Some Universal Noiseless Multiterminal Source Coding Theorems

John C. Kieffer*
Department of Mathematics, University of Missouri-Rolla, Rolla, Missouri 65401

Abstract

Fixed and variable-rate block and sliding-block weighted universal noiseless coding theorems are obtained which extend the Slepian-Wolf theorem for a single multiterminal source to a family of finite-alphabet, stationary, ergodic multiterminal sources.

I. Introduction

Suppose we are given a multiterminal source consisting of the finite-state processes $\left(X^{(1)}, \ldots, X^{(n)}\right)$, which we assume to have a stationary and ergodic joint distribution P. Slepian and Wolf (1973) and Cover (1975) determined the rate region $\mathscr{R}(P)$ of all vectors $\left(R_{1}, \ldots, R_{n}\right)$ such that each subsource $X^{(i)}$ can be block encoded at rate R_{i} into a process $\hat{X}^{(i)}$, and then $\left(X^{(1)}, \ldots, X^{(n)}\right)$ can be recovered with almost zero probability of block error by applying some block decoder to $\left(\hat{X}^{(1)}, \ldots, \hat{X}^{(n)}\right)$. Suppose the distribution P is not known precisely, but is known to lie in some family of distributions A. Ideally, for a given rate vector (R_{1}, \ldots, R_{n}), one would like to find universal block encoders achieving the rates $\left(R_{1}, \ldots, R_{n}\right)$ and a universal block decoder achieving small probability of error for every $P \in A$. Clearly, a necessary condition on the rate vector so that this is possible is that it lie in $\mathscr{R}(P)$ for every $P \in \Lambda$. This condition is not sufficient unless the family Λ is compact in an appropriate sense. However, in this paper, we will show the condition is sufficient in the weaker sense that weighted universal coders can be found which universally code ($\left.X^{(1)}, \ldots, X^{(n)}\right)$ for "almost all" distributions in Λ (with respect to some a priori weight distribution on Λ). A variable-rate version of this result is also obtained, where $\left(R_{1}, \ldots, R_{n}\right)$ is allowed to depend on $P \in A$. In that case, the rate of the i th universal block encoder (as measured by the expected code word length per unit time for a fixed variablelength noiseless coder applied to $\left.\bar{X}^{(i)}\right)$ is desired to be $R_{i}=R_{i}(P)$ for almost every $P \in \Lambda$. For the variable-rate weighted universal coders to exist, it is necessary to impose the additional requirement that each R_{i} depend on P only through

[^0]the marginal distribution of $X^{(i)}$ under P. We then consider the case where sliding-block coders are used instead of block coders. Precise statements of these results are given in the next section.

II. Statement of Main Results

Notation. If X_{1}, \ldots, X_{n} are measurable functions defined on a measurable space Ω and taking their values in the measurable spaces S_{1}, \ldots, S_{n}, respectively, $\left(X_{1}, \ldots, X_{n}\right)$ denotes the map from $\Omega \rightarrow S_{1} \times \cdots \times S_{n}$ such that $\left(X_{1}, \ldots, X_{n}\right)(\omega)=$ $\left(X_{1}(\omega), \ldots, X_{n}(\omega)\right), \omega \in \Omega$.

If (Ω, \mathscr{F}, P) is a probability space, Ω_{1} is a measurable space and X is a random variable defined on Ω with values in Ω_{1}, P^{X} denotes the distribution of X; that is, the probability measure on Ω_{1} such that

$$
P^{X}(E)=P(X \in E), \quad E \text { a measurable subset of } \Omega_{1}
$$

Let Z be the set of integers. If a symbol S denotes a finite set, the corresponding script letter \mathscr{S} will denote the set of all subsets of S, and ($S^{\infty}, \mathscr{S}^{\infty}$) will denote the measurable space consisting of S^{∞}, the set of all bilateral sequences $x=$ $\left(x_{i}: i \in Z\right)$ from S and \mathscr{S}^{∞}, the usual product σ-field of subsets of S^{∞}. If $x \in S^{\infty}$ and $i \in Z, x_{i}$ denotes the i th coordinate of x and if $j \geqslant i, x_{i}^{j}$ or $[x]_{i}^{j}$ denotes the $(j-i+1)$-tuple $\left(x_{i}, \ldots, x_{j}\right) . x^{n}$ or $[x]^{n}$ denotes $\left(x_{1}, \ldots, x_{n}\right)$. Similarly if S_{1}, \ldots, S_{n} are finite sets and $\left(x_{1}, \ldots, x_{n}\right) \in S_{1}^{\infty} \times \cdots \times S_{n}^{\infty}$, then $\left(x_{1}, \ldots, x_{n}\right)_{i}^{j}$ denotes $\left(\left[x_{1}\right]_{i}^{j}, \ldots,\left[x_{n}\right]_{i}^{j}\right)$ and $\left(x_{1}, \ldots, x_{n}\right)^{N}$ denotes $\left(\left[x_{1}\right]^{N}, \ldots,\left[x_{n}\right]^{N}\right)$. By a finite state process X (with state space S), we mean that for some measurable space Ω and finite set S, X is a measurable map from $\Omega \rightarrow S^{\infty}$. For each $i \in Z, X_{i}$ denotes the map from $\Omega \rightarrow S$ such that $X_{i}(\omega)=X(\omega)_{i}, \omega \in \Omega . X_{i}^{j}$ or $[X]_{i}^{j}$ denotes the random vector $\left(X_{i}, \ldots, X_{j}\right) . X^{n}$ or $[X]^{n}$ denotes $\left(X_{1}, \ldots, X_{n}\right)$. If $X^{(1)}, \ldots, X^{(n)}$ are finite-state processes, $\left(X^{(1)}, \ldots, X^{(n)}\right)_{i}^{j}$ denotes $\left(\left[X^{(1)}\right]_{i}^{j}, \ldots,\left[X^{(n)}\right]_{i}^{j}\right)$ and $\left(X^{(1)}, \ldots, X^{(n)}\right)^{N}$ denotes $\left(\left[X^{(1)}\right]^{N}, \ldots,\left[X^{(n)}\right]^{N}\right)$.

If X, Y are random variables, $H(X)$ and $H(X \mid Y)$ denote entropy and conditional entropy, respectively. If X is a finite-state N-stationary process for some $N=1,2, \ldots, \bar{H}(X)$ denotes the entropy of the process:

$$
\bar{H}(X)=\lim _{n \rightarrow \infty} n^{-1} H\left(X_{1}, \ldots, X_{n}\right)
$$

If (X, Y) are jointly N-stationary, $\bar{H}(X \mid Y)$ denotes the conditional entropy

$$
\bar{H}(X \mid Y)=\lim _{n \rightarrow \infty} n^{-1} H\left(X_{1}, \ldots, X_{n} \mid Y_{1}, \ldots, Y_{n}\right)
$$

We write $\bar{H}_{P}(X), \bar{H}_{P}(X \mid Y)$ when it is necessary to emphasize the underlying probability measure P.

If A is a finite set, $T_{A}: A^{\infty} \rightarrow A^{\infty}$ denotes the shift transformation. If A_{1}, \ldots, A_{n} are finite sets, $T_{A_{1}, \ldots, A_{n}}: A_{1}{ }^{\infty} \times \cdots \times A_{n}{ }^{\infty} \rightarrow A_{1}{ }^{\infty} \times \cdots \times A_{n}{ }^{\infty}$ denotes the transformation

$$
T_{A_{1}, \ldots, A_{n}}\left(x_{1}, \ldots, x_{n}\right) \equiv\left(T_{A_{1}} x_{1}, \ldots, T_{A_{n}} x_{n}\right)
$$

If A_{1}, \ldots, A_{n} are finite sets let $\mathscr{E}\left(A_{1}, \ldots, A_{n}\right)$ denote the set of all probability measures on $\mathscr{O}_{1}{ }^{\infty} \times \cdots \times \mathscr{C l}_{n}{ }^{\infty}$ stationary and ergodic with respect to $T_{A_{1}, \ldots, A_{n}}$. We make $\mathscr{E}\left(A_{1}, \ldots, A_{n}\right)$ a measurable space by adjoining the smallest σ-field of subsets of $\mathscr{E}\left(A_{1}, \ldots, A_{n}\right)$ such that for each $E \in C_{1}^{\infty} \times \cdots \times Z_{n}{ }^{\infty}$, the map $P \rightarrow P(E)$ from $\mathscr{E}\left(A_{1}, \ldots, A_{n}\right) \rightarrow[0,1]$ is measurable.

If (Λ, \mathscr{M}) and (Ω, \mathscr{F}) are two measurable spaces, we call a family $\left\{P_{\theta}: \theta \in \Lambda\right\}$ of probability measures on \mathscr{F} measurable if for each $E \in \mathscr{F}$, the map $\theta \rightarrow P_{\theta}(E)$ from $A \rightarrow[0,1]$ is \mathscr{M}-measurable.

Codes. If A_{1}, \ldots, A_{n} and B_{1}, \ldots, B_{n} are finite sets, $\varphi: A_{1}{ }^{\infty} \times \cdots \times A_{n}{ }^{\infty} \rightarrow$ $B_{1}{ }^{\infty} \times \cdots \times B_{n}{ }^{\infty}$ is called a block code of order N if there exists $\varphi^{\prime}: A_{1}{ }^{N} \times \cdots \times$ $A_{n}{ }^{N} \rightarrow B_{1}{ }^{N} \times \cdots \times B_{n}{ }^{N}$ such that

$$
\varphi\left(x_{1}, \ldots, x_{n}\right)_{i N+1}^{i N+N} \equiv \varphi^{\prime}\left[\left(x_{1}, \ldots, x_{n}\right)_{i N+1}^{i N+N}\right], \quad i \in Z
$$

If $\varphi: A^{\infty} \rightarrow B^{\infty}$ is a block code of order N, the rate $r(\varphi)$ of φ is defined to be $N^{-1} \log \left|\left\{\varphi(x)_{1}^{N}: x \in A^{\infty}\right\}\right|$, where if S is a finite set, $|S|$ denotes the cardinality of S. (All logarithms in this paper are to base 2.)

A map $\psi: A_{1}{ }^{\infty} \times \cdots \times A_{n}{ }^{\infty} \rightarrow B_{1}{ }^{\infty} \times \cdots \times B_{n}{ }^{\infty}$ is called a stationary code if $\psi\left(T_{A_{1}, \ldots, A_{n}}\left(x_{1}, \ldots, x_{n}\right)\right) \equiv T_{B_{1}, \ldots, B_{n}} \psi\left(x_{1}, \ldots, x_{n}\right)$. It is called a sliding-block code if it is stationary and for some $M, \psi\left(x_{1}, \ldots, x_{n}\right)=\psi\left(y_{1}, \ldots, y_{n}\right)$ if $\left(x_{1}, \ldots, x_{n}\right)_{-M}^{M}=$ $\left(y_{1}, \ldots, y_{n}\right)_{-M}^{M}$. The rate $r(\psi)$ of a sliding-block code $\psi: A^{\infty} \rightarrow B^{\infty}$ is

$$
\lim _{N \rightarrow \infty} N^{-1} \log \left|\left\{\psi(x)_{1}^{N}: x \in A^{\infty}\right\}\right| .
$$

Let $\{0,1\}^{*}$ be the set of all finite sequences of zeroes and ones. If A is a finite set a map $\tau: A \rightarrow\{0,1\}^{*}$ is called a noiseless variable-length code if τ is one-toone and $\tau(A)$ satisfies the prefix condition.

Multiterminal sources. Let n be a positive integer. By a n-parameter multiterminal source we mean a pair $\left[\left(X^{(1)}, \ldots, X^{(n)}\right), P\right]$, where the $X^{(i)}$ are finite state processes defined on a common measurable space (Ω, \mathscr{F}) and P is a probability measure on \mathscr{F}. If the processes $\left\{X^{(i)}\right\}$ are jointly stationary (ergodic) with respect to $P\left[\left(X^{(1)}, \ldots, X^{(n)}\right), P\right]$ is called a stationary (ergodic) source.

Let E^{n} be the set of all n-tuples of real numbers. If $\left[\left(X^{(1)}, \ldots, X^{(n)}\right), P\right]$ is a multiterminal source and the $\left\{X^{(i)}\right\}$ are jointly N-stationary with respect to P for some N, define $\mathscr{R}\left[\left(X^{(1)}, \ldots, X^{(n)}\right), P\right]$ to be the set of all $R=\left(R_{1}, \ldots, R_{n}\right) \in E^{n}$ such that

$$
\bar{H}\left(\left(X^{(j)}: j \in S\right) \mid\left(X^{(j)}: j \not \ddagger S\right)\right) \leqslant \sum_{j \in S} R_{j},
$$

for every nonempty subset S of $\{1,2, \ldots, n\}$. (In the preceding, if each $X^{(i)}$ has state space A_{i}, we interpret a variable $\left(X^{(j)}: j \in T\right)$ as a process with state space $\prod_{j \in T} A_{j}$ rather than its customary interpretation as a function with values in the space $\prod_{j \in T} A_{j}{ }^{\infty}$. We also interpret $\bar{H}\left(\left(X^{(j)}: j \in T\right)\left(X^{(j)}: j \notin T\right)\right)$ to be $\bar{H}\left(\left(X^{(j)}: j \in T\right)\right)$ if there exists no $j \notin T$.) We note that if $\left[\left(X^{(1)}, \ldots, X^{(n)}\right), P\right]$ is stationary and ergodic then $\mathscr{R}\left[\left(X^{(1)}, \ldots, X^{(n)}\right), P\right]$ is the rate region for noiseless coding of that source (Cover, 1975).

Fixed and variable rate specifications. Let $X^{(1)}, \ldots, X^{(n)}$ be processes on (Ω, \mathscr{F}) with state spaces A_{1}, \ldots, A_{n}, respectively. Let $\left\{P_{\theta}: \theta \in \Lambda\right\}$ be a family of probability measures on \mathscr{F}. We suppose $\left[\left(X^{(1)}, \ldots, X^{(n)}\right), P_{\theta}\right]$ is a stationary, ergodic source, $\theta \in A$. We say that $\{R(\theta): \theta \in \Lambda\} \subset E^{n}$ is a variable-rate specification for the family of sources $\left\{\left[\left(X^{(1)}, \ldots, X^{(n)}\right), P_{\theta}\right]: \theta \in \Lambda\right\}$ if for each i there is a bounded measurable map $F_{i}: \mathscr{E}\left(A_{i}\right) \rightarrow[0, \infty]$ such that
$R_{i}(\theta)=F_{i}\left(P_{\theta}^{X^{(i)}}\right), i=1, \ldots, n ; \theta \in \Lambda$,
(b) $R(\theta) \in \mathscr{R}\left[\left(X^{(1)}, \ldots, X^{(n)}\right), P_{\theta}\right], \theta \in \Lambda$.

We say $R \in E^{n}$ is a fixed-rate specification for the family $\left\{\left[\left(X^{(1)}, \ldots, X^{(n)}\right)\right.\right.$, P_{θ}]: $\left.\theta \in \Lambda\right\}$ if

$$
R \in \mathscr{R}\left[\left(X^{(1)}, \ldots, X^{(n)}\right), P_{\theta}\right], \theta \in \Lambda
$$

Weighted universal coding. We state here the main results, to be proved in subsequent sections. The results are weighted universal coling theorems for noiseless coding of a family of ergodic multiterminal sources. In particular, they imply the coding theorem of Cover (1975) for a single multiterminal stationary, ergodic source, which was an extension of a result of Slepian and Wolf (1973). As a simple corollary to these theorems, which we leave to the reader, one can delineate the rate regions in E^{n} for noiseless coding of a stationary perhaps non-ergodic source with respect to each of the following four types of coding: fixed-rate block coding, variable-rate block-coding, fixed-rate slidingblock coding, variable-rate sliding-block coding. The rate region for fixed-rate block coding will coincide with the rate region for fixed-rate sliding-block coding. Also the rate region for variable rate block coding will coincide with the rate region for variable-rate sliding-block coding. The fixed-rate region is a subset of the variable-rate region, and may be a proper subset, unless the stationary source is ergodic, in which case the regions coincide.

The following notation is used in the statement of the theorems to follow. $(\Lambda, \mathscr{M}, \lambda)$ is a probability space and (Ω, \mathscr{F}) is a measurable space. $\left\{P_{\theta}: \theta \in \Lambda\right\}$ is a measurable family of probability measures on $\mathscr{F} . X^{(1)}, \ldots, X^{(n)}$ are finite-state processes defined on Ω with state spaces A_{1}, \ldots, A_{n}, respectively. For each $\theta \in \Lambda$, we assume the multiterminal source $\left[\left(X^{(1)}, \ldots, X^{(n)}\right), P_{\theta}\right]$ is stationary and ergodic.

Theorem 1. Let $\{R(\theta): \theta \in A\} \subset E^{n}$ be a variable-rate specification for the
family of stationary, ergodic multiterminal sources $\left\{\left[\left(X^{(1)}, \ldots, X^{(n)}\right), P_{\theta}\right]: \theta \in \Lambda\right\}$. Then, given $\epsilon>0$, there exists a positive integer N, block codes $\varphi_{i}: A_{i}{ }^{\infty} \rightarrow A_{i}{ }^{\infty}$ $(i=1, \ldots, n)$ of order N, a block code $\delta: A_{1}{ }^{\infty} \times \cdots \times A_{n}{ }^{\infty} \rightarrow A_{1}{ }^{\infty} \times \cdots \times A_{n}{ }^{\infty}$ of order N, noiseless variable-length codes $\tau_{i}: A_{i}{ }^{N} \rightarrow\{0,1\}^{*}(i=1, \ldots, n)$, and a set $W \subset \Lambda$ with $\lambda(W)>1-\epsilon$ such that for each $\theta \in W$,
(a) $P_{\theta}\left[\left(X^{(1)}, \ldots, X^{(n)}\right)^{N} \neq \delta\left(\varphi_{1}\left(X^{(1)}\right), \ldots, \varphi_{n}\left(X^{(n)}\right)\right)^{N}\right]<\epsilon$.
(b) $N^{-1} E_{P_{\theta}} \ell\left[\tau_{i}\left(\varphi_{i}\left(X^{(i)}\right)^{N}\right)\right] \leqslant R_{i}(\theta)+\epsilon, \quad i=1, \ldots, n$.
(Note. In the preceding, ℓ denotes length, and $E_{P_{\theta}}$ denotes expectation with respect to P_{θ}.)

Theorem 2. Let $R \in E^{n}$ be a fixed-rate specification for the family of stationary, ergodic sources $\left\{\left[\left(X^{(1)}, \ldots, X^{(n)}\right), P_{\theta}\right]\right\}$. Then given $\in>0$, there exists a positive integer N, block codes $\varphi_{i}: A_{i}^{\infty} \rightarrow A_{i}^{\infty}(i=1, \ldots, n)$ of order N, a block code $\delta: A_{1}^{\infty} \times \cdots \times A_{n}{ }^{\infty} \rightarrow A_{1}{ }^{\infty} \times \cdots \times A_{n}{ }^{\infty}$ of order N, and a set $W \subset \Lambda$ with $\lambda(W)>1-\epsilon$ such that
(a) $r\left(\varphi_{i}\right)<R_{i}+\epsilon, i=1, \ldots, n$.
(b) $P_{\theta}\left[\left(X^{(1)}, \ldots, X^{(n)}\right)^{N} \neq \delta\left(\varphi_{1}\left(X^{(1)}\right), \ldots, \varphi_{n}\left(X^{(n)}\right)\right)^{N}\right]<\epsilon, \theta \in W$.

Theorem 3. Let $\{R(\theta): \theta \in \Lambda\}$ be a variable-rate specification for the family of stationary, ergodic sources $\left\{\left[\left(X^{(1)}, \ldots, X^{(n)}\right), P_{\theta}\right]\right\}$. Then, given $\epsilon>0$, there exist sliding-block codes $\psi_{i}: A_{i}^{\infty} \rightarrow A_{i}^{\infty}(i=1, \ldots, n)$, a sliding-block code $\delta: A_{1}{ }^{\infty} \times$ $\cdots \times A_{n}{ }^{\infty} \rightarrow A_{1}{ }^{\infty} \times \cdots \times A_{n}{ }^{\infty}$, noiseless variable-length codes $\tau_{i}: A_{i}{ }^{M} \rightarrow\{0,1\}^{*}$ $(i=1, \ldots, n)$ for some M, and a set $W \subset A$ with $\lambda(W)>1-\epsilon$ such that for each $\theta \in W$
(a) $P_{\theta}\left[\left(X^{(1)}, \ldots, X^{(n)}\right)_{0} \neq \delta\left(\psi_{1}\left(X^{(1)}\right), \ldots, \psi_{n}\left(X^{(n)}\right)\right)_{0}\right]<\epsilon$.
(b) $M^{-1} E_{P_{\theta}} \ell\left[\tau_{i}\left(\psi_{i}\left(X^{(i)}\right)^{M}\right)\right] \leqslant R_{i}(\theta)+\epsilon, i=1, \ldots, n$.

Theorem 4. Let R be a fixed-rate specification for the stationary, ergodic sources $\left\{\left[\left(X^{(1)}, \ldots, X^{(n)}\right), P_{\theta}\right]\right\}$. Given $\epsilon>0$, there exist sliding-block codes $\psi_{i}: A_{i}^{\infty} \rightarrow$ $A_{i}^{\infty}(i=1, \ldots, n)$, a sliding-block code $\delta: A_{1}{ }^{\infty} \times \cdots \times A_{n}{ }^{\infty} \rightarrow A_{1}{ }^{\infty} \times \cdots \times A_{n}{ }^{\infty}$, and a set $W \subset A w$ th $\lambda(W)>1-\epsilon$ such that
(a) $r\left(\psi_{i}\right)<R_{i}+\epsilon, i=1, \ldots, n$.
(b) $P_{\theta}\left[\left(X^{(1)}, \ldots, X^{(n)}\right)_{0} \neq \delta\left(\psi_{1}\left(X^{(1)}\right), \ldots, \psi_{n}\left(X^{(n)}\right)\right)_{0}\right]<\epsilon, \theta \in W$.

III. Building a Good Block Code

If X is a discrete random variable on a probability space (Ω, \mathscr{F}, P), let $P(X)$ denote the function from Ω to $[0,1]$ such that

$$
P(X)(\omega)=P[X=X(\omega)], \quad \omega \in \Omega
$$

If Y is another discrete random variable, let $P(X \mid Y)$ denote the function

$$
\begin{aligned}
P(X \mid Y) & =P(X, Y) / P(Y), & & P(Y)>0 \\
& =0 & & \text { elsewhere } .
\end{aligned}
$$

The following coding lemma allows us to give an easy proof of Theorems 1 and 2. The proof uses a type of random coding argument due to Cover (1975).

Lemma 1. Let A_{1}, \ldots, A_{n} be finite sets. Let $X_{i}(i=1, \ldots, n)$ be the projection of $A_{1} \times \cdots \times A_{n}$ onto A_{i}. For each i, let a map $f_{i}: A_{i} \rightarrow[0, \infty)$ be given. Let P be a probability measure on $A_{1} \times \cdots \times A_{n}$. Given $c>0$, there exist maps $\varphi_{i}: A_{i} \rightarrow A_{i}(i=1, \ldots, n)$, a map $\delta: A_{1} \times \cdots \times A_{n} \rightarrow A_{1} \times \cdots \times A_{n}$, and noiseless variable-length codes $\tau_{i}: A_{i} \rightarrow\{0,1\}^{*}(i=1, \ldots, n)$ such that
(a) $P\left[\left(X_{1}, \ldots, X_{n}\right) \neq \delta\left(\varphi_{1}\left(X_{1}\right), \ldots, \varphi_{n}\left(X_{n}\right)\right)\right] \leqslant 2^{n-c}$

$$
+\sum_{\substack{S \subset\{1, \ldots, n\} \\ S \neq \varnothing}} P\left[P\left(\left(X_{j}: j \in S\right) \mid\left(X_{j}: j \notin S\right)\right)<\prod_{j \in S} 2^{-f_{j}\left(X_{j}\right)}\right]
$$

(b) $\ell\left[\tau_{i}\left(\varphi_{i}\left(X_{i}\right)\right)\right] \leqslant \log \left|f_{i}\left(A_{i}\right)\right|+f_{i}\left(X_{i}\right)+c+1, i=1, \ldots, n$;
(c) $\log \left|\varphi_{i}\left(A_{i}\right)\right| \leqslant \log \left|f_{i}\left(A_{i}\right)\right|+\max f_{i}\left(A_{i}\right)+c+1, i=1, \ldots, n$.
(Note. In (a), by $P\left(\left(X_{i}: j \in S\right) \mid\left(X_{j}: j \notin S\right)\right)$ we mean the function $P\left(\left(X_{j}: j \in S\right)\right)$ if $S=\{1, \ldots, n\}$.)

Proof. If S is a finite set, we will call a map $\sigma: S \rightarrow\{1,2, \ldots\}$ a length function if $\sum_{y \in S} 2^{-\sigma(y)} \leqslant 1$. From Gallager (1968, Chapter 3), if $\tau: S \rightarrow\{0,1\}^{*}$ is a noiseless variable-length code then the formula $\sigma(y)=\ell[\tau(y)]$ defines a length function on S; conversely, given a length function σ on S, there is a noiseless variable-length code $\tau: S \rightarrow\{0,1\}^{*}$ such that $\sigma(y)=\ell[\tau(y)], y \in S$. Thus, to prove Lemma 1, all we need to find are maps $\varphi_{i}: A_{i} \rightarrow A_{i}(i=1, \ldots, n)$, a map $\delta: A_{1} \times \cdots \times A_{n} \rightarrow A_{1} \times \cdots \times A_{n}$, and length functions $\sigma_{i}: A_{i} \rightarrow\{1,2, \ldots\}$ ($i=1, \ldots, n$) such that (a), (c) hold and

$$
\left(\mathrm{b}^{\prime}\right) \sigma_{i}\left(\varphi_{i}\left(X_{i}\right)\right) \leqslant \log \left|f_{i}\left(A_{i}\right)\right|+f_{i}\left(X_{i}\right)+c+1, \quad i=1, \ldots, n
$$

Let $C_{i}=f_{i}\left(A_{i}\right), i=1, \ldots, n$. Let $T=\left\{(i, x, y): i=1, \ldots, n ; x \in A_{i} ; y \in C_{i}\right\}$. Let $D_{i, x, y}=\left\{1, \ldots,\left\lceil 2^{y+c}\right\rceil\right\},(i, x, y) \in T$. (If r is a real number, $[r\rceil$ denotes the smallest integer $\geqslant r$.) Let $D=\prod_{(i, x, y) \in T} D_{i, x, y}$. For each i, let $B_{i}=\bigcup_{y \in C_{i}}\left\{1, \ldots,\left\lceil 2^{y+c}\right\rceil\right\} \times$ $\{y\}$. For each $i=1, \ldots, n$, and $z=\left(z_{j, x, y}:(j, x, y) \in T\right) \in D$, let $\varphi_{i}^{z}: A_{i} \rightarrow B_{i}$ be the map

$$
\varphi_{i}^{z}(x)=\left(z_{i, x, f_{i}(x)}, f_{i}(x)\right), \quad x \in A_{i}
$$

Let $\sigma_{i}: B_{i} \rightarrow\{1,2, \ldots\}$ be the length function such that

$$
\sigma(k, y)=\log \left|C_{i}\right|+\lceil y+c\rceil, \quad(k, y) \in B_{i}
$$

Let E be the subset of $A_{1} \times \cdots \times A_{n}$ such that

$$
E=\bigcap_{\substack{s \subset\{1, \ldots, n\} \\ S \neq \emptyset}}\left\{P\left(\left(X_{j}: j \in S\right) \mid\left(X_{j}: j \notin S\right)\right) \geqslant \prod_{j \in S} 2^{-f_{j}\left(X_{j}\right)}\right\}
$$

For each $z \in D$, let $\delta_{z}: B_{1} \times \cdots \times B_{n} \rightarrow A_{1} \times \cdots \times A_{n}$ be a map such that if $\left(k_{1}, y_{1}\right) \in B_{1}, \ldots,\left(k_{n}, y_{n}\right) \in B_{n}$ then $\delta_{z}\left(\left(k_{1}, y_{1}\right), \ldots,\left(k_{n}, y_{n}\right)\right)=\left(x_{1}, \ldots, x_{n}\right)$ if (x_{1}, \ldots, x_{n}) is the only element of E such that
(d) $f_{i}\left(x_{i}\right)=y_{i}, \quad i=1, \ldots, n$,
(e) $z_{i, x_{i}, y_{i}}=k_{i}, \quad i=1, \ldots, n$.

On some probability space $(\Omega, \mathscr{F}, \lambda)$ we may define random variables $X_{1}^{\prime}, \ldots, X_{n}^{\prime}$, $\left\{Z_{i, x, y}:(i, x, y) \in T\right\}$ such that
(f) each X_{i}^{\prime} is A_{i}-valued and the distribution of $\left(X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right)$ is P;
(g) for each $(i, x, y) \in T, Z_{i, x, y}$ is uniformly distributed over $\left\{1, \ldots,\left\lceil 2^{y+c}\right\rceil\right\}$;
(h) $\left\{Z_{i, x, y}:(i, x, y) \in T\right\}$ are independent;
(i) $\left(X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right)$ and the D-valued random variable $Z=\left(Z_{i, x, y}:(i, x, y) \in T\right)$ are independent.

Let Q denote the quantity on the right-hand side of the inequality in (a). If we can show that
(j) $\quad \lambda\left[\left(X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right) \neq \delta_{Z}\left(\varphi_{1}{ }^{z}\left(X_{1}^{\prime}\right), \ldots, \varphi_{n}{ }^{z}\left(X_{n}^{\prime}\right)\right)\right] \leqslant Q$,
then because of (i), we will have for some $z \in D$ that
(k) $P\left[\left(X_{1}, \ldots, X_{n}\right) \neq \delta_{z}\left(\varphi_{1}{ }^{z}\left(X_{1}\right), \ldots, \varphi_{n}{ }^{z}\left(X_{n}\right)\right)\right] \leqslant Q$.

We now try to derive (j). The left-hand side of (j) is no bigger than
(1) $P\left[\left(X_{1}, \ldots, X_{n}\right) \notin E\right]+\sum_{\left(y_{1}, \ldots, y_{n}\right) \in C_{1} \times \cdots \times C_{n}} \lambda\left[f_{i}\left(X_{i}^{\prime}\right)=y_{i} \quad(i=1, \ldots, n)\right.$,
and there exists in E a $\left(x_{1}, \ldots, x_{n}\right) \neq\left(X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right)$ such that

$$
\left.f_{i}\left(x_{i}\right)=y_{i} \text { and } Z_{i, x_{i}, y_{i}}=Z_{i, X_{i}^{\prime}, y_{i}} \text { for all } i\right]
$$

For each $\left(y_{1}, \ldots, y_{n}\right) \in C_{1} \times \cdots \times C_{n}$, the summand in (1) is no bigger than

$$
\text { (m) } \sum_{x^{\prime}} P\left(x^{\prime}\right) \sum_{S} \sum_{x \in E_{S}} \lambda\left[Z_{j, x_{j}, y_{j}}=Z_{j, x_{i}^{\prime}, y_{j}}, j \in S\right]
$$

where the outermost sum is over all $x^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \in A_{1} \times \cdots \times A_{n}$ such that $P\left(x^{\prime}\right)>0$ and $f_{i}\left(x_{i}^{\prime}\right)=y_{i}$ for all i, the middle sum is over all nonempty subsets
S of $\{1, \ldots, n\}$, and in the innermost sum E_{S} represents the set of all $x \in \prod_{j \in S} A_{j}$ such that $x_{j} \neq x_{j}^{\prime}, j \in S$, and

$$
P\left[\left(X_{j}: j \in S\right)=x \mid X_{j}=x_{j}^{\prime}, j \notin S\right] \geqslant \prod_{j \in S} 2^{-y_{j}}
$$

(The middle sum arises by observing that if $x, x^{\prime} \in A_{1} \times \cdots \times A_{n}$ and $x \neq x^{\prime}$ then for some nonempty $S \subset\{1, \ldots, n\}$, we have $x_{j} \neq x_{j}^{\prime}$ if and only if $j \in S$.) Now

$$
\lambda\left[Z_{j, x_{j}, y_{j}}=Z_{j, x_{j}^{\prime}, y_{j}}, j \in S\right]=\left(\prod_{j \in S}\left[2^{y_{j}+c}\right\rceil\right)^{-1}
$$

since all the variables involved are independent and $x_{j} \neq x_{j}^{\prime}, j \in S$. Calculating the innermost sum in (m) we get $\left.\mid E_{S}\right\rfloor\left(\prod_{j \epsilon S}\left\lceil 2^{y_{j}+c}\right\rceil\right)^{-1}$. Since each $x \in E_{S}$ has a probability lower bounded by $\prod_{j \in S} 2^{-y_{j}}$, we must have $\left|E_{S}\right| \leqslant \prod_{j \in S} 2^{y_{j}}$. We can now observe that (j) will follow. Thus we may fix $z \in D$ such that (k) holds. Setting $\varphi_{i}=\varphi_{i}{ }^{z}$ and $\delta=\delta_{z}$, we get (a), (c), (b'). Since for each $i,\left|\varphi_{i}\left(A_{i}\right)\right| \leqslant$ $\left|A_{i}\right|$, we can assume $B_{i}=A_{i}, i=1, \ldots, n$.

Proof of Theorems 1 and 2. As shown in the proof of Theorem 4 of Kieffer (1980a), we can assume without loss of generality that $\Lambda=\Omega=A_{1}{ }^{\infty} \times \cdots \times$ $A_{n}{ }^{\infty}$, that each $X^{(i)}$ is the projection from $A_{1}{ }^{\infty} \times \cdots \times A_{n}{ }^{\infty} \rightarrow A_{i}{ }^{\infty}$, and that the measures $\left\{P_{\theta}: \theta \in \Omega\right\}$ are the ergodic components of the measure λ. More precisely, we assume each $P_{\theta} \in \mathscr{E}\left(A_{1}, \ldots, A_{n}\right)$ and that
(a) $P_{\theta}(E)=\lim _{k \rightarrow \infty} k^{-1} \sum_{i=0}^{k-1} I_{E}\left(T_{A_{1}, \ldots, A_{n}}^{i} \theta\right)$, for λ-almost all $\theta \in \Omega$, where I_{E} denotes the indicator function of the set $E \in Q_{1}^{\infty} \times \cdots \times Q_{n}^{\infty}$,
(b) $P\left\{\theta: P_{\theta}=P\right\}=1, P \in \mathscr{E}\left(A_{1}, \ldots, A_{n}\right)$,
(c) $\lambda(E)=\int_{\Omega} P_{\theta}(E) d \lambda(\theta), E \in O t_{1}{ }^{\infty} \times \cdots \times O l_{n}{ }^{\infty}$.

Let $\{R(\theta): \theta \in \Omega\}$ be a variable-rate specification. For each $i=1, \ldots, n$, let $R_{i}: \Omega \rightarrow[0, \infty)$ be the function such that $R_{i}(\theta)$ is the i th component of $R(\theta)$, $\theta \in \Omega$. Now $R_{i}(\theta)$ depends on θ through $P_{\theta}^{X^{(i)}}$, and by (a), $P_{\theta}^{X^{(i)}}$ depends on θ through $X^{(i)}(\theta)$. Hence, given $\delta>0$, there is a finite set $C_{i} \subset[0, \infty)$ and for each N a function $F_{i}^{N}: A_{i}^{N} \rightarrow C_{i}$ such that the functions $\left\{F_{i}^{N}\left(\left[X^{(i)}\right]^{N}\right)\right\}$ converge almost surely with respect to λ as $N \rightarrow \infty$, and

$$
\begin{equation*}
R_{i}+\delta \leqslant \lim _{N \rightarrow \infty} F_{i}^{N}\left(\left[X^{(i)}\right]^{N}\right) \leqslant R_{i}+2 \delta \quad \text { a.s. }[\lambda] . \tag{3.1}
\end{equation*}
$$

By a result of Parthasarathy (1963), if S is a nonempty subset of $\{1, \ldots, n\}$, for λ-almost all θ

$$
\begin{aligned}
\lim _{N \rightarrow \infty} & -N^{-1} \log \lambda\left(\left(\left[X^{(j)}\right]^{N}: j \in S\right) \mid\left(\left[X^{(j)}\right]^{N}: j \notin S\right)\right)(\theta) \\
& =\bar{H}_{P_{\theta}}\left(\left(X^{(j)}: j \in S\right) \mid\left(X^{(j)}: j \notin S\right)\right) \leqslant \sum_{j \in S} R_{j}(\theta)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \lambda\left[\lambda\left(\left(\left[X^{(j)}\right]^{N}: j \in S\right) \mid\left(\left[X^{(j)}\right]^{N}: j \notin S\right)\right)<\prod_{j \in S} 2^{-N F_{j}^{N}\left(\left[X^{(j)}\right]^{N}\right)}\right]=0 \tag{3.2}
\end{equation*}
$$

Applying Lemma 1, for N sufficiently large there exist block codes $\varphi_{i}: A_{i}^{\infty} \rightarrow A_{i}^{\infty}$ $(i=1, \ldots, N)$ of order N, a block code $\delta: A_{1}^{\infty} \times \cdots \times A_{n}{ }^{\infty} \rightarrow A_{1}{ }^{\infty} \times \cdots \times A_{n}{ }^{\infty}$ of order N, and noiseless variable-length codes $\tau_{i}: A_{i}^{N} \rightarrow\{0,1\}^{*}$ such that
(d) $N^{-1} \ell\left[\tau_{i}\left(\varphi_{i}\left(X^{(i)}\right)^{N}\right)\right] \leqslant \delta+F_{i}^{N}\left(\left[X^{(i)}\right]^{N}\right)$,
(e) $\lambda\left[\left(X^{(1)}, \ldots, X^{(n)}\right)^{N} \neq \delta\left(\varphi_{1}\left(X^{(1)}\right), \ldots, \varphi_{n}\left(X^{(n)}\right)\right)^{N}\right] \rightarrow 0$.

From (3.1) and (d), we obtain
(f) $\lim \sup _{N \rightarrow \infty} N^{-1} \ell\left[\tau_{i}\left(\varphi_{i}\left(X^{(i)}\right)^{N}\right)\right] \leqslant 3 \delta+R_{i}$ a.s. $[\lambda]$.

Taking a conditional expectation, since $R_{i}=R_{i}(\theta)$ a.s. [P_{θ}], (f), (e) give
(g) $P_{\theta}\left[\lim \sup _{N \rightarrow \infty} N^{-1} \ell\left[\tau_{i}\left(\varphi_{i}\left(X^{(i)}\right)^{N}\right)\right] \leqslant 3 \delta+R_{i}(\theta)\right]=1$, a.s. $[\lambda]$.
(h) $P_{\theta}\left[\left(X^{(1)}, \ldots, X^{(n)}\right)^{N} \neq \delta\left(\varphi_{1}\left(X^{(1)}\right), \ldots, \varphi_{n}\left(X^{(n)}\right)\right)^{N}\right] \rightarrow 0$ stochastically with respect to λ.

Theorem 1 follows from (g), (h) by a simple application of Egoroff's theorem (Ash, 1972, p. 94), provided we take δ to be small enough relative to ϵ. If (R_{1}, \ldots, R_{n}) is a fixed-rate specification, note that (3.2) holds with $F_{j}^{N}\left(\left[X^{(j)}\right]^{N}\right)$ replaced by $R_{j}+\delta$. One now applies part (c) of Lemma 1.

IV. Building a Good Sliding-Block Code

In this section we prove Lemma 2 which will allow us to build a good slidingblock code from a good block code, and thereby enable us to prove Theorems 3 and 4. Before proceeding with the Lemma, we need to introduce some more notation.

Let A_{1}, \ldots, A_{n} be finite sets. For $N=1,2, \ldots$, let $\mathscr{P}_{N}\left(A_{1}, \ldots, A_{n}\right)$ denote the set of all probability measures on ${O_{1}}^{\infty} \times \cdots \times 0_{n}{ }^{\infty}$ stationary with respect to $T_{A_{1}, \ldots, A_{n}}^{\mathrm{N}}$. Let $\mathscr{P}_{\infty}\left(A_{1}, \ldots, A_{n}\right)=\bigcup_{N=1}^{\infty} \mathscr{P}_{N}\left(A_{1}, \ldots, A_{n}\right)$. We define $f: A_{1}^{\infty} \times$ $\cdots \times A_{n}{ }^{\infty} \rightarrow[0, \infty$) to be finite-dimensional (f.d.) if for some positive integer M,

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right) \quad \text { if }\left[x_{i}\right]_{-M}^{M}=\left[y_{i}\right]_{-M}^{M}, \quad i=1, \ldots, n
$$

If $\left\{\mu_{k}: k=1,2, \ldots\right\} \cup\{\mu\} \subset \mathscr{P}_{1}\left(A_{1}, \ldots, A_{n}\right)$ we say $\mu_{k} \rightarrow \mu$ weakly if $E_{\mu_{k}} f \rightarrow E_{\mu} f$ for every f.d. $f: A_{1}{ }^{\infty} \times \cdots \times A_{n}{ }^{\infty} \rightarrow[0, \infty)$. The weak topology on $\mathscr{P}_{1}\left(A_{1}, \ldots\right.$, A_{n}) is the unique metric topology with this convergence (see Parthasarathy, 1967).

Fix finite sets A, B and let $X: A^{\infty} \times B^{\infty} \rightarrow A^{\infty}$ and $Y: A^{\infty} \times B^{\infty} \rightarrow B^{\infty}$ be the maps such that $X(x, y)=x, Y(x, y)=y$.

We call $F: \mathscr{P}_{\infty}(A, B) \rightarrow[0, \infty)$ a nice function if
(a) F is affine on the convex set $\mathscr{P}_{\infty}(A, B)$; that is, if $\mu, \nu \in \mathscr{P}_{\infty}(A, B)$ and $0<\alpha<1$, then $F(\alpha \mu+(1-\alpha) \nu)=\alpha F(\mu)+(1-\alpha) F(\nu)$.
(b) F is uppersemicontinuous on $\mathscr{P}_{1}(A, B)$ relative to the weak topo$\log y$.
(c) If $\mu \in \mathscr{P}_{\infty}(A, B)$ and \hat{Y} is a process with state space B which is a stationary or block coding of H satisfying $\bar{H}_{\mu}(Y \mid \hat{Y})=0$, then $F(\mu)=F\left(\mu^{(X \mid \hat{X})}\right)$.
(d) $F(\mu)=F\left(\mu \cdot T_{A, B}^{-1}\right), \mu \in P_{\infty}(A, B)$.

As an example of a nice function, we cite the map $\mu \rightarrow \bar{H}_{\mu}(X \mid Y)$.
A channel is a triple $[A, \tau, B]$ where A, B are finite sets and $\tau=\left\{\tau_{x}: x \in A^{\infty}\right\}$ is a measurable family of probability measures on B^{∞}.

We call a sequence $x \in A^{\infty}$ periodic if for some $n T_{A}{ }^{n} x=x$. If x is periodic, define the period of x to be the smallest n such that $T_{A}{ }^{n} x=x$.

If S_{1}, S_{2} are subsets of some common set, define $S_{1}-S_{2}=\left\{\omega \in S_{1}: \omega \notin S_{2}\right\}$.
Lemma 2. Let (Ω, \mathscr{F}) be a measurable space. Let $(\Lambda, \mathscr{A}, \lambda)$ be a probability space. Let $\left\{P_{\theta}: \theta \in \Lambda\right\}$ be a measurable family of probability measures on \mathscr{F}. Let C, D be finite sets. Let U, V be processes defined on Ω with state spaces C, D, respectively. We suppose $\{U, V\}$ are jointly stationary and ergodic under each $P_{\theta}, \theta \in A$. Let \mathscr{C} be a finite collection of nice functions from $\mathscr{P}_{\infty}(C, D) \rightarrow[0, \infty]$. Let $\varphi: D^{\infty} \rightarrow D^{\infty}$ and $\delta: C^{\infty} \times D^{\infty} \rightarrow D^{\infty}$ be block codes of order N. Given $\epsilon>0$, there exist sliding-block codes $\hat{\varphi}: D^{\infty} \rightarrow D^{\infty}$ and $\hat{\delta}: C^{\infty} \times D^{\infty} \rightarrow D^{\infty}$, and a subset W of Λ with $\lambda(\Lambda-W)<\epsilon$ such that if $\theta \in W$
(a) $F\left(P_{\theta}^{(U, \varphi(V))}\right) \leqslant F\left(P_{\theta}^{(U, \boldsymbol{\varphi}(V))}\right)+\epsilon, F \in \mathscr{C}$,
(b) $P_{\theta}\left[V_{0} \neq \hat{\delta}(U, \hat{\varphi}(V))_{0}\right] \leqslant P_{\theta}\left[V^{N} \neq \delta(U, \varphi(V))^{N}\right]+\epsilon$.

Proof. By Theorem 3.1 of Gray (1975), it suffices to find stationary codes $\hat{\varphi}, \hat{\delta}$ for which (a), (b) hold. If $r(\varphi)=\log |D|$, then (a), (b) hold with $\hat{\varphi}$ the identity map, $\hat{\delta}(u, y) \equiv y$. So we can assume $r(\varphi)<\log |D|$. From the theory of ergodic processes, given $\theta \in \Lambda$, the process V is either aperiodic under P_{θ} (which means that $P_{\theta}(V=v)=0, v \in D^{\infty}$), or is periodic under V (which means that for some n, there is a periodic $v \in D^{\infty}$ with period n such that $\left.P_{\theta}\left(V=T_{D}{ }^{i} v\right)=n^{-1}, 0 \leqslant i \leqslant n-1\right)$. Let $W_{0}=\{\theta \in A: V$ is aperiodic under $\left.P_{\theta}\right\}, W_{1}=\left\{\theta \in A ; V\right.$ is periodic under $\left.P_{\theta}\right\}$. Choose k a multiple of N and $W_{2} \subset$ W_{1} so that $\lambda\left(W_{1}-W_{2}\right)<\epsilon / 3$ and for every $\theta \in W_{2}$

$$
P_{\theta}(V \text { is periodic with period } \leqslant k)=1
$$

Since $r(\varphi)<\log |D|$, there exists for some multiple L of k a $b \in D^{L}$ such that $b \notin\left\{\varphi(v)^{L}: v \in D^{\infty}\right\}$ and the sequence \tilde{x} in D^{∞} such that $\tilde{x}_{i L+1}^{L+L}=b(i \in Z)$ has
period L. For each multiple j of L such that $j>2 L$, define $\varphi_{j}: D^{\infty} \rightarrow D^{\infty}$ to be the block code of order $j+2 L$ such that

$$
\begin{aligned}
\varphi_{j}(x)_{i+1}^{i+2 L}=(b, b) \quad & \text { if } i \equiv 0 \bmod j+2 L \\
\varphi_{j}(x)_{s} & =\varphi(x)_{s} \quad \text { for all other coordinates } s
\end{aligned}
$$

Define $\delta_{j}: C^{\infty} \times D^{\infty} \rightarrow D^{\infty}$ to be a sliding-block code such that
(c) $\delta_{j}(u, y)=T_{C, D}^{-s} \delta\left(T_{C}{ }^{s} u, T_{D}{ }^{s} y\right)$ if $\left\{i \in Z: y_{i+1}^{i+2 L}=(b, b)\right\}=\{i \in Z: i \equiv s$ $\bmod j+2 L\}$ for some $0 \leqslant s \leqslant j+2 L-1$.
(d) $\delta_{j}(u, y)=y$ if y is periodic with period $\leqslant k$.

Fix $\bar{U}, \bar{V}, \bar{Y}$ to be the processes defined on $C^{\infty} \times D^{\infty} \times D^{\infty}$ with respective state spaces C, D, D such that $\bar{U}(u, v, y)=u, \bar{V}(u, v, y)=v, \bar{Y}(u, v, y)=y$. If P is a probability measure on $C^{\infty} \times D^{\infty}$, and $[D, \nu, D]$ is a channel, let P_{ν} be the probability measure on $C^{\infty} \times D^{\infty} \times D^{\infty}$ such that under $P v, \bar{U}, \bar{V}, \bar{Y}$ form a Markov chain, the distribution of (\bar{U}, \bar{V}) is P, and the distribution of \bar{Y} conditioned on \bar{V} is given by ν. Let $[D, \tau, D],\left[D, \tau_{j}, D\right]$ be the channels such that for each $x \in D^{\infty}, \tau_{x}$ is equidistributed over $\left\{T_{D}^{-i}\left(\varphi\left(T_{D}{ }^{i} x\right)\right): 0 \leqslant i \leqslant N-1\right\}$ and $\left(\tau_{j}\right)_{x}$ is equidistributed over $\left\{T_{D}^{-i}\left(\varphi_{j}\left(T_{D}{ }^{i} x\right)\right): 0 \leqslant i \leqslant j+2 L-1\right\}$. It can be seen that for all $\theta \in \Lambda$,
(e) $P_{\theta} \tau_{j} \rightarrow P_{\theta} \tau$ weakly
(f) $\lim _{j \rightarrow \infty} P_{\theta} \tau_{j}\left[\bar{V}_{0} \neq \delta_{j}(\bar{U}, \bar{Y})_{0}\right] \leqslant P_{\theta}\left[V^{N} \neq \delta(U, \varphi(V))^{N}\right]$.

By (e), for each $\theta \in \Lambda$ and each $F \in \mathscr{C}$,
(g) $\lim \sup _{j \rightarrow \infty} F\left(P_{\theta} \tau_{j}^{(\bar{U}, \bar{Y})}\right) \leqslant F\left(P_{\theta} \tau^{(\bar{U}, \bar{Y})}\right)=F\left(P_{\theta}^{(U, \varphi(V))}\right)$.

Hence by Egoroff's theorem, there is $W_{3} \subset W_{0}$ with $\lambda\left(W_{0}-W_{3}\right)<\epsilon / 3$ and j so large that setting $\tau=\tau_{j}, \hat{\delta}=\delta_{j}$, we have for $\theta \in W_{3}$ that
(h) $P_{\theta} \hat{\tau}\left[\bar{V}_{0} \neq \hat{\delta}(\bar{U}, \bar{Y})_{0}\right] \leqslant P_{\theta}\left[V^{N} \neq \delta(U, \varphi(V))^{N}\right]+\epsilon / 2$.
(i) $F\left(P_{\theta} \hat{\tau}^{(\bar{U}, \bar{Y})}\right) \leqslant F\left(P_{\theta}^{(U, \varphi(V))}\right)+\epsilon / 2, F \in \mathscr{C}$.

By Lemma 6 of Kieffer (1980b) and Theorem 2 of Kieffer and Rahe (1981), there is a sequence $\left\{z_{j}\right\}$ of sliding-block codes from $D^{\infty} \rightarrow D^{\infty}$ such that $P_{\theta} \hat{\tau}^{\left(\bar{V}, \psi_{j}(\bar{V})\right)} \rightarrow$ $P_{\theta} \hat{\tau}^{(\bar{V}, \bar{Y})}$ weakly, for every $\theta \in W_{0}$. By Lemma 5 of the Appendix, $P_{\theta}^{\left(U, V, \psi_{j}(V)\right)}=$ $P_{\theta} \hat{\tau}^{\left(\bar{U}, \bar{V}, \psi_{j}(\bar{V})\right.} \rightarrow P_{\theta} \hat{\tau}$, for every $\theta \in W_{0}$. Applying Egoroff's theorem again, we obtain $W_{4} \subset W_{3}$ with $\lambda\left(W_{3}-W_{4}\right)<\epsilon / 3$ and j so large that setting $\psi=\psi_{j}$ we have for every $\theta \in W_{4}$,
(j) $P_{\theta}\left[V_{0} \neq \hat{\delta}(U, \varphi(V))_{0}\right] \leqslant P_{\theta}\left[V^{N} \neq \delta(U, \varphi(V))^{N}\right]+\epsilon$,
(k) $F\left(P_{\theta}^{(U, \psi(V))}\right) \leqslant F\left(P_{\theta}^{(U, \varphi(V))}\right)+\epsilon, F \in \mathscr{C}$.

Define $\hat{\varphi}: D^{\infty} \rightarrow D^{\infty}$ to be the stationary code such that $\hat{\varphi}(x)=x$, if x is periodic; $p=\psi$, otherwise. Set $W=W_{4} \cup W_{2}$.

In the following, let 1 denote the n-vector $(1,1, \ldots, 1)$, and let $h(\alpha)=-\alpha \log \alpha-$ $(1-\alpha) \log (1-\alpha), 0<\alpha \leqslant 1 / 2$.

Lemma 3. Let the notation preceding Theorem 1 prevail. Let $\{R(\theta): \theta \in A\}$ be a variable-rate specification for the family of stationary, ergodic sources $\left\{\left[\left(X^{(1)}, \ldots\right.\right.\right.$, $\left.\left.\left.X^{(n)}\right), P_{\theta}\right]: \theta \in \Lambda\right\}$. Given $\epsilon>0$ there exists a process U with state space A_{1} which is sliding-block coding of $X^{(1)}$, a process $\tilde{X}^{(1)}$ with state space A_{1} which is a slidingblock coding of $\left(U, X^{(2)}, \ldots, X^{(n)}\right)$, and a set $W \subset \Lambda$ with $\lambda(W)>1-\epsilon$ such that:
(a) $\{R(\theta)+\epsilon 1: \theta \in W\}$ is a variable-rate specification for $\left\{\left[\left(U, X^{(2)}, \ldots\right.\right.\right.$, $\left.\left.\left.X^{(n)}\right), P_{\theta}\right]: \theta \in W\right\}$.
(b) $P_{\theta}\left(X_{0}^{(1)} \neq \tilde{X}_{0}^{(1)}\right)<\epsilon, \theta \in W$.
(c) $\bar{H}_{P_{\theta}}(U) \leqslant R_{1}(\theta)+\epsilon, \theta \in W$.

Proof. Let $M=\max _{i} \log \left|A_{i}\right|$. Choose $\alpha>0$ so small that $\alpha+h(\alpha)+M \alpha<$ $\epsilon / 2,2 \alpha<\epsilon, \alpha<1 / 2$. By Theorem 1, there exists a positive integer N, block codes $\varphi_{i}: A_{1}{ }^{\infty} \rightarrow A_{1}{ }^{\infty}$ of order $N(i=1, \ldots, n)$, a block code $f: A_{1}{ }^{\infty} \times \cdots \times$ $A_{n}{ }^{\infty} \rightarrow A_{1}{ }^{\infty} \times \cdots \times A_{n}^{\infty}$ of order N, and a set $W_{1} \subset \Lambda$ with $\lambda\left(W_{1}\right)>1-\epsilon / 2$ such that for $\theta \in W_{1}$,
(d) $P_{\theta}\left[\left(X^{(1)}, \ldots, X^{(n)}\right)^{N} \neq f\left(\varphi_{1}\left(X^{(1)}\right), \ldots, \varphi_{n}\left(X^{(n)}\right)\right)^{N}\right]<\alpha$.
(e) $\bar{H}_{P_{\theta}}\left(\varphi_{i}\left(X^{(i)}\right)\right) \leqslant R_{i}(\theta)+\alpha, i=1, \ldots, n$.

Because of (d), there exists a block code $g: A_{1}{ }^{\infty} \times \cdots \times A_{n}{ }^{\infty} \rightarrow A_{1}{ }^{\infty} \times \cdots \times$ $A_{n}{ }^{\infty}$ of order N such that for all $\theta \in W_{1}$,
(f) $P_{\theta}\left[\left(\varphi_{1}\left(X^{(1)}\right), X^{(2)}, \ldots, X^{(n)}\right)^{N} \neq g\left(\varphi_{1}\left(X^{(1)}\right), \varphi_{2}\left(X^{(2)}\right), \ldots, \varphi_{n}\left(X^{(n)}\right)\right)^{N}\right]<\alpha$. Applying (e), (f) and Lemma 4 of the Appendix, we see that
(g) $R(\theta)+(\epsilon / 2) \mathbf{1} \in \mathscr{R}\left[\left(\varphi_{1}\left(X^{(1)}\right), X^{(2)}, \ldots, X^{(n)}\right), P_{\theta}\right], \theta \in W_{1}$.

Also, because of (d) there exists a block code $h: A_{1}{ }^{\infty} \times \cdots \times A_{n}{ }^{\infty} \rightarrow A_{1}{ }^{\infty} \times$ $\cdots \times A_{n}{ }^{\infty}$ of order N such that
(h) $P_{0}\left[\left(X^{(1)}, \ldots, X^{(n)}\right)^{N} \neq h\left(\varphi_{1}\left(X^{(1)}\right), X^{(2)}, \ldots, X^{(n)}\right)^{N}\right]<\epsilon / 2, \theta \in W_{1}$.

Applying Lemma 2, we see from the statements (e), (g), (h) that there must exist $W \subset W_{1}$ with $\lambda\left(W_{1}-W\right)<\epsilon / 2$, a sliding-block coding U of $X^{(1)}$ and a sliding-block coding $\tilde{X}^{(1)}$ of $\left(U, X^{(2)}, \ldots, X^{(n)}\right)$ such that (a)-(c) hold.

Proof of Theorems 3 and 4. Let $\{R(\theta): \theta \in \Lambda\}$ be a variable-rate specification for the family of multiterminal sources given in Theorem 3. We note that in place of (b) of Theorem 3, we need only show that for $\theta \in W$ we have
($\left.\mathrm{b}^{\prime}\right) \quad \bar{H}_{P_{\theta}}\left(\psi_{i}\left(X^{i}\right)\right) \leqslant R_{i}(\theta)+\epsilon / 2, i=1, \ldots, n$.
For, by a weak universal noiseless coding theorem (Kieffer, 1978, Theorem 1), (b') implies that (b) holds for some M and some noiseless variable-length code
$\tau_{i}: A_{i}{ }^{M} \rightarrow\{0,1\}^{*}$, provided we reduce W by a λ-small amount. To get condition (b^{\prime}) above and condition (a) of Theorem 3 to hold, apply Lemma $3 n$ times. Therefore Theorem 3 follows, and then Theorem 4 follows from Theorem 3. For, if U is a finite-state process ergodic with respect to each P_{θ}, and $\bar{H}_{P_{\theta}}(U)<$ K for each θ, by (Ziv, 1972, Theorem 4) and (Kieffer, 1980a, Theorem 1) there exists for each $\epsilon>0$ a sequence of sliding-block codes $\left\{\varphi_{n}\right\}$ such that $r\left(\varphi_{n}\right)<$ $K+\epsilon$ for all n and for every $\theta, P_{\theta}\left(U_{0} \neq \varphi_{n}(U)_{0}\right) \rightarrow 0$.

Appendix

Lemma 4. Let $X^{(1)}, \ldots, X^{(n)}$ be processes defined on (Ω, \mathscr{F}) with finite state spaces A_{1}, \ldots, A_{n}. Let P be a probability measure on \mathscr{F} with respect to which $\left\{X^{(1)}, \ldots, X^{(n)}\right\}$ are jointly N-stationary. Let $\varphi_{i}: A_{i}^{\infty} \rightarrow A_{i}{ }^{\infty}(i=1, \ldots, n)$ and $\delta: A_{1}{ }^{\infty} \times \cdots \times A_{n}{ }^{\infty} \rightarrow A_{1}{ }^{\infty} \times \cdots \times A_{n}{ }^{\infty}$ be block codes of order N such that

$$
P\left[\left(X^{(1)}, \ldots, X^{(n)}\right)^{N} \neq \delta\left(\varphi_{1}\left(X^{(1)}\right), \ldots, \varphi_{n}\left(X^{(n)}\right)\right)^{N}\right] \leqslant \epsilon \leqslant 1 / 2
$$

Then

$$
R \in \mathscr{R}\left[\left(X^{(1)}, \ldots, X^{(n)}\right), P\right]
$$

where

$$
R_{i}=N^{-1} H\left(\varphi_{i}\left(X^{(i)}\right)^{N}\right)+h(\epsilon)+\epsilon \log \left|A_{i}\right|, \quad i=1, \ldots, n
$$

Proof. Let S be a nonempty subset of $\{1, \ldots, n\}$. Let $U=\left(X^{(j)}: j \notin S\right)$, $V=\left(X^{(j)}: j \in S\right), \quad \hat{V}=\left(\varphi_{j}\left(X^{(j)}\right): j \in S\right), \quad C=\prod_{j \notin S} A_{j}, \quad D=\prod_{j \epsilon S} A_{j}$. We regard U, V, \hat{V} as processes with state space C, D, D, respectively. It is easy to see that there is a block code $\delta^{\prime}: C^{\infty} \times D^{\infty} \rightarrow D^{\infty}$ such that

$$
P\left[V^{N} \neq \delta^{\prime}(U, \hat{V})^{N}\right] \leqslant \epsilon .
$$

By Fano's inequality (Ash, 1965, p. 80)

$$
\begin{aligned}
\bar{H}\left(\left(X^{(j)}: j \in S\right) \mid\left(X^{(j)}: j \notin S\right)\right) & =\bar{H}(V \mid U) \leqslant N^{-1}\left(V^{N} \mid U^{N}\right) \\
& \leqslant N^{-1} H\left(\hat{V}^{N}\right)+N^{-1} H\left(V^{N} \mid \hat{V}^{N}, U^{N}\right) \\
& \leqslant \sum_{j \in S} N^{-1} H\left(\varphi_{j}\left(X^{(j)}\right)^{N}\right)+h(\epsilon)+\epsilon \log |D| \\
& \leqslant \sum_{j \in S} R_{j}
\end{aligned}
$$

Lemma 5. Let U, X, Y be processes defined on the probability space (Ω, \mathscr{F}, P) with state spaces A, B, C, respectively. Suppose that with respect to P these processes are jointly stationary and form a Markov chain (in the indicated order). Let $\left\{\varphi_{n}\right\}$
be a sequence of sliding-block codes from $B^{\infty} \rightarrow C^{\infty}$ such that $P^{\left(X, \varphi_{n}(X)\right.} \rightarrow P^{(X, Y)}$ weakly. Then, $P^{\left(U, X, \varphi_{n}(X)\right)} \rightarrow P^{(U, X, Y)}$ weakly.

Proof. We have to show that

$$
E\left[f(U) g(X) h\left(\varphi_{n}(X)\right)\right] \rightarrow E[f(U) g(X) h(Y)],
$$

for f.d. functions taking their values in [0, 1]. Using the Markov property, we see that

$$
\begin{aligned}
E[f(U) g(X) h(Y)] & =E[E[f(U) \mid X] g(X) h(Y)] \\
E\left[f(U) g(X) h\left(\varphi_{n}(X)\right)\right] & =E\left[E[f(U) \mid X] g(X) h\left(\varphi_{n}(X)\right)\right] .
\end{aligned}
$$

Fix $\epsilon>0$. Find a f.d. function F such that

$$
E[|F(X)-E[f(U) \mid X]|]<\epsilon / 3 .
$$

Then,

$$
\begin{aligned}
& \left|E[f(U) g(X) h(Y)]-E\left[f(U) g(X) h\left(\varphi_{n}(X)\right)\right]\right| \\
& \quad \leqslant\left|E[F(X) g(X) h(Y)]-E\left[F(X) g(X) h\left(\varphi_{n}(X)\right)\right]\right|+2 \epsilon / 3<\epsilon
\end{aligned}
$$

for n sufficiently large.
Received: May 5, 1979; revised: June 19, 1980.

References

Ash, R. B. (1965), "Information Theory," Interscience-Wiley, New York.
Ash, R. B. (1972), "Real Analysis and Probability," Academic Press, New York.
Cover, T. M. (1975), A proof of the data-compression theorem of Slepian and Wolf for ergodic sources, IEEE Trans. Inform. Theory 21, 226-228.
Gallager, R. G. (1968), "Information Theory and Reliable Communication," Wiley," New York.
Gray, R. M. (1975), Sliding-block source coding, IEEE Trans. Inform. Theory 21, 357-368.
Kieffer, J. C. (1978), A unified approach to weak universal source coding, IEEE Trans. Inform. Theory 24, 674-682.
Kieffer, J. C. (1980a), Extension of source coding theorems for block codes to slidingblock codes, IEEE Trans. Inform. Theory, in press.
Kieffer, J. C. (1980b), On the transmission of Bernoulli sources over stationary channels, Annals of Probability, to appear.
Kieffer, J. C., and Rahe, M. (1981), Selecting universal partitions in ergodic theory, Annals of Probability, to appear.
Parthasarathy, K. R. (1963), Effective entropy rate and transmission of information through channels with additive random noise, Sankhya Ser. A 25, 75-84.

Parthasarathy, K. R. (1967), "Probability Measures on Metric Spaces," Academic Press, New York.
Slepian, D., and Wolf, J. (1973), Noiseless coding of correlated information sources, IEEE Trans. Inform. Theory 19, 471-480.
Ziv, J. (1972), Coding of sources with unknown statistics-Part I: Probability of encoding error, IEEE Trans. Inform. Theory 18, 384-389.

[^0]: * Research of author supported by NSF Grants ENG-76 02276 and MCS-78 21335 and by the Joint Services Electronics Program under Contract N00014-79-C-0424.

