INFORMATION AND CONTROL 46, 93-107 (1980)

Some Universal Noiseless Multiterminal Source Coding Theorems

JOHN C. KIEFFER*

Department of Mathematics, University of Missouri-Rolla, Rolla, Missouri 65401

Fixed and variable-rate block and sliding-block weighted universal noiseless coding theorems are obtained which extend the Slepian-Wolf theorem for a single multiterminal source to a family of finite-alphabet, stationary, ergodic multiterminal sources.

I. INTRODUCTION

Suppose we are given a multiterminal source consisting of the finite-state processes $(X^{(1)}, \dots, X^{(n)})$, which we assume to have a stationary and ergodic joint distribution P. Slepian and Wolf (1973) and Cover (1975) determined the rate region $\mathscr{R}(P)$ of all vectors $(R_1, ..., R_n)$ such that each subsource $X^{(i)}$ can be block encoded at rate R_i into a process $\hat{X}^{(i)}$, and then $(X^{(1)},...,X^{(n)})$ can be recovered with almost zero probability of block error by applying some block decoder to $(\hat{X}^{(1)},...,\hat{X}^{(n)})$. Suppose the distribution P is not known precisely, but is known to lie in some family of distributions Λ . Ideally, for a given rate vector $(R_1, ..., R_n)$, one would like to find universal block encoders achieving the rates $(R_1, ..., R_n)$ and a universal block decoder achieving small probability of error for every $P \in \Lambda$. Clearly, a necessary condition on the rate vector so that this is possible is that it lie in $\mathcal{R}(P)$ for every $P \in \Lambda$. This condition is not sufficient unless the family Λ is compact in an appropriate sense. However, in this paper, we will show the condition is sufficient in the weaker sense that weighted universal coders can be found which universally code $(X^{(1)}, ..., X^{(n)})$ for "almost all" distributions in Λ (with respect to some a priori weight distribution on Λ). A variable-rate version of this result is also obtained, where $(R_1, ..., R_n)$ is allowed to depend on $P \in A$. In that case, the rate of the *i*th universal block encoder (as measured by the expected code word length per unit time for a fixed variablelength noiseless coder applied to $\hat{X}^{(i)}$) is desired to be $R_i = R_i(P)$ for almost every $P \in A$. For the variable-rate weighted universal coders to exist, it is necessary to impose the additional requirement that each R_i depend on P only through

^{*} Research of author supported by NSF Grants ENG-76 02276 and MCS-78 21335 and by the Joint Services Electronics Program under Contract N00014-79-C-0424.

the marginal distribution of $X^{(i)}$ under *P*. We then consider the case where sliding-block coders are used instead of block coders. Precise statements of these results are given in the next section.

II. STATEMENT OF MAIN RESULTS

Notation. If $X_1, ..., X_n$ are measurable functions defined on a measurable space Ω and taking their values in the measurable spaces $S_1, ..., S_n$, respectively, $(X_1, ..., X_n)$ denotes the map from $\Omega \to S_1 \times \cdots \times S_n$ such that $(X_1, ..., X_n)(\omega) = (X_1(\omega), ..., X_n(\omega)), \ \omega \in \Omega$.

If (Ω, \mathcal{F}, P) is a probability space, Ω_1 is a measurable space and X is a random variable defined on Ω with values in Ω_1 , P^X denotes the distribution of X; that is, the probability measure on Ω_1 such that

$$P^{X}(E) = P(X \in E), \qquad E ext{ a measurable subset of } \Omega_{1}.$$

Let Z be the set of integers. If a symbol S denotes a finite set, the corresponding script letter \mathscr{S} will denote the set of all subsets of S, and $(S^{\infty}, \mathscr{S}^{\infty})$ will denote the measurable space consisting of S^{∞} , the set of all bilateral sequences $x = (x_i: i \in Z)$ from S and \mathscr{S}^{∞} , the usual product σ -field of subsets of S^{∞} . If $x \in S^{\infty}$ and $i \in Z$, x_i denotes the *i*th coordinate of x and if $j \ge i$, x_i^j or $[x]_i^j$ denotes the (j - i + 1)-tuple $(x_i, ..., x_n)$. x^n or $[x]^n$ denotes $(x_1, ..., x_n)$. Similarly if $S_1, ..., S_n$ are finite sets and $(x_1, ..., x_n) \in S_1^{\infty} \times \cdots \times S_n^{\infty}$, then $(x_1, ..., x_n)_i^j$ denotes $([x_1]_i^j, ..., [x_n]_i^j)$ and $(x_1, ..., x_n)^N$ denotes $([x_1]^N, ..., [x_n]^N)$. By a finite state process X (with state space S), we mean that for some measurable space Ω and finite set S, X is a measurable map from $\Omega \to S^{\infty}$. For each $i \in Z$, X_i denotes the map from $\Omega \to S^{\infty}$. For each $i \in Z$, X_i denotes the random vector $(X_i, ..., X_i)$. X^n or $[X]^n$ denotes $(X_1, ..., X_n)$. If $X^{(1)}, ..., X^{(n)}$ are finite-state processes, $(X^{(1)}, ..., X^{(n)})_i^j$ denotes $([X^{(1)}]_i^j, ..., [X^{(n)}]_i^j)$ and $(X^{(1)}, ..., X^{(n)})^N$ denotes $([X^{(1)}]_i^N, ..., [X^{(n)}]^N)$.

If X, Y are random variables, H(X) and H(X | Y) denote entropy and conditional entropy, respectively. If X is a finite-state N-stationary process for some $N = 1, 2, ..., \overline{H}(X)$ denotes the entropy of the process:

$$\overline{H}(X) = \lim_{n \to \infty} n^{-1} H(X_1, \dots, X_n).$$

If (X, Y) are jointly N-stationary, $\overline{H}(X | Y)$ denotes the conditional entropy

$$\overline{H}(X \mid Y) = \lim_{n \to \infty} n^{-1} H(X_1, ..., X_n \mid Y_1, ..., Y_n)$$

We write $\overline{H}_{P}(X)$, $\overline{H}_{P}(X \mid Y)$ when it is necessary to emphasize the underlying probability measure P.

If A is a finite set, $T_A: A^{\infty} \to A^{\infty}$ denotes the shift transformation. If $A_1, ..., A_n$ are finite sets, $T_{A_1,...,A_n}: A_1^{\infty} \times \cdots \times A_n^{\infty} \to A_1^{\infty} \times \cdots \times A_n^{\infty}$ denotes the transformation

$$T_{A_1,...,A_n}(x_1,...,x_n) \equiv (T_{A_1}x_1,...,T_{A_n}x_n).$$

If $A_1, ..., A_n$ are finite sets let $\mathscr{E}(A_1, ..., A_n)$ denote the set of all probability measures on $\mathscr{A}_1^{\infty} \times \cdots \times \mathscr{A}_n^{\infty}$ stationary and ergodic with respect to $T_{A_1, ..., A_n}$. We make $\mathscr{E}(A_1, ..., A_n)$ a measurable space by adjoining the smallest σ -field of subsets of $\mathscr{E}(A_1, ..., A_n)$ such that for each $E \in \mathscr{A}_1^{\infty} \times \cdots \times \mathscr{A}_n^{\infty}$, the map $P \to P(E)$ from $\mathscr{E}(A_1, ..., A_n) \to [0, 1]$ is measurable.

If (Λ, \mathcal{M}) and (Ω, \mathcal{F}) are two measurable spaces, we call a family $\{P_{\theta}: \theta \in \Lambda\}$ of probability measures on \mathcal{F} measurable if for each $E \in \mathcal{F}$, the map $\theta \to P_{\theta}(E)$ from $\Lambda \to [0, 1]$ is \mathcal{M} -measurable.

Codes. If $A_1, ..., A_n$ and $B_1, ..., B_n$ are finite sets, $\varphi: A_1^{\infty} \times \cdots \times A_n^{\infty} \to B_1^{\infty} \times \cdots \times B_n^{\infty}$ is called a block code of order N if there exists $\varphi': A_1^N \times \cdots \times A_n^N \to B_1^N \times \cdots \times B_n^N$ such that

$$\varphi(x_1,...,x_n)_{iN+1}^{iN+N} \equiv \varphi'[(x_1,...,x_n)_{iN+1}^{iN+N}], \quad i \in \mathbb{Z}.$$

If $\varphi: A^{\infty} \to B^{\infty}$ is a block code of order N, the rate $r(\varphi)$ of φ is defined to be $N^{-1} \log |\{\varphi(x)_1^N: x \in A^{\infty}\}|$, where if S is a finite set, |S| denotes the cardinality of S. (All logarithms in this paper are to base 2.)

A map $\psi: A_1^{\infty} \times \cdots \times A_n^{\infty} \to B_1^{\infty} \times \cdots \times B_n^{\infty}$ is called a stationary code if $\psi(T_{A_1,\ldots,A_n}(x_1,\ldots,x_n)) \equiv T_{B_1,\ldots,B_n}\psi(x_1,\ldots,x_n)$. It is called a sliding-block code if it is stationary and for some $M, \psi(x_1,\ldots,x_n) = \psi(y_1,\ldots,y_n)$ if $(x_1,\ldots,x_n)_{-M}^M = (y_1,\ldots,y_n)_{-M}^M$. The rate $r(\psi)$ of a sliding-block code $\psi: A^{\infty} \to B^{\infty}$ is

$$\lim_{N\to\infty} N^{-1} \log |\{\psi(x)_1^N \colon x \in A^\infty\}|.$$

Let $\{0, 1\}^*$ be the set of all finite sequences of zeroes and ones. If A is a finite set a map $\tau: A \to \{0, 1\}^*$ is called a noiseless variable-length code if τ is one-to-one and $\tau(A)$ satisfies the prefix condition.

Multiterminal sources. Let n be a positive integer. By a n-parameter multiterminal source we mean a pair $[(X^{(1)},...,X^{(n)}), P]$, where the $X^{(i)}$ are finite state processes defined on a common measurable space (Ω, \mathcal{F}) and P is a probability measure on \mathcal{F} . If the processes $\{X^{(i)}\}$ are jointly stationary (ergodic) with respect to $P[(X^{(1)},...,X^{(n)}), P]$ is called a stationary (ergodic) source.

Let E^n be the set of all *n*-tuples of real numbers. If $[(X^{(1)},...,X^{(n)}), P]$ is a multiterminal source and the $\{X^{(i)}\}$ are jointly *N*-stationary with respect to *P* for some *N*, define $\mathscr{R}[(X^{(1)},...,X^{(n)}), P]$ to be the set of all $R = (R_1,...,R_n) \in E^n$ such that

$$\overline{H}((X^{(j)}\colon j\in S)\mid (X^{(j)}\colon j\notin S))\leqslant \sum_{j\in S}\;R_{j}$$
 ,

for every nonempty subset S of $\{1, 2, ..., n\}$. (In the preceding, if each $X^{(i)}$ has state space A_i , we interpret a variable $(X^{(i)}; j \in T)$ as a process with state space $\prod_{j \in T} A_j$ rather than its customary interpretation as a function with values in the space $\prod_{j \in T} A_j^{\infty}$. We also interpret $\overline{H}((X^{(j)}; j \in T) | (X^{(j)}; j \notin T))$ to be $\overline{H}((X^{(i)}; j \in T))$ if there exists no $j \notin T$.) We note that if $[(X^{(1)}, ..., X^{(n)}), P]$ is stationary and ergodic then $\mathscr{R}[(X^{(1)}, ..., X^{(n)}), P]$ is the rate region for noiseless coding of that source (Cover, 1975).

Fixed and variable rate specifications. Let $X^{(1)},...,X^{(n)}$ be processes on (Ω, \mathscr{F}) with state spaces $A_1,...,A_n$, respectively. Let $\{P_{\theta}: \theta \in \Lambda\}$ be a family of probability measures on \mathscr{F} . We suppose $[(X^{(1)},...,X^{(n)}), P_{\theta}]$ is a stationary, ergodic source, $\theta \in \Lambda$. We say that $\{R(\theta): \theta \in \Lambda\} \subset E^n$ is a variable-rate specification for the family of sources $\{[(X^{(1)},...,X^{(n)}), P_{\theta}]: \theta \in \Lambda\}$ if for each *i* there is a bounded measurable map $F_i: \mathscr{E}(A_i) \to [0, \infty]$ such that

- (a) $R_i(\theta) = F_i(P_{\theta}^{X^{(i)}}), i = 1, ..., n; \theta \in \Lambda,$
- (b) $R(\theta) \in \mathscr{R}[(X^{(1)}, ..., X^{(n)}), P_{\theta}], \theta \in \Lambda.$

We say $R \in E^n$ is a fixed-rate specification for the family {[($X^{(1)},...,X^{(n)}$), P_{θ}]: $\theta \in A$ } if

 $R \in \mathscr{R}[(X^{(1)}, \dots, X^{(n)}), P_{\theta}], \theta \in \Lambda.$

Weighted universal coding. We state here the main results, to be proved in subsequent sections. The results are weighted universal coling theorems for noiseless coding of a family of ergodic multiterminal sources. In particular, they imply the coding theorem of Cover (1975) for a single multiterminal stationary, ergodic source, which was an extension of a result of Slepian and Wolf (1973). As a simple corollary to these theorems, which we leave to the reader, one can delineate the rate regions in E^n for noiseless coding of a stationary perhaps non-ergodic source with respect to each of the following four types of coding: fixed-rate block coding, variable-rate block-coding, fixed-rate slidingblock coding, variable-rate sliding-block coding. The rate region for fixed-rate block coding will coincide with the rate region for fixed-rate slidingblock coding to variable-rate sliding-block coding. The fixed-rate sliding-block coding. Also the rate region for variable rate block coding. The fixed-rate region is a subset of the variable-rate region, and may be a proper subset, unless the stationary source is ergodic, in which case the regions coincide.

The following notation is used in the statement of the theorems to follow. $(\Lambda, \mathcal{M}, \lambda)$ is a probability space and (Ω, \mathcal{F}) is a measurable space. $\{P_{\theta}: \theta \in \Lambda\}$ is a measurable family of probability measures on \mathcal{F} . $X^{(1)}, \ldots, X^{(n)}$ are finite-state processes defined on Ω with state spaces A_1, \ldots, A_n , respectively. For each $\theta \in \Lambda$, we assume the multiterminal source $[(X^{(1)}, \ldots, X^{(n)}), P_{\theta}]$ is stationary and ergodic.

THEOREM 1. Let $\{R(\theta): \theta \in \Lambda\} \subset E^n$ be a variable-rate specification for the

family of stationary, ergodic multiterminal sources $\{[(X^{(1)},...,X^{(n)}), P_{\theta}]: \theta \in A\}$. Then, given $\epsilon > 0$, there exists a positive integer N, block codes $\varphi_i: A_i^{\infty} \to A_i^{\infty}$ (i = 1,..., n) of order N, a block code $\delta: A_1^{\infty} \times \cdots \times A_n^{\infty} \to A_1^{\infty} \times \cdots \times A_n^{\infty}$ of order N, noiseless variable-length codes $\tau_i: A_i^N \to \{0, 1\}^*$ (i = 1,..., n), and a set $W \subset A$ with $\lambda(W) > 1 - \epsilon$ such that for each $\theta \in W$,

- (a) $P_{\theta}[(X^{(1)},...,X^{(n)})^N \neq \delta(\varphi_1(X^{(1)}),...,\varphi_n(X^{(n)}))^N] < \epsilon.$
- (b) $N^{-1}E_{P_a}\ell[\tau_i(\varphi_i(X^{(i)})^N)] \leq R_i(\theta) + \epsilon, \quad i = 1,..., n.$

(*Note.* In the preceding, ℓ denotes length, and $E_{P_{\theta}}$ denotes expectation with respect to P_{θ} .)

THEOREM 2. Let $R \in E^n$ be a fixed-rate specification for the family of stationary, ergodic sources $\{[(X^{(1)},...,X^{(n)}), P_{\theta}]\}$. Then given $\epsilon > 0$, there exists a positive integer N, block codes $\varphi_i: A_i^{\infty} \to A_i^{\infty}$ (i = 1,...,n) of order N, a block code $\delta: A_1^{\infty} \times \cdots \times A_n^{\infty} \to A_1^{\infty} \times \cdots \times A_n^{\infty}$ of order N, and a set $W \subset \Lambda$ with $\lambda(W) > 1 - \epsilon$ such that

- (a) $r(\varphi_i) < R_i + \epsilon, i = 1,..., n.$
- (b) $P_{\theta}[(X^{(1)},...,X^{(n)})^N \neq \delta(\varphi_1(X^{(1)}),...,\varphi_n(X^{(n)}))^N] < \epsilon, \ \theta \in W.$

THEOREM 3. Let $\{R(\theta): \theta \in \Lambda\}$ be a variable-rate specification for the family of stationary, ergodic sources $\{[(X^{(1)},...,X^{(n)}), P_{\theta}]\}$. Then, given $\epsilon > 0$, there exist sliding-block codes $\psi_i: A_i^{\infty} \to A_i^{\infty}$ (i = 1,...,n), a sliding-block code $\delta: A_1^{\infty} \times$ $\cdots \times A_n^{\infty} \to A_1^{\infty} \times \cdots \times A_n^{\infty}$, noiseless variable-length codes $\tau_i: A_i^M \to \{0, 1\}^*$ (i = 1,..., n) for some M, and a set $W \subset \Lambda$ with $\lambda(W) > 1 - \epsilon$ such that for each $\theta \in W$

- (a) $P_{\theta}[(X^{(1)},...,X^{(n)})_0 \neq \delta(\psi_1(X^{(1)}),...,\psi_n(X^{(n)}))_0] < \epsilon.$
- (b) $M^{-1}E_{P_{\alpha}}\ell[\tau_i(\psi_i(X^{(i)})^M)] \leqslant R_i(\theta) + \epsilon, i = 1,..., n.$

THEOREM 4. Let R be a fixed-rate specification for the stationary, ergodic sources $\{[(X^{(1)},...,X^{(n)}), P_{\theta}]\}$. Given $\epsilon > 0$, there exist sliding-block codes $\psi_i: A_i^{\infty} \to A_i^{\infty}$ (i = 1,...,n), a sliding-block code $\delta: A_1^{\infty} \times \cdots \times A_n^{\infty} \to A_1^{\infty} \times \cdots \times A_n^{\infty}$, and a set $W \subset \Lambda$ w th $\lambda(W) > 1 - \epsilon$ such that

- (a) $r(\psi_i) < R_i + \epsilon, i = 1,..., n.$
- (b) $P_{\theta}[(X^{(1)},...,X^{(n)})_0 \neq \delta(\psi_1(X^{(1)}),...,\psi_n(X^{(n)}))_0] < \epsilon, \ \theta \in W.$

III. BUILDING A GOOD BLOCK CODE

If X is a discrete random variable on a probability space (Ω, \mathcal{F}, P) , let P(X) denote the function from Ω to [0, 1] such that

$$P(X)(\omega) = P[X = X(\omega)], \qquad \omega \in \Omega.$$

If Y is another discrete random variable, let P(X | Y) denote the function

$$P(X \mid Y) = P(X, Y)/P(Y), \qquad P(Y) > 0$$

= 0, elsewhere.

The following coding lemma allows us to give an easy proof of Theorems 1 and 2. The proof uses a type of random coding argument due to Cover (1975).

LEMMA 1. Let $A_1, ..., A_n$ be finite sets. Let X_i (i = 1, ..., n) be the projection of $A_1 \times \cdots \times A_n$ onto A_i . For each i, let a map $f_i: A_i \to [0, \infty)$ be given. Let Pbe a probability measure on $A_1 \times \cdots \times A_n$. Given c > 0, there exist maps $\varphi_i: A_i \to A_i$ (i = 1, ..., n), a map $\delta: A_1 \times \cdots \times A_n \to A_1 \times \cdots \times A_n$, and noiseless variable-length codes $\tau_i: A_i \to \{0, 1\}^*$ (i = 1, ..., n) such that

(a)
$$P[(X_1,...,X_n) \neq \delta(\varphi_1(X_1),...,\varphi_n(X_n))] \leq 2^{n-c} + \sum_{\substack{S \subset \{1,...,n\}\\S \neq \emptyset}} P\left[P((X_j; j \in S) \mid (X_j; j \notin S)) < \prod_{j \in S} 2^{-f_j(X_j)}\right];$$

(b)
$$\ell[\tau_i(\varphi_i(X_i))] \leq \log |f_i(A_i)| + f_i(X_i) + c + 1, i = 1,...,n;$$

(c) $\log |\varphi_i(A_i)| \leq \log |f_i(A_i)| + \max f_i(A_i) + c + 1, i = 1,..., n.$

(Note. In (a), by $P((X_j; j \in S)|(X_j; j \notin S))$ we mean the function $P((X_j; j \in S))$ if $S = \{1, ..., n\}$.)

Proof. If S is a finite set, we will call a map $\sigma: S \to \{1, 2, ...\}$ a length function if $\sum_{y \in S} 2^{-\sigma(y)} \leq 1$. From Gallager (1968, Chapter 3), if $\tau: S \to \{0, 1\}^*$ is a noiseless variable-length code then the formula $\sigma(y) = \ell[\tau(y)]$ defines a length function on S; conversely, given a length function σ on S, there is a noiseless variable-length code $\tau: S \to \{0, 1\}^*$ such that $\sigma(y) = \ell[\tau(y)], y \in S$. Thus, to prove Lemma 1, all we need to find are maps $\varphi_i: A_i \to A_i \ (i = 1, ..., n)$, a map $\delta: A_1 \times \cdots \times A_n \to A_1 \times \cdots \times A_n$, and length functions $\sigma_i: A_i \to \{1, 2, ...\}$ (i = 1, ..., n) such that (a), (c) hold and

$$(\mathrm{b}') \; \sigma_i(arphi_i(X_i)) \leqslant \log |f_i(A_i)| + f_i(X_i) + c + 1, \qquad i=1,...,\,n.$$

Let $C_i = f_i(A_i)$, i = 1, ..., n. Let $T = \{(i, x, y): i = 1, ..., n; x \in A_i ; y \in C_i\}$. Let $D_{i,x,y} = \{1, ..., [2^{y+c}]\}, (i, x, y) \in T$. (If r is a real number, [r] denotes the smallest integer $\geq r$.) Let $D = \prod_{(i,x,y) \in T} D_{i,x,y}$. For each i, let $B_i = \bigcup_{y \in C_i} \{1, ..., [2^{y+c}]\} \times \{y\}$. For each i = 1, ..., n, and $z = (z_{j,x,y}: (j, x, y) \in T) \in D$, let $\varphi_i^z: A_i \to B_i$ be the map

$$\varphi_i^{z}(x) = (z_{i,x,f_i}(x), f_i(x)), \qquad x \in A_i$$

Let $\sigma_i: B_i \rightarrow \{1, 2, ...\}$ be the length function such that

$$\sigma(k, y) = \log |C_i| + [y + c], \qquad (k, y) \in B_i.$$

Let E be the subset of $A_1 \times \cdots \times A_n$ such that

$$E = \bigcap_{\substack{S \subset \{1, \dots, n\} \\ S \neq \emptyset}} \left\{ P((X_j; j \in S) \mid (X_j; j \notin S)) \geqslant \prod_{j \in S} 2^{-f_j(X_j)} \right\}$$

For each $z \in D$, let $\delta_z : B_1 \times \cdots \times B_n \to A_1 \times \cdots \times A_n$ be a map such that if $(k_1, y_1) \in B_1, ..., (k_n, y_n) \in B_n$ then $\delta_z((k_1, y_1), ..., (k_n, y_n)) = (x_1, ..., x_n)$ if $(x_1, ..., x_n)$ is the only element of E such that

- (d) $f_i(x_i) = y_i$, i = 1, ..., n,
- (e) $z_{i,x_i,y_i} = k_i$, i = 1,...,n.

On some probability space $(\Omega, \mathscr{F}, \lambda)$ we may define random variables $X'_1, ..., X'_n$, $\{Z_{i,x,y}: (i, x, y) \in T\}$ such that

- (f) each X'_i is A_i -valued and the distribution of $(X'_1, ..., X'_n)$ is P;
- (g) for each $(i, x, y) \in T$, $Z_{i,x,y}$ is uniformly distributed over $\{1, \dots, [2^{y+c}]\}$;
- (h) $\{Z_{i,x,y}: (i, x, y) \in T\}$ are independent;

(i) $(X'_1, ..., X'_n)$ and the *D*-valued random variable $Z = (Z_{i,x,y}: (i, x, y) \in T)$ are independent.

Let Q denote the quantity on the right-hand side of the inequality in (a). If we can show that

(j) $\lambda[(X'_1,...,X'_n) \neq \delta_Z(\varphi_1^Z(X'_1),...,\varphi_n^Z(X'_n))] \leqslant Q$,

then because of (i), we will have for some $z \in D$ that

(k)
$$P[(X_1,...,X_n) \neq \delta_z(\varphi_1^z(X_1),...,\varphi_n^z(X_n))] \leqslant Q.$$

We now try to derive (j). The left-hand side of (j) is no bigger than

(1)
$$P[(X_1,...,X_n) \notin E] + \sum_{(y_1,...,y_n) \in C_1 \times \cdots \times C_n} \lambda[f_i(X_i') = y_i \quad (i = 1,...,n),$$

and there exists in E a $(x_1, ..., x_n) \neq (X'_1, ..., X'_n)$ such that

$$f_i(x_i) = y_i \text{ and } Z_{i,x_i,y_i} = Z_{i,X'_i,y_i} \text{ for all } i].$$

For each $(y_1,...,y_n) \in C_1 \times \cdots \times C_n$, the summand in (1) is no bigger than

(m)
$$\sum_{x'} P(x') \sum_{S} \sum_{x \in E_S} \lambda[Z_{j,x_j,y_j} = Z_{j,x'_i,y_j}, j \in S],$$

where the outermost sum is over all $x' = (x'_1, ..., x'_n) \in A_1 \times \cdots \times A_n$ such that P(x') > 0 and $f_i(x'_i) = y_i$ for all *i*, the middle sum is over all nonempty subsets

S of $\{1,...,n\}$, and in the innermost sum E_S represents the set of all $x \in \prod_{j \in S} A_j$ such that $x_j \neq x'_j$, $j \in S$, and

$$P[(X_j: j \in S) = x \mid X_j = x'_j, j \notin S] \ge \prod_{j \in S} 2^{-y_j}.$$

(The middle sum arises by observing that if $x, x' \in A_1 \times \cdots \times A_n$ and $x \neq x'$ then for some nonempty $S \subset \{1, ..., n\}$, we have $x_j \neq x'_j$ if and only if $j \in S$.) Now

$$\lambda[Z_{j,x_j,y_j} = Z_{j,x_j',y_j}, j \in S] = \left(\prod_{j \in S} \lceil 2^{y_j+c} \rceil\right)^{-1},$$

since all the variables involved are independent and $x_j \neq x'_j$, $j \in S$. Calculating the innermost sum in (m) we get $|E_S|(\prod_{j\in S} [2^{y_j+e}])^{-1}$. Since each $x \in E_S$ has a probability lower bounded by $\prod_{j\in S} 2^{-y_j}$, we must have $|E_S| \leq \prod_{j\in S} 2^{y_j}$. We can now observe that (j) will follow. Thus we may fix $z \in D$ such that (k) holds. Setting $\varphi_i = \varphi_i^z$ and $\delta = \delta_z$, we get (a), (c), (b'). Since for each i, $|\varphi_i(A_i)| \leq |A_i|$, we can assume $B_i = A_i$, i = 1, ..., n.

Proof of Theorems 1 and 2. As shown in the proof of Theorem 4 of Kieffer (1980a), we can assume without loss of generality that $\Lambda = \Omega = A_1^{\infty} \times \cdots \times A_n^{\infty}$, that each $X^{(i)}$ is the projection from $A_1^{\infty} \times \cdots \times A_n^{\infty} \to A_i^{\infty}$, and that the measures $\{P_{\theta}: \theta \in \Omega\}$ are the ergodic components of the measure λ . More precisely, we assume each $P_{\theta} \in \mathscr{E}(A_1, ..., A_n)$ and that

(a) $P_{\theta}(E) = \lim_{k \to \infty} k^{-1} \sum_{i=0}^{k-1} I_E(T^i_{A_1,\ldots,A_n}\theta)$, for λ -almost all $\theta \in \Omega$, where I_E denotes the indicator function of the set $E \in \mathcal{C}_1^{\infty} \times \cdots \times \mathcal{C}_n^{\infty}$,

- (b) $P\{\theta: P_{\theta} = P\} = 1, P \in \mathscr{E}(A_1, ..., A_n),$
- (c) $\lambda(E) = \int_{\Omega} P_{\theta}(E) d\lambda(\theta), E \in \mathcal{O}_{1}^{\infty} \times \cdots \times \mathcal{O}_{n}^{\infty}.$

Let $\{R(\theta): \theta \in \Omega\}$ be a variable-rate specification. For each i = 1, ..., n, let $R_i: \Omega \to [0, \infty)$ be the function such that $R_i(\theta)$ is the *i*th component of $R(\theta)$, $\theta \in \Omega$. Now $R_i(\theta)$ depends on θ through $P_{\theta}^{\chi(i)}$, and by (a), $P_{\theta}^{\chi(i)}$ depends on θ through $X^{(i)}(\theta)$. Hence, given $\delta > 0$, there is a finite set $C_i \subset [0, \infty)$ and for each N a function $F_i^N: A_i^N \to C_i$ such that the functions $\{F_i^N([X^{(i)}]^N)\}$ converge almost surely with respect to λ as $N \to \infty$, and

$$R_i + \delta \leqslant \lim_{N \to \infty} F_i^N([X^{(i)}]^N) \leqslant R_i + 2\delta \quad \text{ a.s. } [\lambda]. \tag{3.1}$$

By a result of Parthasarathy (1963), if S is a nonempty subset of $\{1, ..., n\}$, for λ -almost all θ

$$\begin{split} \lim_{N \to \infty} &- N^{-1} \log \lambda(([X^{(j)}]^N; j \in S) \mid ([X^{(j)}]^N; j \notin S))(\theta) \\ &= \overline{H}_{P_{\theta}}((X^{(j)}; j \in S) \mid (X^{(j)}; j \notin S)) \leqslant \sum_{j \in S} R_j(\theta). \end{split}$$

Therefore,

$$\lim_{N \to \infty} \lambda \left[\lambda(([X^{(j)}]^N : j \in S) \mid ([X^{(j)}]^N : j \notin S)) < \prod_{j \in S} 2^{-NF_j^N([X^{(j)}]^N)} \right] = 0.$$
(3.2)

Applying Lemma 1, for N sufficiently large there exist block codes $\varphi_i: A_i^{\infty} \to A_i^{\infty}$ (i = 1, ..., N) of order N, a block code $\delta: A_1^{\infty} \times \cdots \times A_n^{\infty} \to A_1^{\infty} \times \cdots \times A_n^{\infty}$ of order N, and noiseless variable-length codes $\tau_i: A_i^N \to \{0, 1\}^*$ such that

- (d) $N^{-1}\ell[\tau_i(\varphi_i(X^{(i)})^N)] \leq \delta + F_i^N([X^{(i)}]^N),$
- (e) $\lambda[(X^{(1)},...,X^{(n)})^N \neq \delta(\varphi_1(X^{(1)}),...,\varphi_n(X^{(n)}))^N] \to 0.$

From (3.1) and (d), we obtain

(f) $\limsup_{N\to\infty} N^{-1}\ell[\tau_i(\varphi_i(X^{(i)})^N)] \leq 3\delta + R_i \text{ a.s. } [\lambda].$

Taking a conditional expectation, since $R_i = R_i(\theta)$ a.s. $[P_{\theta}]$, (f), (e) give

(g) $P_{\theta}[\limsup_{N \to \infty} N^{-1}\ell[\tau_i(\varphi_i(X^{(i)})^N)] \leq 3\delta + R_i(\theta)] = 1$, a.s. $[\lambda]$.

(h) $P_{\theta}[(X^{(1)},...,X^{(n)})^N \neq \delta(\varphi_1(X^{(1)}),...,\varphi_n(X^{(n)}))^N] \rightarrow 0$ stochastically with respect to λ .

Theorem 1 follows from (g), (h) by a simple application of Egoroff's theorem (Ash, 1972, p. 94), provided we take δ to be small enough relative to ϵ . If $(R_1, ..., R_n)$ is a fixed-rate specification, note that (3.2) holds with $F_j^N([X^{(j)}]^N)$ replaced by $R_j + \delta$. One now applies part (c) of Lemma 1.

IV. BUILDING A GOOD SLIDING-BLOCK CODE

In this section we prove Lemma 2 which will allow us to build a good slidingblock code from a good block code, and thereby enable us to prove Theorems 3 and 4. Before proceeding with the Lemma, we need to introduce some more notation.

Let $A_1, ..., A_n$ be finite sets. For $N = 1, 2, ..., \text{let } \mathscr{P}_N(A_1, ..., A_n)$ denote the set of all probability measures on $\mathscr{Q}_1^{\infty} \times \cdots \times \mathscr{Q}_n^{\infty}$ stationary with respect to $T^N_{A_1,...,A_n}$. Let $\mathscr{P}_{\infty}(A_1,...,A_n) = \bigcup_{n=1}^{\infty} \mathscr{P}_N(A_1,...,A_n)$. We define $f: A_1^{\infty} \times \cdots \times A_n^{\infty} \to [0, \infty)$ to be finite-dimensional (f.d.) if for some positive integer M,

$$f(x_1,...,x_n) = f(y_1,...,y_n)$$
 if $[x_i]_{-M}^M = [y_i]_{-M}^M$, $i = 1,...,n$.

If $\{\mu_k: k = 1, 2, ...\} \cup \{\mu\} \subset \mathscr{P}_1(A_1, ..., A_n)$ we say $\mu_k \to \mu$ weakly if $E_{\mu_k} f \to E_{\mu} f$ for every f.d. $f: A_1^{\infty} \times \cdots \times A_n^{\infty} \to [0, \infty)$. The weak topology on $\mathscr{P}_1(A_1, ..., A_n)$ is the unique metric topology with this convergence (see Parthasarathy, 1967).

Fix finite sets A, B and let $X: A^{\infty} \times B^{\infty} \to A^{\infty}$ and $Y: A^{\infty} \times B^{\infty} \to B^{\infty}$ be the maps such that X(x, y) = x, Y(x, y) = y.

We call $F: \mathscr{P}_{\infty}(A, B) \to [0, \infty)$ a nice function if

(a) F is affine on the convex set $\mathscr{P}_{\infty}(A, B)$; that is, if $\mu, \nu \in \mathscr{P}_{\infty}(A, B)$ and $0 < \alpha < 1$, then $F(\alpha \mu + (1 - \alpha)\nu) = \alpha F(\mu) + (1 - \alpha)F(\nu)$.

(b) F is uppersemicontinuous on $\mathscr{P}_1(A, B)$ relative to the weak topology.

(c) If $\mu \in \mathscr{P}_{\infty}(A, B)$ and \hat{Y} is a process with state space B which is a stationary or block coding of H satisfying $\overline{H}_{\mu}(Y \mid \hat{Y}) = 0$, then $F(\mu) = F(\mu^{(X \mid \hat{Y})})$.

(d) $F(\mu) = F(\mu \cdot T_{A,B}^{-1}), \ \mu \in P_{\infty}(A, B).$

As an example of a nice function, we cite the map $\mu \to \overline{H}_{\mu}(X \mid Y)$.

A channel is a triple $[A, \tau, B]$ where A, B are finite sets and $\tau = \{\tau_x : x \in A^{\infty}\}$ is a measurable family of probability measures on B^{∞} .

We call a sequence $x \in A^{\infty}$ periodic if for some $n T_A^n x = x$. If x is periodic, define the period of x to be the smallest n such that $T_A^n x = x$.

If S_1 , S_2 are subsets of some common set, define $S_1 - S_2 = \{\omega \in S_1 \colon \omega \notin S_2\}$.

LEMMA 2. Let (Ω, \mathscr{F}) be a measurable space. Let $(\Lambda, \mathscr{M}, \lambda)$ be a probability space. Let $\{P_{\theta}: \theta \in \Lambda\}$ be a measurable family of probability measures on \mathscr{F} . Let C, D be finite sets. Let U, V be processes defined on Ω with state spaces C, D, respectively. We suppose $\{U, V\}$ are jointly stationary and ergodic under each $P_{\theta}, \theta \in \Lambda$. Let \mathscr{C} be a finite collection of nice functions from $\mathscr{P}_{\infty}(C, D) \to [0, \infty]$. Let $\varphi: D^{\infty} \to D^{\infty}$ and $\delta: C^{\infty} \times D^{\infty} \to D^{\infty}$ be block codes of order N. Given $\epsilon > 0$, there exist sliding-block codes $\varphi: D^{\infty} \to D^{\infty}$ and $\delta: C^{\infty} \times D^{\infty} \to D^{\infty}$, and a subset W of Λ with $\lambda(\Lambda - W) < \epsilon$ such that if $\theta \in W$

(a)
$$F(P_{\theta}^{(U,\phi(V))}) \leqslant F(P_{\theta}^{(U,\phi(V))}) + \epsilon, F \in \mathscr{C},$$

(b) $P_{\theta}[V_{0} \neq \hat{\delta}(U, \hat{\varphi}(V))_{0}] \leqslant P_{\theta}[V^{N} \neq \delta(U, \varphi(V))^{N}] + \epsilon.$

Proof. By Theorem 3.1 of Gray (1975), it suffices to find stationary codes $\hat{\varphi}$, $\hat{\delta}$ for which (a), (b) hold. If $r(\varphi) = \log |D|$, then (a), (b) hold with $\hat{\varphi}$ the identity map, $\hat{\delta}(u, y) \equiv y$. So we can assume $r(\varphi) < \log |D|$. From the theory of ergodic processes, given $\theta \in A$, the process V is either aperiodic under P_{θ} (which means that $P_{\theta}(V = v) = 0$, $v \in D^{\infty}$), or is periodic under V (which means that for some n, there is a periodic $v \in D^{\infty}$ with period n such that $P_{\theta}(V = T_D^i v) = n^{-1}, 0 \leq i \leq n-1$). Let $W_0 = \{\theta \in A: V \text{ is aperiodic under } P_{\theta}\}$, $W_1 = \{\theta \in A: V \text{ is periodic under } P_{\theta}\}$. Choose k a multiple of N and $W_2 \subset W_1$ so that $\lambda(W_1 - W_2) < \epsilon/3$ and for every $\theta \in W_2$

 P_{θ} (V is periodic with period $\leq k$) = 1.

Since $r(\varphi) < \log |D|$, there exists for some multiple L of k a $b \in D^L$ such that $b \notin \{\varphi(v)^L : v \in D^{\infty}\}$ and the sequence \tilde{x} in D^{∞} such that $\tilde{x}_{iL+1}^{iL+1} = b$ $(i \in Z)$ has

period L. For each multiple j of L such that j > 2L, define $\varphi_j: D^{\infty} \to D^{\infty}$ to be the block code of order j + 2L such that

$$arphi_j(x)_{i+1}^{i+2L} = (b, b)$$
 if $i \equiv 0 \mod j + 2L$,
 $arphi_j(x)_s = arphi(x)_s$ for all other coordinates s

Define $\delta_j: C^{\infty} \times D^{\infty} \to D^{\infty}$ to be a sliding-block code such that

(c) $\delta_i(u, y) = T_{C,D}^{-s} \delta(T_C^{s} u, T_D^{s} y)$ if $\{i \in Z: y_{i+1}^{i+2L} = (b, b)\} = \{i \in Z: i \equiv s \mod j + 2L\}$ for some $0 \leq s \leq j + 2L - 1$.

(d) $\delta_j(u, y) = y$ if y is periodic with period $\leq k$.

Fix \overline{U} , \overline{V} , \overline{Y} to be the processes defined on $C^{\infty} \times D^{\infty} \times D^{\infty}$ with respective state spaces C, D, D such that $\overline{U}(u, v, y) = u$, $\overline{V}(u, v, y) = v$, $\overline{Y}(u, v, y) = y$. If P is a probability measure on $C^{\infty} \times D^{\infty}$, and [D, v, D] is a channel, let Pv be the probability measure on $C^{\infty} \times D^{\infty} \times D^{\infty}$ such that under Pv, \overline{U} , \overline{V} , \overline{Y} form a Markov chain, the distribution of $(\overline{U}, \overline{V})$ is P, and the distribution of \overline{Y} conditioned on \overline{V} is given by v. Let $[D, \tau, D]$, $[D, \tau_j, D]$ be the channels such that for each $x \in D^{\infty}$, τ_x is equidistributed over $\{T_D^{-i}(\varphi(T_D^{-i}x)): 0 \leq i \leq N-1\}$ and $(\tau_j)_x$ is equidistributed over $\{T_D^{-i}(\varphi_j(T_D^{-i}x)): 0 \leq i \leq j+2L-1\}$. It can be seen that for all $\theta \in A$,

(e) $P_{\theta}\tau_j \to P_{\theta}\tau$ weakly

(f)
$$\lim_{j\to\infty} P_{\theta}\tau_j[\overline{V}_0\neq \delta_j(\overline{U}, \overline{Y})_0] \leqslant P_{\theta}[V^N\neq \delta(U, \varphi(V))^N].$$

By (e), for each $\theta \in \Lambda$ and each $F \in \mathscr{C}$,

(g) $\limsup_{j\to\infty} F(P_{\theta}\tau_j^{(\bar{U},\bar{Y})}) \leqslant F(P_{\theta}\tau^{(\bar{U},\bar{Y})}) = F(P_{\theta}^{(U,\varphi(V))}).$

Hence by Egoroff's theorem, there is $W_3 \subset W_0$ with $\lambda(W_0 - W_3) < \epsilon/3$ and j so large that setting $\hat{\tau} = \tau_j$, $\hat{\delta} = \delta_j$, we have for $\theta \in W_3$ that

- (h) $P_{\theta} \dot{\tau} [\overline{V}_0 \neq \hat{\delta} (\overline{U}, \ \overline{Y})_0] \leqslant P_{\theta} [V^N \neq \delta (U, \ \varphi(V))^N] + \epsilon/2.$
- (i) $F(P_{\theta}\hat{\tau}^{(\bar{U},\bar{Y})}) \leqslant F(P_{\theta}^{(U,\varphi(V))}) + \epsilon/2, F \in \mathscr{C}.$

By Lemma 6 of Kieffer (1980b) and Theorem 2 of Kieffer and Rahe (1981), there is a sequence $\{\psi_j\}$ of sliding-block codes from $D^{\infty} \to D^{\infty}$ such that $P_{\theta} \hat{\tau}^{(\vec{P}, \psi_j(\vec{P}))} \to P_{\theta} \hat{\tau}^{(\vec{P}, \vec{V}, \psi_j(\vec{P}))} \to P_{\theta} \hat{\tau}^{(\vec{D}, \vec{V}, \psi_j(\vec{V}))} \to P_{\theta} \hat{\tau}^{(\vec{V}, \psi_j(\vec{V})}) \to P_{\theta} \hat{\tau}^{(\vec{V}, \psi_j(\vec{V}))} \to P_{\theta} \hat{\tau}^{(\vec{V}, \psi_j(\vec{V}))} \to P_{\theta} \hat{\tau}^{(\vec{V}, \psi_j(\vec{V}))} \to$

(j)
$$P_{\theta}[V_0 \neq \hat{\delta}(U, \varphi(V))_0] \leqslant P_{\theta}[V^N \neq \delta(U, \varphi(V))^N] + \epsilon$$

(k) $F(P_{\theta}^{(U,\psi(V))}) \leqslant F(P_{\theta}^{(U,\varphi(V))}) + \epsilon, F \in \mathscr{C}.$

Define $\hat{\varphi}: D^{\infty} \to D^{\infty}$ to be the stationary code such that $\hat{\varphi}(x) = x$, if x is periodic; $\varphi = \psi$, otherwise. Set $W = W_4 \cup W_2$.

In the following, let 1 denote the *n*-vector (1, 1,..., 1), and let $h(\alpha) = -\alpha \log \alpha - (1 - \alpha)\log(1 - \alpha)$, $0 < \alpha \le 1/2$.

LEMMA 3. Let the notation preceding Theorem 1 prevail. Let $\{R(\theta): \theta \in A\}$ be a variable-rate specification for the family of stationary, ergodic sources $\{[(X^{(1)},...,X^{(n)}), P_{\theta}]: \theta \in A\}$. Given $\epsilon > 0$ there exists a process U with state space A_1 which is sliding-block coding of $X^{(1)}$, a process $\tilde{X}^{(1)}$ with state space A_1 which is a slidingblock coding of $(U, X^{(2)},...,X^{(n)})$, and a set $W \subset \Lambda$ with $\lambda(W) > 1 - \epsilon$ such that:

(a) $\{R(\theta) + \epsilon 1 : \theta \in W\}$ is a variable-rate specification for $\{[(U, X^{(2)}, ..., X^{(n)}), P_{\theta}] : \theta \in W\}$.

- (b) $P_{\theta}(X_0^{(1)} \neq \tilde{X}_0^{(1)}) < \epsilon, \ \theta \in W.$
- (c) $\overline{H}_{P_{0}}(U) \leqslant R_{1}(\theta) + \epsilon, \ \theta \in W.$

Proof. Let $M = \max_i \log |A_i|$. Choose $\alpha > 0$ so small that $\alpha + h(\alpha) + M\alpha < \epsilon/2$, $2\alpha < \epsilon$, $\alpha < 1/2$. By Theorem 1, there exists a positive integer N, block codes $\varphi_i: A_1^{\infty} \to A_1^{\infty}$ of order N(i = 1, ..., n), a block code $f: A_1^{\infty} \times \cdots \times A_n^{\infty} \to A_1^{\infty} \times \cdots \times A_n^{\infty}$ of order N, and a set $W_1 \subset A$ with $\lambda(W_1) > 1 - \epsilon/2$ such that for $\theta \in W_1$,

- (d) $P_{\theta}[(X^{(1)},...,X^{(n)})^N \neq f(\varphi_1(X^{(1)}),...,\varphi_n(X^{(n)}))^N] < \alpha.$
- (e) $\overline{H}_{P_a}(\varphi_i(X^{(i)})) \leqslant R_i(\theta) + \alpha, i = 1, ..., n.$

Because of (d), there exists a block code $g: A_1^{\infty} \times \cdots \times A_n^{\infty} \to A_1^{\infty} \times \cdots \times A_n^{\infty}$ of order N such that for all $\theta \in W_1$,

(f) $P_{\theta}[(\varphi_1(X^{(1)}), X^{(2)}, ..., X^{(n)})^N \neq g(\varphi_1(X^{(1)}), \varphi_2(X^{(2)}), ..., \varphi_n(X^{(n)}))^N] < \alpha$. Applying (e), (f) and Lemma 4 of the Appendix, we see that

(g) $R(\theta) + (\epsilon/2)\mathbf{1} \in \mathscr{R}[(\varphi_1(X^{(1)}), X^{(2)}, ..., X^{(n)}), P_{\theta}], \theta \in W_1$.

Also, because of (d) there exists a block code $h: A_1^{\infty} \times \cdots \times A_n^{\infty} \to A_1^{\infty} \times \cdots \times A_n^{\infty}$ of order N such that

(h)
$$P_{\theta}[(X^{(1)},...,X^{(n)})^N \neq h(\varphi_1(X^{(1)}), X^{(2)},...,X^{(n)})^N] < \epsilon/2, \ \theta \in W_1$$

Applying Lemma 2, we see from the statements (e), (g), (h) that there must exist $W \subset W_1$ with $\lambda(W_1 - W) < \epsilon/2$, a sliding-block coding U of $X^{(1)}$ and a sliding-block coding $\tilde{X}^{(1)}$ of $(U, X^{(2)}, ..., X^{(n)})$ such that (a)-(c) hold.

Proof of Theorems 3 and 4. Let $\{R(\theta): \theta \in \Lambda\}$ be a variable-rate specification for the family of multiterminal sources given in Theorem 3. We note that in place of (b) of Theorem 3, we need only show that for $\theta \in W$ we have

(b')
$$\overline{H}_{P_{\theta}}(\psi_i(X^i)) \leqslant R_i(\theta) + \epsilon/2, i = 1,...,n.$$

For, by a weak universal noiseless coding theorem (Kieffer, 1978, Theorem 1), (b') implies that (b) holds for some M and some noiseless variable-length code

 $\tau_i: A_i^M \to \{0, 1\}^*$, provided we reduce W by a λ -small amount. To get condition (b') above and condition (a) of Theorem 3 to hold, apply Lemma 3 n times. Therefore Theorem 3 follows, and then Theorem 4 follows from Theorem 3. For, if U is a finite-state process ergodic with respect to each P_{θ} , and $\overline{H}_{P_{\theta}}(U) < K$ for each θ , by (Ziv, 1972, Theorem 4) and (Kieffer, 1980a, Theorem 1) there exists for each $\epsilon > 0$ a sequence of sliding-block codes $\{\varphi_n\}$ such that $r(\varphi_n) < K + \epsilon$ for all n and for every θ , $P_{\theta}(U_0 \neq \varphi_n(U)_0) \to 0$.

Appendix

LEMMA 4. Let $X^{(1)},..., X^{(n)}$ be processes defined on (Ω, \mathscr{F}) with finite state spaces $A_1,..., A_n$. Let P be a probability measure on \mathscr{F} with respect to which $\{X^{(1)},..., X^{(n)}\}$ are jointly N-stationary. Let $\varphi_i: A_i^{\infty} \to A_i^{\infty}$ (i = 1,..., n) and $\delta: A_1^{\infty} \times \cdots \times A_n^{\infty} \to A_1^{\infty} \times \cdots \times A_n^{\infty}$ be block codes of order N such that

$$P[(X^{(1)},...,X^{(n)})^N
eq \delta(arphi_1(X^{(1)}),...,arphi_n(X^{(n)}))^N]\leqslant\epsilon\leqslant 1/2$$

Then

$$R \in \mathscr{R}[(X^{(1)},...,X^{(n)}),P],$$

where

$$R_i = N^{-1}H(\varphi_i(X^{(i)})^N) + h(\epsilon) + \epsilon \log |A_i|, \quad i = 1,..., n$$

Proof. Let S be a nonempty subset of $\{1,...,n\}$. Let $U = (X^{(j)}: j \notin S)$, $V = (X^{(j)}: j \in S)$, $\hat{V} = (\varphi_j(X^{(j)}): j \in S)$, $C = \prod_{j \notin S} A_j$, $D = \prod_{j \in S} A_j$. We regard U, V, \hat{V} as processes with state space C, D, D, respectively. It is easy to see that there is a block code $\delta': C^{\infty} \times D^{\infty} \to D^{\infty}$ such that

$$P[V^N
eq \delta'(U,\, \hat{V})^N] \leqslant \epsilon.$$

By Fano's inequality (Ash, 1965, p. 80)

$$\begin{split} \overline{H}((X^{(j)}: j \in S) \mid (X^{(j)}: j \notin S)) &= \overline{H}(V \mid U) \leqslant N^{-1}(V^N \mid U^N) \\ &\leqslant N^{-1}H(\hat{V}^N) + N^{-1}H(V^N \mid \hat{V}^N, U^N) \\ &\leqslant \sum_{j \in S} N^{-1}H(\varphi_j(X^{(j)})^N) + h(\epsilon) + \epsilon \log \mid D \mid \\ &\leqslant \sum_{j \in S} R_j \,. \end{split}$$

LEMMA 5. Let U, X, Y be processes defined on the probability space (Ω, \mathcal{F}, P) with state spaces A, B, C, respectively. Suppose that with respect to P these processes are jointly stationary and form a Markov chain (in the indicated order). Let $\{\varphi_n\}$ be a sequence of sliding-block codes from $B^{\infty} \to C^{\infty}$ such that $P^{(X,\varphi_n(X))} \to P^{(X,Y)}$ weakly. Then, $P^{(U,X,\varphi_n(X))} \to P^{(U,X,Y)}$ weakly.

Proof. We have to show that

$$E[f(U)g(X)h(\varphi_n(X))] \to E[f(U)g(X)h(Y)],$$

for f.d. functions taking their values in [0, 1]. Using the Markov property, we see that

$$E[f(U)g(X)h(Y)] = E[E[f(U) \mid X]g(X)h(Y)]$$
$$E[f(U)g(X)h(\varphi_n(X))] = E[E[f(U) \mid X]g(X)h(\varphi_n(X))].$$

Fix $\epsilon > 0$. Find a f.d. function F such that

$$E[|F(X) - E[f(U)|X]|] < \epsilon/3.$$

Then,

$$|E[f(U)g(X)h(Y)] - E[f(U)g(X)h(\varphi_n(X))]|$$

$$\leq |E[F(X)g(X)h(Y)] - E[F(X)g(X)h(\varphi_n(X))]| + 2\epsilon/3 < \epsilon,$$

for *n* sufficiently large.

RECEIVED: May 5, 1979; REVISED: June 19, 1980.

References

- Ash, R. B. (1965), "Information Theory," Interscience-Wiley, New York.
- ASH, R. B. (1972), "Real Analysis and Probability," Academic Press, New York.
- COVER, T. M. (1975), A proof of the data-compression theorem of Slepian and Wolf for ergodic sources, *IEEE Trans. Inform. Theory* 21, 226-228.
- GALLAGER, R. G. (1968), "Information Theory and Reliable Communication," Wiley, New York.
- GRAY, R. M. (1975), Sliding-block source coding, IEEE Trans. Inform. Theory 21, 357-368.
- KLEFFER, J. C. (1978), A unified approach to weak universal source coding, *IEEE Trans.* Inform. Theory 24, 674-682.
- KIEFFER, J. C. (1980a), Extension of source coding theorems for block codes to slidingblock codes, *IEEE Trans. Inform. Theory*, in press.
- KIEFFER, J. C. (1980b), On the transmission of Bernoulli sources over stationary channels, Annals of Probability, to appear.
- KIEFFER, J. C., AND RAHE, M. (1981), Selecting universal partitions in ergodic theory, Annals of Probability, to appear.
- PARTHASARATHY, K. R. (1963), Effective entropy rate and transmission of information through channels with additive random noise, *Sankhya Ser. A* 25, 75–84.

- PARTHASARATHY, K. R. (1967), "Probability Measures on Metric Spaces," Academic Press, New York.
- SLEPIAN, D., AND WOLF, J. (1973), Noiseless coding of correlated information sources, *IEEE Trans. Inform. Theory* 19, 471–480.
- ZIV, J. (1972), Coding of sources with unknown statistics—Part I: Probability of encoding error, *IEEE Trans. Inform. Theory* 18, 384-389.