, ~(V))~] + ~. 

Proof. By T h e o r e m  3.1 of G r a y  (1975), it  suffices to f ind s ta t ionary  codes 
~, 3 for which  (a), (b) hold. I f  r(~) = l o g ] D  [, then  (a), (b) hold  wi th  ~ the  
iden t i ty  map,  3(u, y)  ~ y.  So we can assume r(q0) < log ] D ]. F r o m  the theory  
of ergodic  processes,  given 0 G A, the process  V is e i ther  aper iodic  under  P0 
(which means  tha t  Po(V ~ - v ) =  O, v ~ D°~), or is per iodic  under  V (which 
means  that  for some n, there  is a per iodic  v ~ D ~ with  per iod  n such tha t  
Po ( V  = T f v )  ~- n -~, 0 <~ i <~ n -- 1). Le t  Wo = {0 ~ A:  V is aper iodic  u n d e r  
Po}, WI = {0 c A; V is per iodic  under  Po}. Choose k a mul t ip le  of N and W 2 C 
W 1 so tha t  A(W 1 - -  W2) < E/3 and for every 0 ~ W 2 

Po ( V  is per iodic  wi th  per iod  ~< k) = 1. 

Since r(~o) < log ] D ], there  exists for some mul t ip le  L of k a b ~ D L such tha t  
b¢{9(v)L: v a D  °~} and the sequence £ in D ~ such that  ,iL+L b ( i a Z )  has ~ i t + l  = 
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periodL.  For each multiple j of L such t h a t j  > 2L, define 9j: D ° ~ D ° to be 
the block code of order j + 2L such that 

, ,i+~L (b, b) if i ~ 0 rood j + 2L, ~ O j ( X ) i + l  -~.  

~j(x)~ = cp(x)~ for all other coordinates s. 

Define 8 /  C ~ × D ° -+  D ~ to be a sliding-block code such that 

( c )  ~j(u, y) T~,,~(Tcs,,, T~,sy) i f  " . i+~L = {~eZ.  yi+l = ( b , b ) } = { i a Z : i ~ s  
m o d j  + 2L} for some 0 ~ s ~ j  + 2L - -  1. 

(d) 3j(u, y) = y if y is periodic with period ~ k. 

Fix U, V, Y to be the processes defined on C ~ × D ~ × D ~ with respective 
state spaces C, D, D such that U(u, v, y) = u, g(u, v, y) = v, Y(u, v, y) =- y. 
I f  P is a probability measure on C ~ × D% and [D, v, D] is a channel, let Pv be 
the probability measure on C ° × D °~ X D °~ such that under Pv, U, V, Y form 
a Markov chain, the distribution of (U, V) is P, and the distribution of Y 
conditioned on V is given by v. Let [D, r, D], [D, ~-j, D] be the channels such 
that for each x a D% ~-~ is equidistributed over {TDi(q~(TDix)): 0 <~ i <~ N --  1} 
and (~j)~ is equidistributed over {TDi(~v~(TDiX)): 0 ~ i <~j + 2L --  1}. It  can be 
seen that for all 0 ~ A, 

(e) Po-cj --+ Po-r weakly 

(f) limj_~ Po-rj[Vo :~ ~j(U, Y)0] ~ Po[ VN v a ~(U, ~(K))N]. 

By (e), for each 0 e A and each F ~ c~, 

(g) lira supj_~o~F(no'r~ O'r,) <~ F(no'r (0'~)) -= F(P(oV'~(v))). 

Hence by Egoroff's theorem, there is W 3 C W o with A(W 0 - -  W3) < e/3 a n d j  so 
large that setting ~ = %-, ~ = 3j, we have for 0 a W 8 that 

(h) Poi-[Vo =/= ~(U, Y)0] ~< Po[ VN ¢ $(U, qo(V)) N] + e/2. 

(i) F(Po ~(0'~)) <~ F(P(o e'Q'(v))) q- e/2, F e ~. 

By Lemma 6 of Kieffer (1980b) and Theorem 2 of Kieffer and Rahe (1981), there 
is a sequence {¢j} of sliding-block codes from D ~ ~ D ~ such that Po4(v'¢/~')) 
Po ÷(v'Y) weakly, for every 0 ~ W 0 . By Lemma 5 of the Appendix, PCorZ'v'¢/v)) = 
Po÷t°'P'o~ (~)) --~ Po ÷, for every 0 ~ W 0 . Applying Egoroff's theorem again, we 
obtain Wa C Wa with A(W a - -  Wa) < e/3 and j so large that setting ~b = @. 
we have for every 0 ~ Wa, 

(j) PoiVo :A 3(U, ~(V))0] ~ Po[V N ~ ~(U, ~o(V)) ~] + e, 

(k) F(P(o U'~(v))) <~ F(P(o v'~(v)~) + e, F ~ c~. 

Define 95: D ~ -~  D ~ to be the stationary code such that 95(x) ~ x, if x is periodic; 
q~ = ¢, otherwise. Set W = W a ~ V/'~. 
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In  the  f o l l o w i n g ,  let  1 denote  the  n-vec tor  (I ,  1,. . . ,  1), and let h(c~) = - - ~  log ~ - -  
(1 - -  @ o g ( 1  - -  a), 0 < ~ ~ 1/2. 

LEMMA 3. Let the notation preceding Theorem 1 prevail. Let {R(0): 0 e A} 
be a variable-rate specification for the family of stationary, ergodic sources {[(X(1),..., 
X(~)), Po]: 0 ~ A}. Given E > 0 there exists a process U with state space A 1 which 
is sliding-block coding of X m, a process ~(1) with state space A 1 which is a sliding- 
block coding of(U,  X(2),..., X(n)), and a set W C A with A(W) > 1 - -  E such that: 

(a) {R(0) + El: 0 e  W} is a variable-rate specification for {[(U, X(2),..., 
X( ' )) ,  Po]: 0 e W}. 

(b) Po(X(o 1) ~ ~2~o 1)) < e, 0 ~ W. 

(c) ]~[Po(U) ~.~ RI(0 ) @ ,, 0 e W. 

Proof. Let M = maxi log [ A i [. Choose ~ > 0 so small that c~ + h(~) + M~ < 
4/2, 2c~ < e, ~ < 1/2. By Theorem 1, there exists a positive integer N, block 
codes ~oi: AI°~--* A1 °~ of order N( i  = 1,..., n), a block code f :  A1 ~° × ".. × 
An ~ -+  A1 °~ × "- × A~ ~ of order  N, and a set W~ C A with A(W1) > 1 - -  e/2 
such that  for 0 ~ W 1 , 

(d) PoI(X%..., X~"))~ C f ( ~ ( X % . . . ,  ~,(X(-~))~] < ~. 

(e) ~[po(~oi(X(i))) ~ Ri(O ) -k ~, i = 1,..., n. 

Because of (d), there exists a block code g: A1 ~° × -'. × A~ ~--+ A~ ~ × ... × 
A~ ~ of order N such that for all 0 ~ W1, 

(f) Po[(~Vl(X(1)), X{2),..., X(n)) N 5 £ g(~Ol(X{1)), v2(X{2)),..., q)n(XIn))) N] < 0~. 
Applying (e), (f) and Lemma 4 of the Appendix,  we see that  

(g) R(O) -? (4/2)1 e ~[(~o~(Xm), X(2),..., XOO), Po], 0 e W~ . 

Also, because of (d) there exists a block code h: A1 ~ × "- × A~°~--+ Aa ~° × 
• " × A~ °~ of order N such that 

(h) Po[(Xm,..., X(~))N=/: h((pl(X(1)), X(2),..., X(n)) N] < e/2, 0 e W 1 . 

Applying Lemma 2, we see from the statements (e), (g), (h) that there must  
exist W C  Wt with A(Wa - -  W) < e/2, a sl iding-block coding U of X (~) and a 
sliding-block coding 2 m of (U, X (~) .... , X (~1) such that (a)-(c) hold. 

Proof of Theorems 3 and 4. Let  {R(0): 0 e A} be a variable-rate specification 
for the family of mult i terminal  sources given in Theorem 3. We note that  in 
place of (b) of Theorem 3, we need only show that for 0 e W we have 

(b') H~o(4,i(Xi)) <~ R~(O) + ~/2, i -= 1 .... , n. 

For, by a weak universal noiseless coding theorem (Kieffer, 1978, Theorem 1), 
(b') implies that  (b) holds for some M and some noiseless variable-length code 
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~-i: Ai M-+  {0, 1}*, provided we reduce W by a A-small amount. To  get condi- 
tion (b') above and condition (a) of Theorem 3 to hold, apply Lemma  3 n times. 
Therefore Theorem 3 follows, and then Theorem 4 follows from Theorem 3. 
For, if U is a finite-state process ergodic with respect to each Po, and Heo(U ) < 
K for each 0, by (Ziv, 1972, Theorem 4) and (Kieffer, 1980a, Theorem 1) there 
exists for each • > 0 a sequence of sliding-block codes {~%} such that r(~On) < 
K -t- e for all n and for every 0, To(Uo v ~ ~n(U)o) -+ O. 

APPENDIX 

LEMMA 4. Let X(1),..., X ('~) be processes defined on (£2, o~') with finite state 
spaces A i ,..., A~ . Let P be a probability measure on J with respect to which 
{Xm,... ,  X(n)} are jointly N-stationary. Let q)i: A~ ~---~ Ai  °~ (i ~ 1,..., n) and 
8: A i  ~ × "" × A,~---~ A i  ~ × "" × A~ ~ be bloch codes of order N such that 

Then 

where 

P[(Xm,. . . ,  X(n)) x =/= 8(~oi(Xm),... , 5%(X(n))) N] ~< E ~< 1/2. 

R ~ ~ [ ( X  m,..., X(')),  P], 

R i = N-~H(9~(X(~)) N) + h(e) 4- • log I A~ [, i -~ 1 .... , n. 

Proof. Let S be a nonempty  subset of {1 ..... n}. Let U = - ( X t J ) : j 6 S ) ,  
V = (X(~): j E S), 12 = (~o~(X(~)): j ~ S), C = yiJ¢s A~ , D = HJ~s A ~ . We 
regard U, V, I? as processes with state space C, D, D, respectively. I t  is easy 
to see that there is a block code 8': C ° × D * --~ D ~ such that 

p [ v  N @ St(U, ~'-)N] ~ ft. 

By Fano's  inequality (Ash, 1965, p. 80) 

H((X(J): j ~ S) [ (X(J):j  ~ S)) = H ( V  i U) <~ N-~ (V  N ] UN) 

<~ N-~H(~) + N-~H(V~ I ~N, U~) 

<~ ~ N-aH(vj(X(~)) N) + h(~) + e log [ n [ 
]ES 

jes  

LEMMA 5. Let U, X ,  Y be processes defined on the probability space (g2, o ~ ,  P)  
with state spaces A,  B, C, respectively. Suppose that with respect to P these processes 
are jointly stationary and form a Markov chain (in the indicated order). Let {gn} 
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be a sequence of sliding-block codes from B ~ -+ C ° such that p(x,~,,(x)) _+ p(x,r) 
weakly. Then, p(v,x,~(x)) __+ p(v,x,r) weakly. 

Proof. W e  have to show that  

Elf (U)  g(X)h(%(X))] ~ El f (U)  g(X)h(Y)], 

for f.d. funct ions  tak ing  thei r  values in [0, 1]. Us ing  the  M a r k o v  property,  

we see that  

E[f  ( U) g( X)h( Y)] = E[E[f ( U) [ X] g(X)h( Y) ] 

E[f  ( U) g(X)h(9~(X))] = E[E[f ( U) ] X] g(X)h(9~(X))]. 

Fix  E > 0. F i n d  a f.d. funct ion  F such that  

E[ IF(X) - -  E[f(U) I X]I] < ~/3. 
Then ,  

t E[f(U) g(X)h(Y)] -- E[f(U) g(X)h(9~(X))][ 

<~ [ ElF(X) g(X)h(Y)] -- E[F(X) g(X)h(q~(X))][ + 2e/3 < e, 

for n sufficiently large. 

RECEIVED: May 5, 1979; REVISED: June 19, 1980. 
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